

Received 1 September 2015 Accepted 29 September 2015

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina

Keywords: heterotrimetallic; metallacrown; selfassembled coordination complex; crystal structure

CCDC reference: 1428526 **Supporting information**: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structure of tetraaqua(dimethylformamide)tetrakis(µ-N,2-dioxidobenzene-1carboximidato)tetrakis(µ-trimethylacetato)tetramanganese(III)sodiumyttrium–dimethylformamide–water (1/8.04/0.62)

Jordan R. Travis,^a Matthias Zeller^b and Curtis M. Zaleski^a*

^aDepartment of Chemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA, and ^bDepartment of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, OH 44555, USA. *Correspondence e-mail: cmzaleski@ship.edu

The synthesis structure and crystal for the title compound, $[YNaMn_4(C_7H_4NO_3)_4(C_5H_9O_2)_4(H_2O)_{3.76}(C_3H_7NO)_{0.24}]\cdot 8.04C_3H_7NO\cdot 0.62H_2O$ or [Y^{III}Na(OTMA)₄[12-MC_{Mn(III)N(shi)}-4](H₂O)_{3.76}(DMF)_{0.24}·8.04DMF-- $0.62H_2O$, where OTMA is trimethylacetate, MC is metallacrown, shi³⁻ is salicylhydroximate, and DMF is N,N-dimethylformamide, is reported. The macrocyclic metallacrown consists of an -[Mn^{III}-N-O]₄- ring repeat unit, and the metallacrown captures one Y^{III} ion and one Na^I ion in the central cavity on opposite faces of the metallacrown. Overall the metallacrown is domed towards the side of the Na^I ion. Both the Y^{III} and Na^I ions are eight-coordinate, and the trimethylacetate anions bridge the central Y^{III} to each ring Mn^{III} ion. The ring Mn^{III} ions are six-coordinate with a tetragonally distorted octahedral geometry.

1. Chemical context

Since 1989 metallacrowns (MCs) have served as an excellent example of the controllable self-assembly of supramolecular coordination complexes (Mezei *et al.*, 2007). Considered the structural and functional inorganic analogues to crown ethers, metallacrowns self-assemble in solution to form coordination complexes with multiple metal centers. Not only can homometallic complexes be synthesized, but heterobimetallic and heterotrimetallic metallacrowns can also be prepared through one-step reactions (Mezei *et al.*, 2007; Azar *et al.*, 2014). The deliberate formation of supramolecular coordination complexes, especially those with multiple metal types, remains a synthetic challenge (Cook & Stang, 2015; Saalfrank *et al.*, 2008); however, metallacrowns provide a class of molecules that allows the investigation of the formation of multi-metal supramolecular coordination complexes.

Recently we reported the first synthetic strategy for heterotrimetallic metallacrowns: $Ln^{III}M(OAc)_4$ [12- $MC_{Mn(III)N(shi)}$ -4], where Ln^{III} is Pr^{III} to Yb^{III} (except Pm^{III}) and Y^{III} , M is Na^I or K^I, ⁻OAc is acetate, and shi³⁻ is salicylhydroximate (Azar *et al.*, 2014). In the previous report, we demonstrated the ability to systematically replace the central metal ions; however, the metallacrown framework has other points of alteration, in particular the bridging carboxylate anion. In these alkali metal–lanthanide–manganese ion complexes, four acetate anions serve as bridges between the central lanthanide ion and the ring Mn^{III} ions. Potentially the acetate anions could be replaced with other carboxylate monoanions. Herein we report the synthesis and crystal structure of $Y^{III}Na(OTMA)_4[12-MC_{Mn(III)N(shi)}-4](H_2O)_{3.76}(DMF)_{0.24}-8.04DMF\cdot0.62H_2O, (1)$, where OTMA is trimethylacetate and DMF is *N*,*N*-dimethylformamide. This metallacrown demonstrates the ability to vary the bridging carboxylate monoanion of this heterotrimetallic class of metallacrowns.

2. Structural commentary

The structure of the title compound $Y^{III}Na(OTMA)_4[12-MC_{Mn(III)N(shi)}-4](H_2O)_{3.76}(DMF)_{0.24}\cdot8.04DMF\cdot0.62H_2O, (1), is based on the typical [12-MC_{Mn(III)N(shi)}-4] core. Four shi³⁻ framework ligands and four Mn^{III} ions self-assemble to form an overall square geometry with a -[Mn-N-O]_4- repeat unit. The MC ring forms a central cavity with a pseudo-fourfold rotation axis that is capable of binding central metal ions, in this structure an Y^{III} ion and a Na^I ion. The two ions are bound on opposite faces of the MC, and the metallacrown is slightly domed with the Y^{III} ion residing on the convex side of the central cavity and the Na^I ion residing on the underside of the dome. The Y^{III} ion is also connected to the MC core by four trimethylacetate monoanions that serve to bridge the Y^{III} ion to each ring Mn^{III} ion. The molecular structure is shown in Figs. 1 and 2.$

The ring Mn^{III} ions and the central Y^{III} ion are assigned a 3+ oxidation state based on average bond lengths, calculated bond-valence-sum (BVS) values (Liu & Thorp, 1993), and overall molecular charge considerations. For Mn1, Mn2, Mn3, and Mn4, the average bond lengths are 2.05, 2.04, 2.06, and 2.05 Å, respectively, and the calculated BVS values for Mn1– Mn4 are 3.04, 3.06, 3.07, and 3.05 v. u., respectively. In addition, each Mn^{III} possesses elongated axial bond lengths, which would be expected for a high-spin d^4 ion. The Y1 ion has an average bond length and BVS value of 2.35 Å and 3.32 v. u., respectively. Molecular charge neutrality considerations also support the assigned oxidation states as the four shi³⁻ ligands and four trimethylacetate monoanions (total 16- charge) are balanced by the presence of four Mn^{III} ions, one Y^{III} ion, and one Na^I ion (total 16+ charge).

The Y^{III} ion is eight-coordinate with a distorted square antiprismatic geometry. The first coordination sphere is

Figure 1

The molecular structure of (1) in top view with displacement ellipsoids at the 50% probability level. For clarity, H atom and lattice solvent molecules have been omitted, and only atom labels for all non-H atoms of the 12-MC-4 framework have been provided. Color scheme: aqua – Y^{III} , green – Mn^{III} , yellow – Na^+ , red – oxygen, blue – nitrogen, and gray – carbon.

provided by two planes of four oxygen atoms each. One plane consists of four carboxylate oxygen atoms from the bridging trimethylacetate anions, and the second plane is formed by four oxime oxygen atoms of the MC ring. The Y^{III} ion lies

The molecular structure of (1) in side view. For clarity, only atom labels for all non-H atoms of the trimethylacetate anions and the coordinating water molecules and of the metal ions have been provided. For the solvent coordination site to Mn4, a water molecule and DMF molecule are disordered with an occupancy ratio of 0.758 (8):0.242 (8). Only the water molecule is displayed. See Fig. 1 for display details.

research communications

closer to the mean plane of the carboxylate oxygen atoms $(O_{car}MP)$, 1.07 Å, than the mean plane of the oxime oxygen atoms $(O_{ox}MP)$, 1.57 Å. Also, the two planes are twisted relative to each other with an average skew angle of 50.02° about the Y^{III} ion (AlDamen *et al.*, 2008, 2009). The skew angles were calculated with the program *Mercury* (Macrae *et al.*, 2006) and determined as previously described (Azar *et al.*, 2014). For an ideal square-prismatic geometry, the skew angle is 0°, while for an ideal square-antiprismatic geometry, the skew angle is 45°. Given the measured skew angle and the placement of the Y^{III} ion relative to the two planes of oxygen atoms, the best description of the geometry is distorted square antiprismatic.

The Na^I ion is eight-coordinated with a severely distorted square-antiprismatic geometry. As in the Y^{III} ion, the first coordination sphere is supplied by two planes of four oxygen atoms each. One plane is composed of the four oxime oxygen atoms of the MC ring, and the second plane consists of oxygen atoms from solvent molecules. Three of the four coordination sites are occupied by water molecules, while a water molecule and DMF molecule are disordered over the fourth site with an occupancy ratio of 0.758 (8):0.242 (8) (complete refinement details are given below). The Na^I ion lies closer to the mean plane of the solvent oxygen atoms (O_{solvent}MP), 0.67 Å, than the mean plane of the oxime oxygen atoms, 1.97 Å. Also, the two planes are twisted relative to each other with an average skew angle of 29.18° about the Na^I ion. Lastly, the solvent oxygen atoms bridge the central Na^I ion to the ring Mn^{III} ions. The water and DMF molecules disordered over the coordination site to the Na^I ion bridge the Na^I ion to Mn4.

Each ring Mn^{III} is six-coordinate with a tetragonally distorted octahedral geometry. The equatorial plane is comprised of a six-membered chelate ring and a *trans* five-membered chelate ring. The six-membered chelate ring is formed from the oxime nitrogen atom and the phenolate oxygen atom of one shi^{3–} ligand, and the five-membered chelate ring is formed from the oxime oxygen atom and the carbonyl oxygen atom of a second shi^{3–} ligand. Each Mn^{III} ion possesses an elongated axial axis, which is composed of a carboxylate oxygen atom from a bridging trimethylacetate anion and a bridging solvent oxygen atom from either a water or a DMF molecule. The Mn^{III} – $O_{solvent}$ bond lengths are rather long (2.4–2.5 Å), which is likely due to the simultaneous coordination to the central Na^I ion.

The metallacrown is slightly domed toward the central Na^I ion. As previously reported, the doming effect is not likely due to the presence of either central metal ion, but likely due to the displacement of each ring Mn^{III} ion from the equatorial mean plane of its first coordination sphere ligand atoms (Azar *et al.*, 2014). For (1), the average distance of the ring Mn^{III} ions above the equatorial ligand atom mean plane is 0.15 Å. Another indication of the doming effect in the MC is the angle between the axial carboxylate oxygen atom, the ring Mn^{III} ion, and the calculated centroid of the oxime oxygen atoms (*Mercury;* Macrae *et al.*, 2006). In a planar MC, this angle would be 90°. For the title compound, the average angle about

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C18-H18\cdots O20^{i}$	0.95	2.60	3.359 (5)	137
$C25-H25\cdots O14^{ii}$	0.95	2.59	3.374 (5)	141
C49-H49···O29	0.95	2.58	3.180 (8)	121
$C51 - H51B \cdots O29^{iii}$	0.98	2.56	3.376 (9)	141
$C53-H53B\cdots O31^{iv}$	0.98	2.48	3.377 (9)	152
C55-H55···O8	0.95	2.36	3.098 (8)	135
$C56-H56A\cdots O32^{iv}$	0.98	2.56	3.499 (17)	162
C59−H59 <i>B</i> ···O29	0.98	2.56	3.262 (11)	129
C61-H61···O12	0.95	2.52	3.457 (8)	169
$C63B - H63F \cdots O32B^{iii}$	0.98	2.53	3.34 (6)	140
$C64B - H64B \cdot \cdot \cdot O3$	0.95	2.50	3.40 (3)	157
$C71B - H71D \cdots O21$	0.98	2.60	3.41 (5)	141
$C72B - H72E \cdot \cdot \cdot O34^{iv}$	0.98	2.36	3.31 (7)	163
C74−H74 <i>B</i> ···O27	0.98	2.27	2.87 (3)	119
C75−H75C···O31	0.98	2.15	2.99 (3)	143
O21−H21A···O25	0.82(2)	2.00 (3)	2.767 (4)	155 (5)
$O21 - H21B \cdot \cdot \cdot O28$	0.83 (2)	2.05 (3)	2.792 (5)	148 (5)
$O21 - H21B \cdot \cdot \cdot O28B$	0.83(2)	1.87 (3)	2.70(2)	172 (5)
O22−H22A···O25	0.84(2)	1.96 (3)	2.727 (4)	151 (5)
$O22-H22B\cdots O26$	0.83 (2)	1.93 (3)	2.688 (4)	151 (5)
O23−H23A···O27	0.84(2)	2.06 (3)	2.871 (7)	164 (5)
$O23-H23A\cdots O24B$	0.84(2)	2.06 (5)	2.696 (19)	132 (5)
O23−H23B···O26	0.86 (2)	1.98 (3)	2.789 (5)	155 (5)
$O24C - H24A \cdots O33$	0.86 (2)	1.91 (4)	2.78 (3)	179 (5)

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 2, -y + 1, -z; (iii) -x + 1, -y + 1, -z; (iv) -x + 1, -y + 1, -z + 1.

the Mn^{III} ions is 101.74°, which indicates that the MC is slightly domed.

In addition to the MC, several solvent molecules are located in the lattice some of which are only partially occupied

Figure 3

Intermolecular C-H···O interactions between adjacent metallacrowns. For clarity the interactions have been divided into two sections (*a*) and (*b*), only the H atoms (white) involved in the interactions have been included, and only the atoms involved in the interactions have been labelled. See Fig. 1 for display details. [Symmetry codes: (ii) -x + 2, -y + 1; (iii) -x + 2, -y + 1, -z.]

Figure 4

Intermolecular hydrogen bonding between the water molecules coordinating to the Na⁺ ion and the water and DMF molecules of the lattice. For clarity the hydrogen bonding has been divided into two sections (*a*) and (*b*), only the H atoms (white) involved in the hydrogen bonding have been included, and only the atoms involved in the hydrogen bonding have been labelled. See Fig. 1 for display details.

(complete refinement details are given below). Three different DMF molecules are flipped disordered over two sites, one DMF molecule is disordered over two sites with different orientations, and two DMF molecules are partially occupied. In addition, the disordered water/DMF binding site of the Na^I ion is correlated to two DMF molecules, one of which is disordered over two sites with different orientations, and to two partially occupied water molecules. Overall there is a total of 8.04 DMF and 0.62 water molecules located in the lattice.

3. Supramolecular features

No strong directional intermolecular interactions are observed between the Y^{III}Na(OTMA)₄[12-MC_{Mn(III)N(shi)}-4](H₂O)_{3.76}· (DMF)_{0.24} molecules, but intermolecular C–H···O interactions exist between adjacent metallacrowns (Table 1). The Figure 5

Intermolecular C-H···O interactions between the metallacrown and the DMF molecules of the lattice. For clarity the interactions have been divided into two sections (*a*) and (*b*), only the H atoms (white) involved in the interactions have been included, and only the atoms involved in the interactions have been labelled. See Fig. 1 for display details.

interactions exist between the carboxylate oxygen atoms (O14 and O20) of the trimethylacetate anions and the benzene carbon atoms (C18 and C25) of the shi³⁻ ligands on adjacent metallacrowns (Fig. 3). In addition, the water molecules (O21, O22, O23, and O24*C*) coordinating to the Na¹ ion are hydrogen bonded to several lattice water and DMF molecules (Fig. 4), and the lattice DMF molecules interact with the MC molecule through C-H···O interactions (Fig. 5). The C-H···O interactions occur between either a phenolate oxygen atoms (O3 and O12) of shi³⁻ ligands, a carboxylate oxygen atom (O21) and carbonyl carbon atoms (C55, C61, and C64*B*) or a methyl carbon atom (C71*B*) of lattice DMF molecules (Fig. 5). Lastly, several C-H···O interactions exist between

Table 2

			Avg. adjacent	Avg. cross-cavity	Avg. cross-cavity					
	Y ^{III} crystal	MC cavity	⁄ Mn [™] · · · Mn [™]	$Mn^{III} \cdot \cdot \cdot Mn^{III}$	$O_{ox} \cdot \cdot \cdot O_{ox}$	Y ^{III} -O _{car} MP	Y ^{III} -O _{ox} MP	Y ^{III} -MnMP	Na ¹ -O _{solvent} MP	Na ¹ -O _{ox} MP
Compour	nd radius	radius	distance	distance	distance	distance	distance	distance	distance	distance
(1)	1.05	0.55	4.62	6.53	3.71	1.07	1.57	1.91	0.67	1.97
(2A)	1.05	0.55	4.61	6.52	3.70	1.04	1.57	1.92	0.79	1.92
(2B)	1.05	0.55	4.61	6.52	3.70	1.03	1.58	1.93	0.79	1.91

adjacent solvent molecules (Fig. 6). The carbonyl (C49) or methyl (C51, C53, C56, C59, C63*B*, C72*B*, C74, and C75) carbon atoms of DMF molecules interact with either an oxygen atom (O34) of a lattice water molecule or carbonyl oxygen atoms (O27, O29, O31, O32, and O32*B*) of lattice DMF molecules. The hydrogen bonding and weak $C-H\cdots O$

Figure 6

Intermolecular C-H···O interactions between adjacent water and DMF molecules. For clarity the interactions have been divided into two sections (*a*) and (*b*), only the H atoms (white) involved in the interactions have been included, and only the atoms involved in the interactions have been labelled. See Fig. 1 for display details. [Symmetry codes: (iv) -x + 1, -y + 1, -z; (v) -x + 1, -y + 1, -z + 1.]

interactions, in addition to pure van der Waals forces, contribute to the overall packing of the molecules.

4. Database survey

The crystal structure of one other yttrium-based heterotrimetallic 12-MC-4 has been reported: Y^{III}Na(OAc)₄[12- $MC_{Mp(III)N(shi)}$ -4](H₂O)₄·6DMF, 2 (Azar *et al.*, 2014). In the title compound (1), trimethylacetate anions bridge the central Y^{III} ion to the ring Mn^{III} ions, while in the previously reported compound (2) acetate anions bridge the Y^{III} ion and the Mn^{III} ions. Also for the previously reported compound (2), there are two independent MCs in each unit cell; thus, the labels (2A) and (2B) will be used to distinguish the two MCs. The replacement of acetate for trimethylacetate does not severely distort the [12-MC_{Mn(III)N(shi)}-4] framework. Comparing the two carboxylate monoanion structures, several key features of both MCs are very similar (Table 2). These features were calculated and measured using the program Mercury (Macrae et al., 2006) and in the same manner as previously described (Azar et al., 2014). Comparable measured values for the MC cavity radii, average adjacent Mn^{III}-Mn^{III} distances, cross cavity Mn^{III}-Mn^{III} distances, and cross cavity oxime oxygen $(O_{ox} - O_{ox})$ distances demonstrate that the [12-MC_{Mn(III)N(shi)}-4] framework is not significantly affected by the identity of the bridging carboxylate anion. In addition, the determined metrics of the central Y^{III} ions and Na⁺ ions are very similar in both (1) and (2) (Table 2). The greatest deviations between the structures is the distance of the Na^I ion from the mean plane of the solvent oxygen atoms. This is likely due to the difference in the first coordination sphere of the Na^I ions. In (2A) and (2B) only water molecules bind to the Na^I ions, while in (1) a mixture of water and DMF molecules bind to the Na^I ion.

The identity of the bridging ligand does not significantly alter the domed feature of the metallacrown. As stated in the *Structural commentary* for (1), the average distance of the ring Mn^{III} ions above the equatorial ligand atom mean plane is 0.15 Å, and the average angle about the Mn^{III} ions with respect to the axial carboxylate oxygen atom and the calculated centroid of the oxime oxygen atoms is 101.74°. For (2A) and (2B), the Mn^{III} ions in both structures are on average 0.17 Å above the equatorial ligand atom mean plane, and the average angles about the Mn^{III} ions with respect to the axial carboxylate oxygen atom and the calculated centroid of the oxime oxygen atoms are 102.31 and 102.04°, respectively.

5. Synthesis and crystallization

The title compound (1) was synthesized by first mixing yttrium(III) nitrate hexahydrate (0.125 mmol), sodium trimethylacetate hydrate (4 mmol based on an assumption of three waters of hydration), and salicylhydroxamic acid (2 mmol) in 10 mL of DMF resulting in a cloudy, white mixture. In a separate beaker, manganese(II) acetate tetrahydrate (2 mmol) was dissolved in 10 mL of DMF resulting in an orange-red solution. The two solutions were mixed resulting in a dark-brown solution and then allowed to stir overnight. The solution was then filtered to remove a dark-brown precipitate, which was discarded. Slow evaporation of the dark-brown filtrate yielded X-ray quality black/dark-brown crystals after 9 days. The yield was 20% based on yttrium(III) nitrate hexahydrate.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The following low angle reflections were affected by the beam stop and were omitted from the refinement: 1 0 0, 0 1 0, $\overline{1}$ $\overline{1}$ 1, and $\overline{1}$ 1 0. For all of the disordered solvate water and DMF molecules, neighboring atoms were restrained to have similar U_{ij} components of their ADPs if closer than 1.7 Å (SIMU restraints in *SHELXL*).

The geometries of the DMF molecules associated with N7, N8*B*, N9, N9*B*, N10, N10*B*, N11, N12, N12*B*, N13, and N13*B* were restrained to be similar to the DMF molecule associated with N5 (esd = 0.02 Å). For the DMF molecules associated with N7*B* and N11*B*, the geometries were restrained to be similar to the DMF molecule associated with N5 (esd = 0.001 Å). For the DMF molecules associated with N8*B*, N11*B*, and N13*B*, the carbon, oxygen, and nitrogen atoms were restrained to lie in the same plane (e.s.d. = 0.01 Å³).

A water molecule (O24C) and DMF molecule associated with N13 are disordered over a binding site to Na1. The atoms O24 and O24C were given identical coordinates, and to avoid correlation of the thermal parameters, the ADPs of O24 and O24C were constrained to be identical. Subject to these and the above conditions, the occupancy ratio of the disordered water and DMF molecules refined to 0.758 (8) to 0.242 (8). Correlated to the occupation of the binding site to Na1 is a DMF molecule associated with N13B and a DMF molecule associated with N7 that is disordered over two sites with different orientations. Subject to the above restraints, the occupancy ratio of the DMF molecule associated with N13B refined to 0.252 (5), and the occupancy ratio of the disordered N7 DMF molecule associated with refined to 0.748 (5):0.252 (5). In addition, two partially occupied water molecules associated with O33 and O34 are correlated to these water and DMF molecules. The occupancy of the water molecule of O33 and the water molecule of O34 are 0.257 (14) and 0.361 (13), respectively.

Several DMF molecules are disordered, and the above restraints were used to model the data. The DMF molecule associated with N8 is flipped disordered over two sites, and the

Table 3	
Experimental details.	

Crevetal data	
Crystal data	
Chemical formula	$[Y NaWin_4(C_7H_4NO_3)_4(C_5H_9O_2)_4$ -
	$(C_3H_7NO)_{0.24}(H_2O)_{3.76}]$
	$8.04C_{3}H_{7}NO \cdot 0.62H_{2}O$
M _r	2021.04
Crystal system, space group	Triclinic, P1
Temperature (K)	100
a, b, c (Å)	14.8659 (9), 17.3261 (10), 19.2709 (11)
α, β, γ (°)	83.488 (3), 82.499 (3), 72.805 (3)
$V(A^3)$	4686.5 (5)
Z	2
Radiation type	Cu <i>Kα</i>
$\mu (\rm{mm}^{-1})$	5.83
Crystal size (mm)	$0.15 \times 0.14 \times 0.10$
Data collection	
Diffractometer	Bruker X8 Prospector CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2014)
T_{\min}, T_{\max}	0.572, 0.753
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	59383, 16375, 14639
R _{int}	0.045
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.596
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.053, 0.142, 1.02
No. of reflections	16375
No. of parameters	1537
No. of restraints	1505
H-atom treatment	H atoms treated by a mixture of
	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	1.73, -0.58

Computer programs: *APEX2* and *SAINT* (Bruker, 2014), *SHELXS97* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2008) and *SHELXLE* (Hübschle *et al.*, 2011), *Mercury* (Macrae *et al.*, 2006) and *publCIF* (Westrip, 2010).

occupancy ratio refined to 0.813 (7):0.187 (7). The DMF molecule associated with N9 is flipped disordered over two sites, and the occupancy ratio refined to 0.813 (7):0.187 (7). The DMF molecule associated with N10 is disordered over two sites with different orientations, and the occupancy ratio refined to 0.795 (6):0.205 (6). The DMF molecule associated with N11 is flipped disordered over two sites, and the occupancy ratio refined to 0.790 (9):0.210 (9). Two DMF molecules associated with N12 and N12*B* are partially occupied. The occupancy of the DMF molecule N12 and the DMF molecule 12B are 0.662 (8) and 0.129 (7), respectively.

For the water molecules, the oxygen-hydrogen bond lengths were restrained to 0.84 (2) Å. The hydrogen-hydrogen distances for the water molecules associated with O24, O33, and O34 were restrained to 1.36 (2) Å. For the water molecule O24*C*, the hydrogen atoms were restrained to a distance of at least 2.90 (2) Å from Na1. For the water molecules associated with O33 and O34, the hydrogen atoms were refined as riding on the oxygen atoms.

For the methyl group carbon atoms C56*B*, C62*B*, C63*B*, C69, C69*B*, C71*B*, C72*B*, C74, C74*B*, C75, and C75*B*, hydrogen atoms were placed in tetrahedral positions with an ideal staggered geometry (AFIX 33). All other methyl group hydrogen atoms were allowed to rotate. All other hydrogen

atoms were placed in calculated positions and refined as riding on their carrier atoms with C–H distances of 0.95 Å for sp^2 carbon atoms and 0.98 Å for methyl carbon atoms. The $U_{\rm iso}$ values for hydrogen atoms were set to a multiple of the value of the carrying carbon atom (1.2 times for sp^2 -hybridized carbon atoms or 1.5 times for methyl carbon atoms and water oxygen atoms).

Several larger than desired residual electron density peaks remain after refinement of the data, which is typical for this class of compounds. The origin of these peaks is usually caused either by minor twinning, excessive twinning with multiple components that is beyond what can be completely handled with current integration and absorption correction software, pseudosymmetry (and correlation), or additional disorder not defined well enough to be modeled. In the case of the presented structure, the residual electron density is mostly due to additional disorder. The 3rd, 4th, 5th and 7th largest residual electron density peaks are due to alternative positions of manganese atoms of a minor moiety of the metallacrown unit (whole molecule disorder). The height of these peaks, 1.3 to 1.2 electrons per $Å^3$, indicate the presence of less than 5% of the second moiety, and most other atoms (carbon, nitrogen, and oxygen) are not resolved. The 2nd largest residual density peak (1.71 electrons per $Å^3$) is located close to the yttrium atom and is within the typical range of residual electron density peaks close to heavy atoms. The two remaining residual electron density peaks, the largest (1.73 electrons per $Å^3$) and 6^{th} largest (1.23 electrons per Å³) are due to minor twinning by a 180.0 degree rotation about the 1 1 0 reciprocal lattice direction (twin law 0.215 0.785 -0.203, 1.215 -0.215 -0.203, 0 0 - 1). Refinement as a non-merohedric twin does reduce these peaks to 1.14 and 0.71 electrons per $Å^3$, respectively: however, the R1 value slightly increases to 0.0553 from 0.0525. Also, the other larger residual electron density peaks (see above) are not improved by inclusion of twinning, nor is the structural model in any way changed. Considering the very minor effect, non-merohedric twinning was not used.

Acknowledgements

CMZ and JRT thank the Undergraduate Research Grant Program and the CFEST Faculty Training and Continued Education program at Shippensburg University for financial support. MZ thanks the NSF (grant DMR 1337296) for funding for the X-ray diffractometer.

References

- AlDamen, M. A., Cardona-Serra, S., Clemente-Juan, J. M., Coronado, E., Gaita-Ariño, A., Martí-Gastaldo, C., Luis, F. & Montero, O. (2009). *Inorg. Chem.* 48, 3467–3479.
- AlDamen, M. A., Clemente-Juan, J. M., Coronado, E., Martí-Gastaldo, C. & Gaita-Ariño, A. (2008). J. Am. Chem. Soc. 130, 8874–8875.
- Azar, M. R., Boron, T. T., Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). *Inorg. Chem.* 53, 1729–1742.
- Bruker (2014). APEX2, SADABS, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cook, T. R. & Stang, P. J. (2015). Chem. Rev. 115, 7001–7045.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
- Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102-4105.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003.
- Saalfrank, R. W., Maid, H. & Scheurer, A. (2008). Angew. Chem. Int. Ed. 47, 8794–8824.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2015). E71, 1300-1306 [https://doi.org/10.1107/S2056989015018216]

Crystal structure of tetraaqua(dimethylformamide)tetrakis(μ -N,2-dioxidobenzene-1-carboximidato)tetrakis(μ -trimethylacetato)tetramanganese(III)sodiumyttrium–dimethylformamide–water (1/8.04/0.62)

Jordan R. Travis, Matthias Zeller and Curtis M. Zaleski

Computing details

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT* (Bruker, 2014); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2008) and *SHELXLE Rev714* (Hübschle *et al.*, 2011); molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Tetraaqua(dimethylformamide)tetrakis(μ -N,2-dioxidobenzene-1-carboximidato)tetrakis(μ -trimethylacetato)tetramanganese(III)sodiumyttrium–dimethylformamide–water (1/8.04/0.62)

Crystal data

$M_r = 2021.04$ Cu Ka radiation, $\lambda =$ Triclinic, PI 1.54178 Å $a = 14.8659$ (9) ÅCell parameters $b = 17.3261$ (10) Åfrom 9921 $c = 19.2709$ (11) Åreflections $a = 83.488$ (3)° $\theta = 2.7-66.8^{\circ}$ $\beta = 82.499$ (3)° $\mu = 5.83 \text{ mm}^{-1}$ $\gamma = 72.805$ (3)° $T = 100 \text{ K}$ $V = 4686.5$ (5) Å ³ Plate, black $Z = 2$ $0.15 \times 0.14 \times 0.10$ $F(000) = 2106.3$ mmData collectionmmData collectionTmin = 0.572 , $T_{max} = 0.753$ diffractometer59383 measured reflectionsRadiation source: I-mu-S microsource X-ray16375 independent reflectionstube14639 reflections with $I > 2\sigma(I)$ Laterally graded multilayer (Goebel) mirror $R_{int} = 0.045$ ω and phi scans $h = -17 \rightarrow 17$ Absorption correction: multi-scan $k = -20 \rightarrow 20$ $(SADABS; Bruker, 2014)$ $l = -22 \rightarrow 22$	[YNaMn4(C7H4NO3)4(C5H9O2)4(C3H7NO)0.24(H2O)	$_{3.76}] \cdot 8.04C_3 D_{x} \times O \cdot 0462 H_{4} O m^{-3}$
Triclinic, $P\overline{1}$ 1.54178 Å $a = 14.8659$ (9) ÅCell parameters $b = 17.3261$ (10) Åfrom 9921 $c = 19.2709$ (11) Åreflections $a = 83.488$ (3)° $\theta = 2.7-66.8^{\circ}$ $\beta = 82.499$ (3)° $\mu = 5.83 \text{ mm}^{-1}$ $\gamma = 72.805$ (3)° $T = 100 \text{ K}$ $V = 4686.5$ (5) ųPlate, black $Z = 2$ $0.15 \times 0.14 \times 0.10$ $F(000) = 2106.3$ mmData collectionBruker X8 Prospector CCD $T_{\min} = 0.572, T_{\max} = 0.753$ diffractometer59383 measured reflectionsRadiation source: I-mu-S microsource X-ray16375 independent reflectionstube14639 reflections with $I > 2\sigma(I)$ Laterally graded multilayer (Goebel) mirror monochromator $R_{im} = 0.045$ ω and phi scans $h = -17 \rightarrow 17$ Absorption correction: multi-scan (SADABS; Bruker, 2014) $l = -22 \rightarrow 22$	$M_r = 2021.04$	Cu <i>K</i> α radiation, $\lambda =$
$a = 14.8659 (9) Å$ Cell parameters from 9921 reflections $b = 17.3261 (10) Å$ from 9921 reflections $c = 19.2709 (11) Å$ reflections $a = 83.488 (3)^{\circ}$ $\theta = 2.7-66.8^{\circ}$ $\mu = 5.83 mm^{-1}$ $T = 100 K$ $y = 72.805 (3)^{\circ}$ $T = 100 K$ $V = 4686.5 (5) Å^3$ Plate, black $0.15 \times 0.14 \times 0.10$ mm $Z = 2$ $0.15 \times 0.14 \times 0.10$ mm $Data collection$ mmBruker X8 Prospector CCD diffractometer $T_{min} = 0.572, T_{max} = 0.753$ $59383 measured reflectionsRadiation source: I-mu-S microsource X-raytube16375 independent reflectionsLaterally graded multilayer (Goebel) mirrormonochromatorR_{int} = 0.045\theta_{max} = 66.9^{\circ}, \theta_{min} = 2.3^{\circ}h = -17 \rightarrow 17Absorption correction: multi-scan(SADABS; Bruker, 2014)R_{int} = -22 \rightarrow 22$	Triclinic, $P\overline{1}$	1.54178 Å
$b = 17.3261 (10) Å$ from 9921 $c = 19.2709 (11) Å$ reflections $a = 83.488 (3)^{\circ}$ $\theta = 2.7-66.8^{\circ}$ $b = 82.499 (3)^{\circ}$ $\mu = 5.83 \text{ mm}^{-1}$ $\gamma = 72.805 (3)^{\circ}$ $T = 100 \text{ K}$ $V = 4686.5 (5) Å^3$ Plate, black $Z = 2$ $0.15 \times 0.14 \times 0.10$ $F(000) = 2106.3$ mmData collectionBruker X8 Prospector CCD $T_{\min} = 0.572, T_{\max} = 0.753$ diffractometer59383 measured reflectionsRadiation source: I-mu-S microsource X-ray16375 independent reflectionstube14639 reflections with $I > 2\sigma(I)$ Laterally graded multilayer (Goebel) mirror $R_{int} = 0.045$ ω and phi scans $h = -17 \rightarrow 17$ Absorption correction: multi-scan $k = -20 \rightarrow 20$ $(SADABS; Bruker, 2014)$ $l = -22 \rightarrow 22$	a = 14.8659 (9) Å	Cell parameters
$c = 19.2709$ (11) Åreflections $a = 83.488$ (3)° $\theta = 2.7-66.8^{\circ}$ $\beta = 82.499$ (3)° $\mu = 5.83 \text{ mm}^{-1}$ $\gamma = 72.805$ (3)° $T = 100 \text{ K}$ $V = 4686.5$ (5) ųPlate, black $Z = 2$ $0.15 \times 0.14 \times 0.10$ $F(000) = 2106.3$ mmData collectionBruker X8 Prospector CCD $T_{min} = 0.572, T_{max} = 0.753$ diffractometer59383 measured reflectionsRadiation source: I-mu-S microsource X-ray16375 independent reflectionstube14639 reflections with $I > 2\sigma(I)$ Laterally graded multilayer (Goebel) mirror $\theta_{max} = 66.9^{\circ}, \theta_{min} = 2.3^{\circ}$ ω and phi scans $h = -17 \rightarrow 17$ Absorption correction: multi-scan $k = -20 \rightarrow 20$ (SADABS; Bruker, 2014) $l = -22 \rightarrow 22$	b = 17.3261 (10) Å	from 9921
$\alpha = 83.488 (3)^{\circ}$ $\theta = 2.7-66.8^{\circ}$ $\beta = 82.499 (3)^{\circ}$ $\mu = 5.83 \text{ mm}^{-1}$ $\gamma = 72.805 (3)^{\circ}$ $T = 100 \text{ K}$ $V = 4686.5 (5) \text{ Å}^3$ Plate, black $Z = 2$ $0.15 \times 0.14 \times 0.10$ $F(000) = 2106.3$ mmData collectionT_min = $0.572, T_{max} = 0.753$ diffractometer59383 measured reflectionsRadiation source: I-mu-S microsource X-ray16375 independent reflectionstube14639 reflections with $I > 2\sigma(I)$ Laterally graded multilayer (Goebel) mirror $\theta_{max} = 66.9^{\circ}, \theta_{min} = 2.3^{\circ}$ ω and phi scans $h = -17 \rightarrow 17$ Absorption correction: multi-scan $k = -20 \rightarrow 20$ $(SADABS; Bruker, 2014)$ $I = -22 \rightarrow 22$	c = 19.2709 (11) Å	reflections
$\beta = 82.499$ (3)° $\mu = 5.83 \text{ mm}^{-1}$ $\gamma = 72.805$ (3)° $T = 100 \text{ K}$ $V = 4686.5$ (5) Å3Plate, black $Z = 2$ $0.15 \times 0.14 \times 0.10$ $F(000) = 2106.3$ mmData collectionmmBruker X8 Prospector CCD $T_{min} = 0.572, T_{max} = 0.753$ diffractometer59383 measured reflectionsRadiation source: I-mu-S microsource X-ray16375 independent reflectionstube14639 reflections with $I > 2\sigma(I)$ Laterally graded multilayer (Goebel) mirror $m_{max} = 66.9^{\circ}, \theta_{min} = 2.3^{\circ}$ ω and phi scans $h = -17 \rightarrow 17$ Absorption correction: multi-scan $k = -20 \rightarrow 20$ (SADABS; Bruker, 2014) $l = -22 \rightarrow 22$	$\alpha = 83.488 (3)^{\circ}$	$\theta = 2.7 - 66.8^{\circ}$
$y = 72.805$ (3)° $T = 100$ K $V = 4686.5$ (5) ųPlate, black $Z = 2$ $0.15 \times 0.14 \times 0.10$ $F(000) = 2106.3$ mmData collectionTmin = 0.572 , $T_{max} = 0.753$ diffractometerRadiation source: I-mu-S microsource X-raytube16375 independent reflectionsLaterally graded multilayer (Goebel) mirror $R_{int} = 0.045$ ω and phi scans $h = -17 \rightarrow 17$ Absorption correction: multi-scan $k = -20 \rightarrow 20$ $(SADABS; Bruker, 2014)$ $I = -22 \rightarrow 22$	$\beta = 82.499(3)^{\circ}$	$\mu = 5.83 \text{ mm}^{-1}$
$V = 4686.5$ (5) ųPlate, black $Z = 2$ $0.15 \times 0.14 \times 0.10$ $F(000) = 2106.3$ mmData collectionmmBruker X8 Prospector CCD $T_{min} = 0.572, T_{max} = 0.753$ diffractometer59383 measured reflectionsRadiation source: I-mu-S microsource X-ray16375 independent reflectionstube14639 reflections with $I > 2\sigma(I)$ Laterally graded multilayer (Goebel) mirror $\theta_{max} = 66.9^{\circ}, \theta_{min} = 2.3^{\circ}$ ω and phi scans $h = -17 \rightarrow 17$ Absorption correction: multi-scan $k = -20 \rightarrow 20$ $(SADABS; Bruker, 2014)$ $l = -22 \rightarrow 22$	$y = 72.805 (3)^{\circ}$	T = 100 K
$Z = 2$ $0.15 \times 0.14 \times 0.10$ mm $F(000) = 2106.3$ mmData collection $T_{min} = 0.572, T_{max} = 0.753$ diffractometerBruker X8 Prospector CCD $T_{min} = 0.572, T_{max} = 0.753$ 59383 measured reflectionsRadiation source: I-mu-S microsource X-ray tube16375 independent reflectionsLaterally graded multilayer (Goebel) mirror monochromator $R_{int} = 0.045$ $\theta_{max} = 66.9^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -17 \rightarrow 17$ Absorption correction: multi-scan (SADABS; Bruker, 2014) $k = -20 \rightarrow 20$ $l = -22 \rightarrow 22$	$V = 4686.5(5) Å^3$	Plate, black
$F(000) = 2106.3$ mmData collection $T_{min} = 0.572, T_{max} = 0.753$ Bruker X8 Prospector CCD $T_{min} = 0.572, T_{max} = 0.753$ diffractometer59383 measured reflectionsRadiation source: I-mu-S microsource X-ray16375 independent reflectionstube14639 reflections with $I > 2\sigma(I)$ Laterally graded multilayer (Goebel) mirror $R_{int} = 0.045$ ω and phi scans $h = -17 \rightarrow 17$ Absorption correction: multi-scan $k = -20 \rightarrow 20$ (SADABS; Bruker, 2014) $I = -22 \rightarrow 22$	Z=2	$0.15 \times 0.14 \times 0.10$
Data collectionBruker X8 Prospector CCD $T_{min} = 0.572, T_{max} = 0.753$ diffractometer59383 measured reflectionsRadiation source: I-mu-S microsource X-ray16375 independent reflectionstube14639 reflections with $I > 2\sigma(I)$ Laterally graded multilayer (Goebel) mirror $R_{int} = 0.045$ monochromator $\theta_{max} = 66.9^{\circ}, \theta_{min} = 2.3^{\circ}$ ω and phi scans $h = -17 \rightarrow 17$ Absorption correction: multi-scan $k = -20 \rightarrow 20$ (SADABS; Bruker, 2014) $l = -22 \rightarrow 22$	F(000) = 2106.3	mm
Bruker X8 Prospector CCD $T_{\min} = 0.572, T_{\max} = 0.753$ diffractometer59383 measured reflectionsRadiation source: I-mu-S microsource X-ray tube16375 independent reflectionsLaterally graded multilayer (Goebel) mirror monochromator $R_{int} = 0.045$ ω and phi scans $h = -17 \rightarrow 17$ Absorption correction: multi-scan (SADABS; Bruker, 2014) $l = -22 \rightarrow 22$	Data collection	
diffractometer59383 measured reflectionsRadiation source: I-mu-S microsource X-ray tube16375 independent reflectionsLaterally graded multilayer (Goebel) mirror monochromator $R_{int} = 0.045$ $\theta_{max} = 66.9^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -17 \rightarrow 17$ Absorption correction: multi-scan (SADABS; Bruker, 2014) $k = -20 \rightarrow 20$ $l = -22 \rightarrow 22$	Bruker X8 Prospector CCD	$T_{\rm min} = 0.572, T_{\rm max} = 0.753$
Radiation source: I-mu-S microsource X-ray tube16375 independent reflections 14639 reflections with $I > 2\sigma(I)$ Laterally graded multilayer (Goebel) mirror monochromator $R_{int} = 0.045$ $\theta_{max} = 66.9^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -17 \rightarrow 17$ Absorption correction: multi-scan (SADABS; Bruker, 2014) $k = -20 \rightarrow 20$ $l = -22 \rightarrow 22$	diffractometer	59383 measured reflections
tube14639 reflections with $I > 2\sigma(I)$ Laterally graded multilayer (Goebel) mirror monochromator $R_{int} = 0.045$ $\theta_{max} = 66.9^\circ, \theta_{min} = 2.3^\circ$ ω and phi scans $h = -17 \rightarrow 17$ Absorption correction: multi-scan (SADABS; Bruker, 2014) $l = -22 \rightarrow 22$	Radiation source: I-mu-S microsource X-ray	16375 independent reflections
Laterally graded multilayer (Goebel) mirror $R_{int} = 0.045$ monochromator $\theta_{max} = 66.9^{\circ}, \theta_{min} = 2.3^{\circ}$ ω and phi scans $h = -17 \rightarrow 17$ Absorption correction: multi-scan $k = -20 \rightarrow 20$ (SADABS; Bruker, 2014) $l = -22 \rightarrow 22$	tube	14639 reflections with $I > 2\sigma(I)$
Initial product matrice (Geoder) miniter h_{max} monochromator $\theta_{max} = 66.9^{\circ}, \theta_{min} = 2.3^{\circ}$ ω and phi scans $h = -17 \rightarrow 17$ Absorption correction: multi-scan $k = -20 \rightarrow 20$ (SADABS; Bruker, 2014) $l = -22 \rightarrow 22$	Laterally graded multilayer (Goebel) mirror	$R_{\text{int}} = 0.045$
ω and phi scans $h = -17 \rightarrow 17$ Absorption correction: multi-scan $k = -20 \rightarrow 20$ (SADABS; Bruker, 2014) $l = -22 \rightarrow 22$	monochromator	$\theta_{\text{max}} = 66.9^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
Absorption correction: multi-scan $k = -20 \rightarrow 20$ (SADABS; Bruker, 2014) $l = -22 \rightarrow 22$	ω and phi scans	$h = -17 \rightarrow 17$
(SADABS; Bruker, 2014) $l = -22 \rightarrow 22$	Absorption correction: multi-scan	$k = -20 \rightarrow 20$
	(SADABS; Bruker, 2014)	$l = -22 \rightarrow 22$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: mixed
$wR(F^2) = 0.142$	H atoms treated by a mixture of independent
S = 1.02	and constrained refinement
16375 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0737P)^2 + 11.125P]$
1537 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
1505 restraints	$(\Delta/\sigma)_{\rm max} = 0.005$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 1.73 \ m e \ m \AA^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. For all of the disordered solvate water and DMF molecules, neighboring atoms were restrained to have similar Uij components of their ADPs if closter than 1.7 Angstoms (SIMU restraints in Shelxl).

The geometries of the DMF molecules associated with N7, N8B, N9, N9B, N10, N10B, N11, N12, N12B, N13, and N13B were restrained to be similar to the DMF molecule associated with N5 (esd = 0.02 Angstrom). For the DMF molecules associated with N7B and N11B, the geometries were restrained to be similar to the DMF molecule associated with N5 (esd = 0.02 Angstrom). For the DMF molecules associated with N5 (esd = 0.001 Angstrom). For the DMF molecules associated with N8B, N11B, and N13B, the carbon, oxygen, and nitrogen atoms were restrained to lie in the same plane (0.01 Angstroms cubed).

A water molecule (O24C) and DMF molecule associated with N13 are disordered over a binding site to Na1. The atoms O24 and O24C were given identical coordinates, and to avoid correlation of the thermal parameters, the ADP of O24 and O24C were constrained to be identical. Subject to these and the above conditions, the occupancy ratio of the disordered water and DMF molecules refined to 0.758 (8) to 0.242 (8). Correlated to the occupation of the binding site is a DMF molecule associated with N13B and a DMF molecule associated with N7 that is disordered over two sites with different orientations. Subject to the above restraints, the occupancy ratio of the DMF molecule associated with N13B refined to 0.252 (5), and the occupancy ratio of the disordered DMF molecule associated with N7 refined to 0.748 (5) to 0.252 (5). In addition, two partially occupied water molecules associated with O33 and O34 are correlated to these water and DMF molecules. The occupancy of the water molecule of O33 and the water molecule of O34 are 0.257 (14) and 0.361 (13), respectively.

Several DMF molecules are disordered, and the above restraints were used to model the data. The DMF molecule associated with N8 is flipped disordered over two sites, and the occupancy ratio refined to 0.813 (7) to 0.187 (7). The DMF molecule associated with N9 is flipped disordered over two sites, and the occupancy ratio refined to 0.813 (7) to 0.187 (7). The DMF molecule associated with N10 is disordered over two sites with different orientations, and the occupancy ratio refined to 0.795 (6) to 0.205 (6). The DMF molecule associated with N11 is flipped disordered over two sites, and the occupancy ratio refined to 0.790 (9) to 0.210 (9). Two DMF molecules associated with N12 and N12B are partially occupied. The occupancy of the DMF molecule N12 and the DMF molecule 12B are 0.662 (8) and 0.129 (7), respectively.

For the water molecules, the oxygen-hydrogen bond distances were restrained to 0.84 (2) Angstrom. The hydrogenhydrogen distances for the water molecules associated with O24, O33, and O34 were restrained to 1.36 (2) Angstroms. For the water molecule O24C, the hydrogen atoms were restrained to a distance of at least 2.90 (2) Angstroms from Na1. For the water molecules associated with O33 and O34, the hydrogen atoms were refined as riding on the oxygen atoms. For the methyl group carbon atoms 56B, 62B, 63B, 69, 69B, 71B, 72B, 74, 74B, 75, and 75B, hydrogen atoms were placed in tetrahedral positions with an ideal staggered geometry (AFIX 33). All other methyl group hydrogen atoms were allowed to rotate. All other hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C-H distances of 0.95 Angstrom for sp2 carbon atoms and 0.98 Angstrom for methyl carbon atoms. The Uiso values for hydrogen atoms were set to a multiple of the value of the carrying carbon atom (1.2 times for sp2 hybridized carbon atoms or 1.5 times for methyl carbon atoms and water oxygen atoms).

The following low angle reflections were affected by the beam stop and were omitted from the refinement: $1\ 0\ 0,\ 0\ 1\ 0,$ -1 -1 1, and -1 1 0.

	x	v	Z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
$\overline{C1}$	0 7096 (2)	0 7443 (2)	0.05094 (17)	0.0206 (7)	
C^2	0.7090(2)	0.7852(2)	-0.00412(18)	0.0200(7)	
C2 C3	0.0409(3) 0.5705(3)	0.7852(2) 0.8557(2)	0.00412(18)	0.0240(7) 0.0241(7)	
C1	0.5705(3) 0.5182(3)	0.8557(2) 0.8010(2)	-0.05003(18)	0.0241(7)	
U4	0.3182(3)	0.0919(2)	-0.0441	0.0277(8)	
П 4 С5	0.40/4	0.9399	-0.0441 -0.1141(2)	0.033°	
U5	0.5395 (5)	0.8390 (3)	-0.1141(2) -0.1518	0.0319 (9)	
П3 С6	0.3032	0.0049	-0.1318 -0.1242(2)	0.038°	
	0.0124 (3)	0.7656	-0.1243(2) -0.1683	0.0339 (9)	
	0.0233	0.7030 0.7522(2)	-0.1085 -0.0605(2)	0.043°	
U7	0.0000 (3)	0.7322 (2)	-0.0093(2)	0.0302 (8)	
П/ С9	0.7104	0.7041	-0.0703	0.030^{*}	
	0.3234(2)	0.9402(2)	0.20857(18)	0.0212(7)	
C9	0.4547(3)	0.9900 (2)	0.3190/(19)	0.0245(7)	
C10	0.4589 (3)	0.9758 (2)	0.39318 (19)	0.0246 (7)	
	0.3913 (3)	1.0274 (2)	0.43/1(2)	0.0289 (8)	
HII C12	0.3937	1.0185	0.4865	0.035*	
C12	0.3214 (3)	1.0907(2)	0.4107 (2)	0.0340 (9)	
HI2	0.2768	1.1254	0.4418	0.041*	
C13	0.3150 (3)	1.1048 (3)	0.3384 (2)	0.0388 (10)	
HI3	0.2660	1.1481	0.3202	0.04/*	
C14	0.3812 (3)	1.0545 (2)	0.2938 (2)	0.0330 (9)	
HI4	0.3//1	1.0636	0.2446	0.040*	
CI5	0.7409 (3)	0.7195 (2)	0.45908 (18)	0.0226 (7)	
C16	0.7741 (3)	0.6612 (2)	0.51876 (18)	0.0248 (8)	
CI7	0.8440 (3)	0.5863 (2)	0.50983 (19)	0.0258 (8)	
C18	0.8731 (3)	0.5362 (2)	0.5704 (2)	0.0312 (8)	
H18	0.9202	0.4858	0.5656	0.037*	
C19	0.8348 (3)	0.5590 (2)	0.6365 (2)	0.0349 (9)	
H19	0.8564	0.5244	0.6765	0.042*	
C20	0.7645 (3)	0.6322 (3)	0.6456 (2)	0.0374 (10)	
H20	0.7379	0.6473	0.6913	0.045*	
C21	0.7344 (3)	0.6823 (2)	0.5869 (2)	0.0315 (9)	
H21	0.6860	0.7318	0.5927	0.038*	
C22	0.9346 (2)	0.5280 (2)	0.24097 (18)	0.0223 (7)	
C23	0.9801 (3)	0.4625 (2)	0.1944 (2)	0.0255 (8)	
C24	0.9629 (3)	0.4678 (2)	0.12331 (19)	0.0254 (8)	
C25	1.0121 (3)	0.4030 (2)	0.0831 (2)	0.0307 (8)	
H25	1.0020	0.4059	0.0351	0.037*	
C26	1.0744 (3)	0.3355 (2)	0.1116 (2)	0.0357 (9)	
H26	1.1068	0.2924	0.0831	0.043*	
C27	1.0910 (3)	0.3289 (2)	0.1818 (2)	0.0398 (10)	
H27	1.1337	0.2816	0.2014	0.048*	
C28	1.0442 (3)	0.3923 (2)	0.2223 (2)	0.0319 (9)	
H28	1.0555	0.3885	0.2702	0.038*	
C29	0.9785 (3)	0.7356 (2)	0.0956 (2)	0.0275 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C30	1.0344 (3)	0.7837 (3)	0.0444 (2)	0.0411 (11)
C31	1.0753 (4)	0.8352 (3)	0.0832 (3)	0.0509 (13)
H31A	1.1078	0.8671	0.0492	0.076*
H31B	1.1204	0.8000	0.1142	0.076*
H31C	1.0240	0.8719	0.1112	0.076*
C32	1.1134 (4)	0.7254 (4)	0.0017 (3)	0.0678 (18)
H32A	1.0862	0.6939	-0.0244	0.102*
H32B	1.1565	0.6886	0.0333	0.102*
H32C	1.1484	0.7561	-0.0314	0.102*
C33	0.9635 (5)	0.8392 (3)	-0.0041(3)	0.0616 (16)
H33A	0.9130	0.8765	0.0239	0.092*
H33B	0.9361	0.8061	-0.0283	0.092*
H33C	0.9962	0.8702	-0.0388	0.092*
C34	0.7526(3)	0.9651(2)	0.12915 (19)	0.0290 (8)
C35	0.7756(3)	1.0463(2)	0.1244(2)	0.0290(0)
C36	0.7445(4)	1.0949 (3)	0.0567(3)	0.0551(13)
H36A	0.7590	1 1468	0.0535	0.083*
H36B	0.6762	1 1046	0.0562	0.083*
H36C	0.7782	1.0645	0.0166	0.083*
C37	0.7184(3)	1.0015	0.1889 (3)	0.009
H37A	0.6511	1.0959	0.1883	0.074*
H37B	0.7276	1 1446	0.1870	0.074*
H37C	0.7406	1.0593	0.2322	0.074*
C38	0.8809 (3)	1.0393 1.0344 (3)	0.2322 0.1280 (3)	0.074
H38A	0.0009 (3)	1.0544 (5)	0.0878	0.0498 (11)
H38R	0.9173	1.0039	0.1717	0.009
H38C	0.9002	1.0023	0.1770	0.069*
C30	0.0923	0.0357(2)	0.1270 0.3575(2)	0.009
C40	0.7880(3)	0.9337(2)	0.3373(2) 0.3820(2)	0.0280(8)
C40	0.8520(3)	1,0004(3)	0.3829(2) 0.3245(3)	0.0401(10)
	0.9221(3)	0.0507	0.3243 (3)	0.0401 (11)
	0.9037	1.0201	0.3033	0.009
	0.9002	1.0291	0.3434	0.009
C42	0.8870	1.0333	0.2872 0.4396(2)	0.009°
	0.9077(4)	0.9190 (4)	0.4380 (3)	0.0037(17)
П42А Ц42Р	0.9432	0.0005	0.4173	0.099*
П42D	0.8033	0.9073	0.4779	0.099*
П42С	0.9319	0.9450	0.4337	0.099°
	0.7913 (5)	1.0551 (4)	0.4102 (4)	0.0710 (19)
П43А	0.7348	1.0922	0.3810	0.107*
H43B	0.8321	1.0810	0.4545	0.107*
H43C	0.7479	1.0406	0.4548	0.10/*
C44	1.0183 (3)	0.7055 (2)	0.32290 (19)	0.0292 (8)
C45	1.1210(3) 1.1251(2)	0.7093(3)	0.3051(2)	0.0350(9)
	1.1251 (3)	0.7950 (3)	0.2804 (3)	0.046/(11)
H40A	1.0880	0.8152	0.2403	0.070*
н46В	1.1911	0.7944	0.2003	0.070*
H46C	1.0989	0.8304	0.318/	0.070*
C4/	1.1641 (3)	0.6538 (3)	0.2449 (3)	0.0471 (11)

H47A	1.1253	0.6716	0.2055	0.071*	
H47B	1.1658	0.5978	0.2615	0.071*	
H47C	1.2286	0.6567	0.2295	0.071*	
C48	1.1755 (4)	0.6780 (3)	0.3692 (3)	0.0542 (13)	
H48A	1.1759	0.6217	0.3828	0.081*	
H48B	1.1449	0.7114	0.4082	0.081*	
H48C	1.2408	0.6808	0.3579	0.081*	
O26	0.3919 (2)	0.8164 (2)	0.29808 (18)	0.0521 (8)	
C52	0.3186 (3)	0.8741 (3)	0.3082 (3)	0.0495 (12)	
H52	0.2980	0.9116	0.2696	0.059*	
N6	0.2689 (3)	0.8853 (3)	0.3696 (2)	0.0510 (10)	
C53	0.2997 (5)	0.8315 (4)	0.4300 (3)	0.0709 (17)	
H53A	0.3443	0.7810	0.4145	0.106*	
H53B	0.2448	0.8196	0.4581	0.106*	
H53C	0.3309	0.8573	0.4585	0.106*	
C54	0.1848 (4)	0.9538 (4)	0.3792 (4)	0.0719 (19)	
H54A	0 1966	0.9910	0.4092	0.108*	
H54B	0.1316	0.9342	0.4013	0.108*	
H54C	0.1695	0.9822	0 3334	0.108*	
027	0.4821(5)	0.7058 (5)	0.5099 (3)	0.099(2)	0.748(5)
C55	0.4849(6)	0.7638(3) 0.7581(7)	0.5077(3)	0.099(2)	0.748(5) 0.748(5)
H55	0.5191	0.7953	0.5302 (1)	0.099*	0.748(5)
N7	0.3191 0.4468 (6)	0.7670 (6)	0.5300 0.6144(4)	0.099	0.748(5)
C56	0.3832(8)	0.7070(0)	0.6489(6)	0.009(2) 0.123(4)	0.748(5)
U56л	0.3032 (0)	0.7177 (0)	0.6943	0.123 (4)	0.748(5)
H56B	0.4048	0.6773	0.0945	0.184*	0.748(5) 0.748(5)
H56C	0.3186	0.0775	0.6563	0.184*	0.748(5)
C57	0.3180	0.7550	0.6569 (6)	0.104	0.748(5) 0.748(5)
U57A	0.4554 (8)	0.8238 (8)	0.0309 (0)	0.100 (3)	0.748(5)
1157A 1157P	0.4804	0.8047	0.0270	0.127*	0.748(3) 0.748(5)
H57C	0.3023	0.7980	0.6923	0.127	0.748(5)
П37С 027Р	0.3960	0.0343 0.7122 (14)	0.0804	0.127°	0.740(3)
027B	0.460(2)	0.7133(14) 0.7697(12)	0.7370(9) 0.7122(8)	0.175(10) 0.116(6)	0.252(5)
	0.4904 (16)	0.7087 (13)	0.7122 (8)	0.110(0)	0.252(5)
HJJB	0.5190	0.80/5	0.7223	0.140^{+}	0.252(5)
N/D	0.4372(12) 0.4258(10)	0.7783(8)	0.0310(7)	0.098 (4)	0.252(5)
C56B	0.4258 (19)	0.7137 (11)	0.6292 (11)	0.125 (7)	0.252 (5)
HSOD	0.4030	0.7296	0.5827	0.188*	0.252 (5)
HS6E	0.4/8/	0.6641	0.62/1	0.188*	0.252 (5)
HSOF	0.3/43	0.7040	0.6631	0.188*	0.252 (5)
С57В	0.4632 (18)	0.8464 (12)	0.6004 (10)	0.096 (5)	0.252 (5)
H57D	0.5255	0.8554	0.5993	0.115*	0.252 (5)
H57E	0.4137	0.8952	0.6142	0.115*	0.252 (5)
H57F	0.4546	0.8342	0.5537	0.115*	0.252 (5)
028	0.7538 (3)	0.4474 (3)	0.2625 (3)	0.0522 (12)	0.813 (7)
C58	0.8097 (5)	0.3802 (4)	0.2689 (4)	0.0566 (16)	0.813 (7)
H58	0.8491	0.3708	0.3058	0.068*	0.813 (7)
N8	0.8218 (5)	0.3195 (4)	0.2308 (4)	0.0559 (14)	0.813 (7)
C59	0.7602 (8)	0.3316 (6)	0.1739 (5)	0.090 (3)	0.813 (7)

H59A	0.7993	0.3163	0.1299	0.134*	0.813 (7)
H59B	0.7235	0.3888	0.1687	0.134*	0.813 (7)
H59C	0.7170	0.2979	0.1856	0.134*	0.813 (7)
C60	0.8925 (7)	0.2423 (5)	0.2366 (5)	0.078 (2)	0.813 (7)
H60A	0.9309	0.2324	0.1914	0.117*	0.813 (7)
H60B	0.8613	0.1993	0.2497	0.117*	0.813 (7)
H60C	0.9331	0.2424	0.2727	0.117*	0.813 (7)
O28B	0.7439 (16)	0.4344 (12)	0.2246 (14)	0.068 (5)	0.187 (7)
C58B	0.8040 (16)	0.3744 (12)	0.2020 (13)	0.060 (3)	0.187 (7)
H58B	0.8433	0.3831	0.1607	0.072*	0.187 (7)
N8B	0.8185 (17)	0.3000 (13)	0.2296 (14)	0.065(4)	0.187(7)
C59B	0.765(3)	0.276(2)	0.22200(11) 0.2927(17)	0.003(1)	0.187(7)
H59D	0.7304	0.3243	0.3178	0.139*	0.187(7)
H59E	0.8078	0.2377	0.3232	0.139*	0.107(7) 0.187(7)
H59E	0.7191	0.2507	0.2797	0.139*	0.107(7) 0.187(7)
C60B	0.7171 0.802 (2)	0.2307 0.2353(17)	0.2797 0.108 (2)	0.137 0.082 (7)	0.107(7) 0.187(7)
	0.052(2)	0.2335 (17)	0.198 (2)	0.082 (7)	0.107(7) 0.187(7)
	0.9330	0.2430	0.1990	0.123*	0.107(7)
HOUE	0.0011	0.2349	0.1464	0.123*	0.187(7)
HOUF	0.8898	0.1855	0.2228	0.125	0.187(7)
024B	0.5766 (16)	0.6104 (12)	0.4575 (11)	0.094 (5)	0.252 (5)
C/3B	0.6222 (16)	0.5394 (13)	0.4589 (17)	0.093 (5)	0.252 (5)
H/3B	0.6528	0.5246	0.4139	0.112*	0.252 (5)
NI3B	0.6396 (13)	0.4791 (12)	0.5058 (12)	0.101 (4)	0.252 (5)
C74B	0.605 (3)	0.480 (2)	0.5799 (14)	0.142 (11)	0.252 (5)
H74D	0.6289	0.4257	0.6033	0.213*	0.252 (5)
H74E	0.6259	0.5190	0.6015	0.213*	0.252 (5)
H74F	0.5352	0.4953	0.5848	0.213*	0.252 (5)
C75B	0.700 (2)	0.4037 (16)	0.4804 (17)	0.101 (6)	0.252 (5)
H75D	0.7097	0.3615	0.5194	0.152*	0.252 (5)
H75E	0.6709	0.3875	0.4441	0.152*	0.252 (5)
H75F	0.7617	0.4111	0.4606	0.152*	0.252 (5)
O29	0.6538 (5)	0.4705 (4)	0.0592 (3)	0.094 (2)	0.813 (7)
C61	0.7226 (5)	0.4828 (4)	0.0228 (4)	0.0627 (18)	0.813 (7)
H61	0.7729	0.4889	0.0455	0.075*	0.813 (7)
N9	0.7307 (5)	0.4879 (4)	-0.0460(3)	0.0588 (15)	0.813 (7)
C62	0.6558 (7)	0.4829 (6)	-0.0858(5)	0.085 (3)	0.813 (7)
H62A	0.6515	0.5217	-0.1272	0.127*	0.813 (7)
H62B	0.5953	0.4956	-0.0562	0.127*	0.813 (7)
H62C	0.6703	0.4279	-0.1007	0.127*	0.813 (7)
C63	0.8174 (6)	0.4974 (5)	-0.0839(6)	0.091 (3)	0.813 (7)
H63A	0.8511	0.4480	-0.1072	0.137*	0.813(7)
H63B	0.8573	0 5071	-0.0510	0.137*	0.813(7)
H63C	0.8029	0.5436	-0.1191	0.137*	0.813(7)
029B	0.502	0.474(2)	-0.0371(18)	0.112 (7)	0.013(7) 0.187(7)
C61B	0.575(2)	0.460(2)	-0.075(2)	0.072(4)	0.187(7)
H61R	0.6843	0.4166	-0.1042	0.072 (+)	0.107(7) 0.187(7)
NOR	0.00+5 0.732 (2)	0.501(2)	-0.0781(14)	0.007	0.107(7) 0.187(7)
C62D	0.732(2)	0.501(2)	-0.0109(19)	0.075(4)	0.107(7)
C02B	0.785 (3)	0.305 (2)	-0.0198 (18)	0.085 (0)	0.18/(/)

H62D	0.8250	0.5392	-0.0348	0.128*	0.187 (7)
H62E	0.7376	0.5281	0.0194	0.128*	0.187 (7)
H62F	0.8203	0.4503	-0.0048	0.128*	0.187 (7)
C63B	0.770 (3)	0.529 (2)	-0.1455 (16)	0.096 (8)	0.187 (7)
H63D	0.8149	0.5587	-0.1388	0.144*	0.187 (7)
H63E	0.8024	0.4829	-0.1729	0.144*	0.187 (7)
H63F	0.7183	0.5657	-0.1707	0.144*	0.187 (7)
O30	0.1094 (4)	1.1136 (3)	0.2412 (3)	0.0700 (15)	0.795 (6)
C64	0.1762 (5)	1.1008 (3)	0.1954 (3)	0.0485 (15)	0.795 (6)
H64	0.2132	1.1378	0.1889	0.058*	0.795 (6)
N10	0.2021 (4)	1.0394 (3)	0.1536 (3)	0.0428 (12)	0.795 (6)
C65	0.1457 (6)	0.9836 (6)	0.1555 (5)	0.053 (2)	0.795 (6)
H65A	0.0982	0.9918	0.1964	0.064*	0.795 (6)
H65B	0.1869	0.9278	0.1587	0.064*	0.795 (6)
H65C	0.1138	0.9935	0.1125	0.064*	0.795 (6)
C66	0.2827 (6)	1.0294 (5)	0.1004 (5)	0.060 (2)	0.795 (6)
H66A	0.2614	1.0314	0.0540	0.091*	0.795 (6)
H66B	0 3290	0.9769	0 1101	0.091*	0 795 (6)
H66C	0.3120	1.0730	0.1013	0.091*	0.795 (6)
O30B	0.315(2)	0.8658 (15)	0.1790 (17)	0.128 (9)	0.205 (6)
C64B	0.3147(19)	0.9280(15)	0.1396 (17)	0.080(5)	0.205 (6)
H64B	0.3701	0.9276	0.1087	0.096*	0.205 (6)
N10B	0.2436(15)	0.9936(12)	0.1381 (13)	0.063 (4)	0.205 (6)
C65B	0.149 (2)	0.996(3)	0.173 (2)	0.061 (7)	0.205 (6)
H65D	0.1260	1.0420	0 2013	0.073*	0.205 (6)
H65E	0.1528	0.9454	0.2025	0.073*	0.205 (6)
H65F	0.1062	1 0008	0.1368	0.073*	0.205 (6)
C66B	0.253(2)	1.0673 (16)	0.099 (2)	0.068 (6)	0.205 (6)
H66D	0.2186	1.0773	0.0574	0.102*	0.205 (6)
H66E	0.3202	1.0620	0.0844	0.102*	0.205 (6)
H66F	0.2271	1.1128	0.1287	0.102*	0.205 (6)
032	0.4946(10)	0.3953 (7)	0.2133 (6)	0.149(4)	0.662 (8)
C70	0.5017 (10)	0.4644 (8)	0.2209(7)	0.104(3)	0.662 (8)
H70	0.5351	0.4896	0.1843	0.125*	0.662 (8)
N12	0.4647 (8)	0.5032 (6)	0.2776 (6)	0.097(3)	0.662(8)
C71	0.4145(10)	0.4772(9)	0.3425(7)	0.119 (4)	0.662 (8)
H71A	0.3821	0.5243	0.3692	0.178*	0.662 (8)
H71B	0.4600	0.4378	0.3708	0.178*	0.662 (8)
H71C	0.3679	0.4521	0.3308	0.178*	0.662(8)
C72	0.4817(9)	0.5813 (7)	0.2843 (8)	0.104 (4)	0.662 (8)
H72A	0.5500	0.5745	0.2792	0.156*	0.662 (8)
H72B	0.4542	0.6002	0.3305	0.156*	0.662 (8)
H72C	0.4522	0.6212	0.2476	0.156*	0.662 (8)
O32B	0.393 (4)	0.438(3)	0.258 (3)	0.125 (6)	0.129 (7)
C70B	0.383 (3)	0.489 (4)	0.302 (3)	0.102 (5)	0.129 (7)
H70B	0.3305	0.4985	0.3364	0.123*	0.129 (7)
N12B	0.447 (4)	0.529 (4)	0.299 (2)	0.102 (4)	0.129 (7)
C71B	0.501 (4)	0.539 (4)	0.231 (2)	0.104 (7)	0.129 (7)
	\ /	<pre></pre>	× /	× /	· (·)

H71D	0.5457	0.5696	0.2364	0.156*	0.129(7)
H71E	0.5366	0.4855	0.2158	0.156*	0.129 (7)
H71F	0.4580	0.5684	0.1968	0.156*	0.129(7)
C72B	0.485 (5)	0.540 (4)	0.362 (3)	0.113 (7)	0.129(7)
H72D	0.5305	0.5710	0.3489	0.170*	0.129 (7)
H72E	0.4334	0.5684	0.3947	0.170*	0.129 (7)
H72F	0.5167	0.4863	0.3836	0.170*	0.129(7)
N1	0.7053(2)	0 78168 (17)	0.10739(14)	0.0199 (6)	0.125 (7)
N2	0.6028 (2)	0.89077(17)	0.28938(14)	0.0204 (6)	
N3	0.7847(2)	0.70711(17)	0 39560 (14)	0.0206 (6)	
N4	0.8901(2)	0.60026(17)	0.21382(15)	0.0203 (6)	
01	0.0901(2) 0.76938(17)	0.73567(14)	0.21502(13) 0.15509(12)	0.0203(0) 0.0214(5)	
0^{2}	0.76892(17)	0.75507(11) 0.67437(14)	0.04144(12)	0.0239(5)	
03	0.70092(17) 0.54324(18)	0.88879 (15)	0.04144(12) 0.06758(13)	0.0237(5)	
04	0.54524(10) 0.66176(17)	0.86679(15) 0.84794(15)	0.00750(13) 0.23461(12)	0.0201(0)	
05	0.50616(17)	0.04794(15) 0.94708(15)	0.23401(12) 0.20380(12)	0.0221(5)	
05	0.50010(17) 0.52302(18)	0.94700(15)	0.20300(12) 0.42318(13)	0.0297 (6)	
00	0.52502(13) 0.74262(17)	0.91401(10) 0.76747(14)	0.42318(13) 0.34465(12)	0.0232(0)	
07	0.74202(17) 0.67041(18)	0.70747(14) 0.78276(15)	0.34403(12) 0.47023(12)	0.0212(5)	
00	0.07041(10) 0.88376(10)	0.78270(13) 0.55038(16)	0.47023(12) 0.44801(12)	0.0232(3)	
09	0.88570(19)	0.55958(10) 0.65657(14)	0.44801(13) 0.26462(12)	0.0314(0)	
010	0.03100(17)	0.03037(14) 0.51425(15)	0.20403(12) 0.20760(12)	0.0200(3)	
012	0.94105(18)	0.51425(15) 0.52000(15)	0.30709(12) 0.00247(12)	0.0239(3)	
012	0.90092(19)	0.53000(15)	0.09247(13)	0.0284 (6)	
013	0.95902 (18)	0.75362 (15)	0.15842 (13)	0.0259 (5)	
014	0.95353 (18)	0.68252 (15)	0.07062 (13)	0.0277 (6)	
015	0.81358 (18)	0.90155 (15)	0.14887 (13)	0.0277 (6)	
016	0.67229 (19)	0.96743 (16)	0.11445 (14)	0.0303 (6)	
017	0.80583 (19)	0.91298 (15)	0.29535 (13)	0.0296 (6)	
018	0.71982 (19)	0.92547 (16)	0.39915 (13)	0.0295 (6)	
019	0.95190 (18)	0.76711 (15)	0.30493 (13)	0.0274 (6)	
O20	1.00531 (19)	0.64178 (16)	0.35380 (14)	0.0300 (6)	
021	0.7043 (2)	0.59229 (17)	0.17790 (15)	0.0327 (6)	
H21A	0.664 (3)	0.599 (3)	0.150 (2)	0.049*	
H21B	0.715 (4)	0.5427 (13)	0.189 (3)	0.049*	
O22	0.5360 (2)	0.76725 (18)	0.19837 (15)	0.0337 (6)	
H22A	0.518 (4)	0.742 (3)	0.171 (2)	0.050*	
H22B	0.482 (2)	0.778 (3)	0.219 (3)	0.050*	
O23	0.5523 (2)	0.74493 (19)	0.36839 (16)	0.0385 (7)	
H23A	0.534 (4)	0.725 (3)	0.4070 (17)	0.058*	
H23B	0.4944 (19)	0.766 (3)	0.359 (3)	0.058*	
O24C	0.7301 (2)	0.57216 (17)	0.34800 (16)	0.0374 (7)	0.758 (8)
H24A	0.693 (3)	0.566 (2)	0.3854 (16)	0.056*	0.758 (8)
H24B	0.742 (4)	0.5272 (10)	0.3291 (16)	0.056*	0.758 (8)
O24	0.7301 (2)	0.57216 (17)	0.34800 (16)	0.0374 (7)	0.242 (8)
C73	0.7336 (14)	0.5073 (10)	0.3849 (10)	0.053 (3)	0.242 (8)
H73	0.7839	0.4622	0.3699	0.064*	0.242 (8)
N13	0.6797 (15)	0.4908 (12)	0.4407 (11)	0.083 (4)	0.242 (8)
C74	0.589(2)	0.554 (2)	0.455 (2)	0.086 (6)	0.242 (8)

H74A	0.5533	0.5370	0.4973	0.129*	0.242 (8)
H74B	0.6016	0.6050	0.4618	0.129*	0.242 (8)
H74C	0.5515	0.5626	0.4149	0.129*	0.242 (8)
C75	0.672 (3)	0.4096 (14)	0.458 (2)	0.105 (7)	0.242 (8)
H75A	0.6286	0.4087	0.5014	0.157*	0.242 (8)
H75B	0.6465	0.3926	0.4199	0.157*	0.242 (8)
H75C	0.7341	0.3723	0.4658	0.157*	0.242 (8)
033	0.614 (2)	0.5511 (17)	0.4696 (16)	0.097 (4)	0.257 (14)
H33E	0.6474	0.5763	0.4848	0.145*	0.257 (14)
H33F	0.5717	0.5468	0.5014	0.145*	0.257 (14)
034	0.6567 (9)	0.3773 (8)	0.5029 (7)	0.073 (4)	0.361 (13)
H34A	0.6407	0.4059	0.5379	0.109*	0.361 (13)
H34B	0.6056	0.3767	0.4882	0.109*	0.361 (13)
025	0.5050 0.5452(2)	0.5707	0.10663 (18)	0.0504(8)	0.501 (15)
C49	0.5752(2) 0.5246(4)	0.6537(2)	0.0472(3)	0.0533(12)	
H49	0.5240 (4)	0.6184	0.0472(3)	0.064*	
N5	0.3702 0.4446(3)	0.6948(3)	0.0107	0.007 0.0572 (11)	
C50	0.3745(4)	0.0948(5)	0.0220(2)	0.0372(11) 0.087(2)	
U50 H50A	0.3743 (4)	0.7508 (5)	0.0546	0.087 (2)	
1150A 1150B	0.3852	0.7350	0.0540	0.130*	
H50C	0.3832	0.7350	0.1105	0.130*	
П30С С51	0.3110	0.7494	0.0390	0.130°	
U51 A	0.4203 (3)	0.0903 (4)	-0.0491(3)	0.0772 (19)	
	0.4089	0.7432	-0.0727	0.110*	
HOID	0.3/48	0.0000	-0.0485	0.110*	
HOL	0.4838	0.6573	-0.0745	0.116*	0.700 (0)
031	0.8265 (6)	0.2547 (5)	0.4425 (5)	0.124(3)	0.790 (9)
C67	0.9164 (7)	0.2283 (6)	0.4274 (5)	0.086 (2)	0.790 (9)
H67	0.9419	0.1729	0.4181	0.104*	0.790 (9)
N11	0.9754 (5)	0.2716 (5)	0.4240 (4)	0.0768 (19)	0.790 (9)
C68	0.9530 (8)	0.3518 (6)	0.4479 (6)	0.089 (3)	0.790 (9)
H68A	0.9751	0.3877	0.4109	0.133*	0.790 (9)
H68B	0.9844	0.3492	0.4901	0.133*	0.790 (9)
H68C	0.8844	0.3729	0.4588	0.133*	0.790 (9)
C69	1.0730 (6)	0.2372 (6)	0.3946 (6)	0.093 (3)	0.790 (9)
H69A	1.1089	0.2762	0.3953	0.139*	0.790 (9)
H69B	1.1020	0.1872	0.4226	0.139*	0.790 (9)
H69C	1.0737	0.2249	0.3460	0.139*	0.790 (9)
O31B	0.9091 (16)	0.1627 (9)	0.4682 (14)	0.123 (6)	0.210 (9)
C67B	0.8859 (10)	0.2372 (8)	0.4658 (12)	0.092 (4)	0.210 (9)
H67B	0.8207	0.2645	0.4760	0.110*	0.210 (9)
N11B	0.9444 (10)	0.2819 (8)	0.4504 (12)	0.091 (4)	0.210 (9)
C68B	1.0447 (11)	0.2424 (14)	0.435 (2)	0.100(7)	0.210 (9)
H68D	1.0534	0.1878	0.4207	0.150*	0.210 (9)
H68E	1.0773	0.2388	0.4765	0.150*	0.210 (9)
H68F	1.0710	0.2740	0.3962	0.150*	0.210 (9)
C69B	0.9116 (19)	0.3701 (8)	0.449 (2)	0.098 (7)	0.210 (9)
H69D	0.9656	0.3922	0.4361	0.147*	0.210 (9)
H69E	0.8661	0.3911	0.4137	0.147*	0.210 (9)

H69F	0.8808	0.3864	0.4950	0.147*	0.210 (9)
Na1	0.66419 (10)	0.68887 (9)	0.26918 (8)	0.0300 (3)	
Mn1	0.84339 (4)	0.63331 (3)	0.12120 (3)	0.01926 (13)	
Mn2	0.60623 (4)	0.87295 (3)	0.14702 (3)	0.01915 (13)	
Mn3	0.63617 (4)	0.84893 (3)	0.38408 (3)	0.02020 (13)	
Mn3 Mn4 Y1	0.87530 (4) 0.83176 (2)	0.84893 (3) 0.60976 (3) 0.80033 (2)	0.38408 (3) 0.35842 (3) 0.23623 (2)	0.02020 (13) 0.02184 (14) 0.01941 (9)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0219 (17)	0.0207 (17)	0.0181 (16)	-0.0060 (14)	-0.0003 (13)	0.0003 (13)
C2	0.0255 (18)	0.0303 (19)	0.0174 (17)	-0.0098 (15)	-0.0057 (14)	0.0018 (14)
C3	0.0284 (19)	0.0244 (18)	0.0206 (17)	-0.0095 (15)	-0.0038 (14)	0.0006 (14)
C4	0.0278 (19)	0.0282 (19)	0.0253 (19)	-0.0062 (16)	-0.0061 (15)	0.0039 (15)
C5	0.032 (2)	0.041 (2)	0.0209 (18)	-0.0080 (18)	-0.0116 (16)	0.0074 (16)
C6	0.042 (2)	0.046 (2)	0.0195 (18)	-0.010 (2)	-0.0057 (17)	-0.0055 (17)
C7	0.030 (2)	0.033 (2)	0.0254 (19)	-0.0042 (16)	-0.0035 (16)	-0.0047 (16)
C8	0.0224 (17)	0.0175 (16)	0.0205 (17)	-0.0027 (14)	-0.0013 (14)	0.0027 (13)
C9	0.0219 (18)	0.0208 (17)	0.0249 (18)	0.0022 (14)	0.0018 (14)	-0.0048 (14)
C10	0.0212 (18)	0.0238 (18)	0.0268 (18)	-0.0026 (15)	-0.0039 (14)	-0.0020 (15)
C11	0.028 (2)	0.032 (2)	0.0239 (18)	-0.0050 (16)	-0.0003 (15)	-0.0042 (15)
C12	0.033 (2)	0.029 (2)	0.032 (2)	0.0035 (17)	0.0058 (17)	-0.0097 (17)
C13	0.036 (2)	0.031 (2)	0.036 (2)	0.0115 (18)	-0.0021 (18)	-0.0039 (18)
C14	0.036 (2)	0.030 (2)	0.0242 (19)	0.0041 (17)	-0.0035 (16)	-0.0010 (16)
C15	0.0255 (18)	0.0220 (17)	0.0204 (17)	-0.0069 (15)	-0.0025 (14)	-0.0018 (14)
C16	0.0308 (19)	0.0275 (19)	0.0162 (17)	-0.0098 (16)	-0.0041 (14)	0.0034 (14)
C17	0.0292 (19)	0.0273 (19)	0.0206 (18)	-0.0087 (15)	-0.0029 (15)	0.0012 (14)
C18	0.037 (2)	0.0269 (19)	0.0268 (19)	-0.0052 (17)	-0.0076 (16)	0.0051 (16)
C19	0.048 (3)	0.034 (2)	0.0216 (19)	-0.0111 (19)	-0.0101 (17)	0.0105 (16)
C20	0.051 (3)	0.039 (2)	0.0174 (18)	-0.008 (2)	-0.0013 (17)	0.0017 (16)
C21	0.039 (2)	0.028 (2)	0.0230 (19)	-0.0044 (17)	-0.0024 (16)	0.0002 (15)
C22	0.0214 (17)	0.0188 (17)	0.0236 (18)	-0.0016 (14)	-0.0023 (14)	0.0001 (14)
C23	0.0251 (18)	0.0180 (17)	0.0293 (19)	0.0007 (14)	-0.0006 (15)	-0.0056 (14)
C24	0.0239 (18)	0.0234 (18)	0.0272 (18)	-0.0045 (15)	-0.0021 (15)	-0.0016 (15)
C25	0.034 (2)	0.0271 (19)	0.030 (2)	-0.0048 (16)	-0.0002 (16)	-0.0096 (16)
C26	0.036 (2)	0.027 (2)	0.041 (2)	0.0009 (17)	-0.0035 (18)	-0.0173 (18)
C27	0.040 (2)	0.023 (2)	0.048 (3)	0.0074 (18)	-0.009 (2)	-0.0071 (18)
C28	0.039 (2)	0.0261 (19)	0.0263 (19)	-0.0001 (17)	-0.0062 (17)	-0.0055 (16)
C29	0.0265 (19)	0.0259 (19)	0.0265 (19)	-0.0033 (15)	0.0034 (15)	-0.0052 (15)
C30	0.050 (3)	0.046 (3)	0.033 (2)	-0.027 (2)	0.016 (2)	-0.0150 (19)
C31	0.062 (3)	0.054 (3)	0.046 (3)	-0.036 (3)	0.025 (2)	-0.024 (2)
C32	0.070 (4)	0.076 (4)	0.071 (4)	-0.051 (3)	0.045 (3)	-0.045 (3)
C33	0.106 (5)	0.055 (3)	0.033 (3)	-0.045 (3)	0.002 (3)	0.006 (2)
C34	0.032 (2)	0.0258 (19)	0.0226 (18)	-0.0020 (16)	0.0029 (15)	0.0021 (15)
C35	0.032 (2)	0.027 (2)	0.051 (3)	-0.0097 (17)	-0.0041 (19)	0.0052 (18)
C36	0.050 (3)	0.043 (3)	0.073 (4)	-0.022 (2)	-0.010 (3)	0.019 (3)
C37	0.041 (3)	0.033 (2)	0.075 (4)	-0.009 (2)	-0.005 (2)	-0.012 (2)

C38	0.037 (2)	0.039 (2)	0.063 (3)	-0.016 (2)	-0.003(2)	0.004 (2)
C39	0.032 (2)	0.0227 (18)	0.028 (2)	-0.0026 (16)	-0.0017 (16)	-0.0037 (15)
C40	0.045 (3)	0.048 (3)	0.034 (2)	-0.023 (2)	0.0065 (19)	-0.0156 (19)
C41	0.046 (3)	0.051 (3)	0.050 (3)	-0.026 (2)	0.006 (2)	-0.015 (2)
C42	0.061 (3)	0.112 (5)	0.039 (3)	-0.049 (4)	-0.010(2)	0.001 (3)
C43	0.072 (4)	0.071 (4)	0.084 (4)	-0.044(3)	0.029 (3)	-0.047 (3)
C44	0.031 (2)	0.032 (2)	0.0231 (18)	-0.0049 (17)	-0.0065 (15)	-0.0053 (16)
C45	0.028 (2)	0.035 (2)	0.042 (2)	-0.0083 (17)	-0.0079 (18)	-0.0016 (18)
C46	0.038 (2)	0.043 (3)	0.062 (3)	-0.017 (2)	-0.007 (2)	-0.004 (2)
C47	0.038 (3)	0.040 (2)	0.058 (3)	-0.010(2)	0.009 (2)	-0.005(2)
C48	0.040 (3)	0.064 (3)	0.060 (3)	-0.016(2)	-0.020(2)	0.008 (3)
O26	0.0374 (18)	0.068 (2)	0.051 (2)	-0.0147 (17)	0.0045 (15)	-0.0159 (17)
C52	0.032 (2)	0.068(3)	0.054(3)	-0.019(2)	0.001 (2)	-0.021(3)
N6	0.038(2)	0.065(3)	0.056(3)	-0.022(2)	0.0059(19)	-0.025(2)
C53	0.082(4)	0.074(4)	0.063 (4)	-0.038(4)	0.021 (3)	-0.021(3)
C54	0.040(3)	0.086(4)	0.094(5)	-0.013(3)	0.005(3)	-0.049(4)
027	0.104(5)	0.158(7)	0.057(4)	-0.082(5)	0.000(3)	0.004(4)
C55	0.067(4)	0.142 (6)	0.053(4)	-0.057(4)	0.002(3)	-0.010(4)
N7	0.007(4)	0.138(6)	0.053(1) 0.063(4)	-0.049(4)	0.002(3)	0.002(4)
C56	0.091(7)	0.172(9)	0.088(7)	-0.045(7)	0.037(6)	0.031(7)
C57	0.069(5)	0.168(9)	0.083 (6)	-0.035(6)	0.009(5)	-0.033(6)
027B	0.155 (18)	0.20(2)	0.144(18)	-0.016(18)	-0.013(16)	-0.023(17)
C55B	0.094 (9)	0.164(11)	0.085 (9)	-0.031(10)	0.005 (9)	-0.014(9)
N7B	0.079 (6)	0.148(7)	0.073 (6)	-0.042(6)	0.000 (6)	-0.010(6)
C56B	0.097(11)	0.166(11)	0.096(10)	-0.030(11)	0.016 (10)	0.011 (10)
C57B	0.062 (9)	0.147 (11)	0.088(10)	-0.051(9)	0.004 (9)	-0.003(10)
028	0.062(3)	0.032(2)	0.057(3)	-0.014(2)	-0.005(2)	-0.002(2)
C58	0.071(4)	0.038(3)	0.063(3)	-0.019(3)	-0.007(3)	-0.006(3)
N8	0.070(3)	0.039(3)	0.065 (3)	-0.025(2)	0.002(3)	-0.018(2)
C59	0.121 (7)	0.078 (5)	0.066 (5)	-0.016(5)	-0.011(5)	-0.023(4)
C60	0.084 (5)	0.048 (4)	0.102 (6)	-0.016(4)	-0.002(5)	-0.022(4)
O28B	0.088 (9)	0.047 (8)	0.072 (9)	-0.024(7)	-0.005(9)	-0.008(8)
C58B	0.075 (6)	0.044 (5)	0.066 (6)	-0.025(5)	-0.004(5)	-0.010(5)
N8B	0.078 (6)	0.047 (6)	0.071 (5)	-0.020(5)	-0.001(5)	-0.011(5)
C59B	0.104 (14)	0.073 (13)	0.088 (13)	-0.018(12)	0.013 (13)	-0.002(12)
C60B	0.089 (11)	0.060 (11)	0.097 (12)	-0.025(10)	0.004 (12)	-0.015(11)
O24B	0.121 (11)	0.086 (10)	0.077 (9)	-0.044(9)	-0.003(9)	0.014 (9)
C73B	0.097 (8)	0.096 (7)	0.081 (8)	-0.041(7)	0.019 (7)	0.017 (7)
N13B	0.099 (7)	0.107(7)	0.090(7)	-0.033(6)	-0.001(6)	0.018 (6)
C74B	0.113 (18)	0.152 (19)	0.138 (19)	-0.003(17)	-0.020(17)	-0.001(18)
C75B	0.093 (11)	0.119 (11)	0.088 (11)	-0.036(10)	-0.020(10)	0.033 (10)
029	0.122 (5)	0.080 (4)	0.072 (4)	-0.020(4)	-0.003(4)	0.002 (3)
C61	0.066 (4)	0.052 (3)	0.073 (4)	-0.014(3)	-0.016(3)	-0.016(3)
N9	0.065 (3)	0.050(3)	0.068 (4)	-0.027(2)	0.000 (3)	-0.013(3)
C62	0.101 (6)	0.078 (6)	0.078 (6)	-0.024 (5)	-0.024 (5)	-0.010 (5)
C63	0.081 (5)	0.067 (5)	0.126 (7)	-0.037 (4)	0.026 (5)	-0.013 (5)
O29B	0.116 (13)	0.098 (13)	0.123 (14)	-0.035 (12)	-0.002 (12)	-0.012 (12)
C61B	0.079 (7)	0.062 (7)	0.083 (7)	-0.028 (7)	-0.008 (7)	-0.011 (7)
	× /	× /	× /	\ /	× /	× /

N9B	0.077 (6)	0.060 (6)	0.086 (6)	-0.024 (5)	-0.009 (6)	-0.015 (6)
C62B	0.084 (10)	0.067 (10)	0.102 (10)	-0.018 (9)	-0.007 (10)	-0.011 (10)
C63B	0.092 (13)	0.076 (13)	0.120 (14)	-0.032 (12)	0.013 (13)	-0.019 (13)
O30	0.066 (3)	0.068 (3)	0.068 (3)	-0.003 (3)	-0.003 (3)	-0.021 (3)
C64	0.057 (4)	0.038 (3)	0.055 (4)	-0.016 (3)	-0.020 (3)	0.000 (3)
N10	0.049 (3)	0.040 (3)	0.048 (3)	-0.025 (2)	-0.011 (2)	-0.001(2)
C65	0.061 (4)	0.056 (5)	0.057 (5)	-0.036(3)	-0.009(3)	-0.010 (4)
C66	0.068 (5)	0.063 (5)	0.060 (4)	-0.035 (4)	-0.001 (4)	-0.007 (4)
O30B	0.116 (16)	0.104 (16)	0.139 (18)	-0.010 (14)	0.035 (15)	-0.011 (15)
C64B	0.079 (9)	0.078 (9)	0.078 (9)	-0.023 (8)	0.008 (9)	-0.001 (9)
N10B	0.068 (7)	0.064 (7)	0.064 (7)	-0.031 (6)	-0.002 (6)	-0.001 (6)
C65B	0.068 (11)	0.056 (11)	0.065 (12)	-0.026 (10)	-0.003 (10)	-0.015 (10)
C66B	0.072 (11)	0.068 (12)	0.065 (10)	-0.030 (10)	-0.006 (10)	0.013 (11)
O32	0.180 (10)	0.154 (9)	0.113 (7)	-0.032 (8)	-0.060 (7)	0.006 (7)
C70	0.114 (7)	0.106 (7)	0.109 (7)	-0.050 (6)	-0.043 (6)	0.014 (6)
N12	0.087 (5)	0.100 (6)	0.115 (6)	-0.053 (5)	-0.015 (5)	0.026 (5)
C71	0.107 (8)	0.116 (8)	0.130 (9)	-0.049 (7)	-0.002 (7)	0.042 (7)
C72	0.094 (7)	0.098 (7)	0.129 (9)	-0.055 (6)	-0.002(7)	0.018 (7)
O32B	0.123 (10)	0.127 (10)	0.126 (10)	-0.045 (10)	-0.020 (10)	0.025 (10)
C70B	0.094 (8)	0.104 (9)	0.119 (9)	-0.055 (8)	-0.019 (8)	0.027 (8)
N12B	0.097 (7)	0.103 (8)	0.118 (8)	-0.054 (7)	-0.024 (7)	0.026 (7)
C71B	0.101 (11)	0.103 (11)	0.117 (12)	-0.053 (11)	-0.020 (11)	0.025 (11)
C72B	0.103 (11)	0.110 (11)	0.128 (12)	-0.048 (11)	-0.011 (11)	0.029 (11)
N1	0.0207 (14)	0.0223 (14)	0.0152 (13)	-0.0033 (12)	-0.0052 (11)	0.0015 (11)
N2	0.0187 (14)	0.0221 (14)	0.0166 (14)	-0.0011 (12)	0.0032 (11)	-0.0049 (11)
N3	0.0258 (15)	0.0182 (14)	0.0143 (13)	-0.0022(12)	-0.0036 (11)	0.0034 (11)
N4	0.0233 (15)	0.0165 (14)	0.0184 (14)	-0.0014 (11)	0.0005 (11)	-0.0054 (11)
01	0.0227 (12)	0.0190 (11)	0.0187 (11)	0.0004 (10)	-0.0047 (9)	0.0000 (9)
O2	0.0271 (13)	0.0220 (12)	0.0192 (12)	-0.0005 (10)	-0.0028 (10)	-0.0048 (10)
O3	0.0286 (14)	0.0257 (13)	0.0247 (13)	0.0023 (11)	-0.0066 (11)	-0.0033 (10)
O4	0.0200 (12)	0.0258 (12)	0.0155 (11)	0.0008 (10)	0.0007 (9)	-0.0041 (9)
05	0.0258 (13)	0.0237 (12)	0.0183 (12)	0.0015 (10)	-0.0030 (10)	-0.0011 (10)
O6	0.0281 (14)	0.0337 (14)	0.0199 (12)	-0.0012 (11)	0.0007 (10)	-0.0023 (11)
O7	0.0229 (12)	0.0192 (11)	0.0160 (11)	0.0004 (10)	-0.0012(9)	0.0031 (9)
08	0.0286 (13)	0.0238 (13)	0.0175 (12)	0.0004 (11)	0.0002 (10)	-0.0022(10)
09	0.0361 (15)	0.0253 (13)	0.0231 (13)	0.0032 (11)	-0.0007 (11)	0.0028 (10)
O10	0.0256 (12)	0.0157 (11)	0.0169 (11)	-0.0005 (9)	0.0000 (9)	-0.0033 (9)
O11	0.0317 (14)	0.0206 (12)	0.0196 (12)	0.0016 (10)	-0.0043 (10)	0.0002 (10)
O12	0.0357 (15)	0.0243 (13)	0.0225 (13)	-0.0022(11)	-0.0049 (11)	-0.0056 (10)
O13	0.0248 (13)	0.0289 (13)	0.0217 (13)	-0.0053 (11)	0.0026 (10)	-0.0052 (10)
O14	0.0317 (14)	0.0274 (13)	0.0239 (13)	-0.0101 (11)	0.0043 (11)	-0.0052 (11)
015	0.0290 (14)	0.0254 (13)	0.0247 (13)	-0.0045 (11)	0.0003 (11)	0.0023 (10)
016	0.0322 (15)	0.0269 (13)	0.0327 (14)	-0.0108(11)	-0.0058(11)	0.0036 (11)
017	0.0367 (15)	0.0253 (13)	0.0258 (13)	-0.0081(11)	0.0005 (11)	-0.0047(11)
O18	0.0293 (14)	0.0326 (14)	0.0270 (13)	-0.0101 (11)	0.0041 (11)	-0.0093 (11)
019	0.0278 (14)	0.0272 (13)	0.0255 (13)	-0.0034 (11)	-0.0066 (11)	-0.0030(10)
O20	0.0293 (14)	0.0296 (14)	0.0297 (14)	-0.0068 (11)	-0.0073 (11)	0.0044 (11)
021	0.0360 (16)	0.0293 (14)	0.0341 (15)	-0.0104 (13)	-0.0069 (12)	-0.0006 (12)
		()	- (,	(,	···· ()	······································

O22	0.0302 (15)	0.0360 (16)	0.0348 (16)	-0.0112 (13)	0.0029 (12)	-0.0051 (12)
O23	0.0369 (16)	0.0433 (17)	0.0347 (16)	-0.0144 (14)	0.0015 (13)	0.0018 (13)
O24C	0.0448 (17)	0.0280 (14)	0.0382 (16)	-0.0118 (13)	-0.0002 (13)	0.0009 (12)
O24	0.0448 (17)	0.0280 (14)	0.0382 (16)	-0.0118 (13)	-0.0002 (13)	0.0009 (12)
C73	0.057 (6)	0.050 (6)	0.053 (6)	-0.026 (5)	0.004 (5)	0.009 (5)
N13	0.084 (7)	0.083 (6)	0.079 (6)	-0.036 (6)	0.007 (6)	0.023 (6)
C74	0.089 (11)	0.098 (10)	0.072 (10)	-0.040 (10)	0.000 (9)	0.018 (9)
C75	0.097 (11)	0.116 (11)	0.092 (11)	-0.030 (10)	-0.008 (10)	0.032 (10)
O33	0.100 (8)	0.099 (7)	0.085 (7)	-0.042 (7)	0.017 (6)	0.018 (6)
O34	0.073 (7)	0.091 (7)	0.070 (7)	-0.056 (5)	-0.011 (5)	0.026 (5)
O25	0.053 (2)	0.0454 (18)	0.056 (2)	-0.0126 (16)	-0.0182 (17)	-0.0072 (16)
C49	0.058 (3)	0.045 (3)	0.064 (3)	-0.019 (2)	-0.019 (3)	-0.004 (2)
N5	0.053 (2)	0.057 (3)	0.067 (3)	-0.024 (2)	-0.023 (2)	0.014 (2)
C50	0.047 (3)	0.114 (6)	0.078 (4)	-0.006 (4)	-0.005 (3)	0.031 (4)
C51	0.092 (5)	0.077 (4)	0.077 (4)	-0.041 (4)	-0.040 (4)	0.017 (3)
031	0.128 (6)	0.150 (6)	0.128 (6)	-0.099 (5)	0.031 (5)	-0.039 (5)
C67	0.108 (5)	0.105 (5)	0.071 (5)	-0.079 (4)	0.019 (4)	-0.014 (4)
N11	0.096 (5)	0.097 (4)	0.060 (4)	-0.073 (4)	0.006 (3)	0.004 (3)
C68	0.119 (7)	0.103 (6)	0.072 (5)	-0.082 (6)	0.018 (6)	-0.020 (5)
C69	0.084 (6)	0.085 (6)	0.109 (8)	-0.034 (5)	-0.010 (6)	0.021 (6)
O31B	0.132 (11)	0.143 (11)	0.108 (11)	-0.070 (10)	0.009 (10)	-0.009 (10)
C67B	0.108 (7)	0.114 (6)	0.076 (7)	-0.069 (6)	0.003 (6)	-0.015 (6)
N11B	0.111 (7)	0.108 (6)	0.075 (6)	-0.074 (6)	0.011 (6)	-0.010 (6)
C68B	0.105 (12)	0.109 (11)	0.084 (12)	-0.040 (11)	0.009 (12)	0.008 (11)
C69B	0.123 (13)	0.110 (11)	0.071 (11)	-0.061 (11)	0.011 (12)	0.000 (11)
Na1	0.0306 (8)	0.0275 (7)	0.0303 (8)	-0.0058 (6)	-0.0019 (6)	-0.0044 (6)
Mn1	0.0231 (3)	0.0161 (3)	0.0155 (3)	-0.0002 (2)	-0.0028 (2)	-0.0023 (2)
Mn2	0.0202 (3)	0.0180 (3)	0.0155 (3)	0.0006 (2)	-0.0024 (2)	-0.0015 (2)
Mn3	0.0203 (3)	0.0211 (3)	0.0140 (3)	0.0012 (2)	-0.0003 (2)	-0.0006 (2)
Mn4	0.0272 (3)	0.0174 (3)	0.0152 (3)	0.0012 (2)	-0.0008 (2)	0.0001 (2)
Y1	0.02044 (16)	0.01900 (16)	0.01589 (15)	-0.00179 (11)	-0.00074 (11)	-0.00104 (11)

Geometric parameters (Å, °)

C1—O2	1.287 (4)	C74B—H74D	0.9800
C1—N1	1.313 (4)	C74B—H74E	0.9800
C1—C2	1.481 (5)	C74B—H74F	0.9800
С2—С7	1.404 (5)	C75B—H75D	0.9800
С2—С3	1.414 (5)	С75В—Н75Е	0.9800
С3—О3	1.329 (4)	C75B—H75F	0.9800
C3—C4	1.402 (5)	O29—C61	1.222 (9)
C4—C5	1.379 (5)	C61—N9	1.311 (8)
C4—H4	0.9500	C61—H61	0.9500
С5—С6	1.386 (6)	N9—C63	1.441 (9)
С5—Н5	0.9500	N9—C62	1.460 (9)
С6—С7	1.385 (6)	C62—H62A	0.9800
С6—Н6	0.9500	C62—H62B	0.9800
С7—Н7	0.9500	C62—H62C	0.9800

C8—O5	1.288 (4)	С63—Н63А	0.9800
C8—N2	1.320 (5)	С63—Н63В	0.9800
C8—C9	1.475 (5)	С63—Н63С	0.9800
C9—C14	1.408 (5)	O29B—C61B	1.245 (16)
C9—C10	1.417 (5)	C61B—N9B	1.310 (15)
C10—O6	1.332 (4)	C61B—H61B	0.9500
C10—C11	1.395 (5)	N9B—C63B	1.441 (15)
C11—C12	1.371 (6)	N9B—C62B	1.455 (15)
C11—H11	0.9500	C62B—H62D	0.9800
C12—C13	1.397 (6)	C62B—H62E	0.9800
C12—H12	0.9500	C62B—H62F	0.9800
C13—C14	1.381 (6)	C63B—H63D	0.9800
C13—H13	0.9500	С63В—Н63Е	0.9800
C14—H14	0.9500	C63B—H63F	0.9800
C15—O8	1.289 (4)	O30—C64	1.225 (7)
C15—N3	1.317 (5)	C64—N10	1.342 (7)
C15—C16	1.475 (5)	С64—Н64	0.9500
C16—C21	1.409 (5)	N10—C65	1.450 (8)
C16—C17	1.414 (5)	N10—C66	1.453 (8)
С17—О9	1.329 (4)	С65—Н65А	0.9800
C17—C18	1.408 (5)	С65—Н65В	0.9800
C18—C19	1.376 (6)	С65—Н65С	0.9800
C18—H18	0.9500	С66—Н66А	0.9800
C19—C20	1.396 (6)	С66—Н66В	0.9800
С19—Н19	0.9500	С66—Н66С	0.9800
C20—C21	1.383 (5)	O30B—C64B	1.247 (15)
С20—Н20	0.9500	C64B—N10B	1.303 (14)
C21—H21	0.9500	C64B—H64B	0.9500
C22—O11	1.293 (4)	N10B—C66B	1.443 (14)
C22—N4	1.315 (4)	N10B—C65B	1.462 (15)
C22—C23	1.474 (5)	C65B—H65D	0.9800
C23—C28	1.406 (5)	С65В—Н65Е	0.9800
C23—C24	1.414 (5)	C65B—H65F	0.9800
C24—O12	1.332 (4)	C66B—H66D	0.9800
C24—C25	1.401 (5)	С66В—Н66Е	0.9800
C25—C26	1.369 (6)	C66B—H66F	0.9800
C25—H25	0.9500	O32—C70	1.258 (11)
C26—C27	1.393 (6)	C70—N12	1.319 (12)
C26—H26	0.9500	С70—Н70	0.9500
C27—C28	1.378 (6)	N12—C71	1.467 (11)
С27—Н27	0.9500	N12—C72	1.469 (11)
C28—H28	0.9500	C71—H71A	0.9800
C29—O14	1.251 (5)	C71—H71B	0.9800
C29—O13	1.261 (4)	C71—H71C	0.9800
C29—C30	1.537 (6)	С72—Н72А	0.9800
C30—C32	1.521 (6)	С72—Н72В	0.9800
C30—C31	1.522 (6)	С72—Н72С	0.9800
C30—C33	1.538 (8)	O32B—C70B	1.250 (16)

C31—H31A	0.9800	C70B—N12B	1.323 (15)
C31—H31B	0.9800	C70B—H70B	0.9500
C31—H31C	0.9800	N12B—C72B	1.440 (16)
С32—Н32А	0.9800	N12B—C71B	1.468 (16)
C32—H32B	0.9800	C71B—H71D	0.9800
С32—Н32С	0.9800	C71B—H71E	0.9800
С33—Н33А	0.9800	C71B—H71F	0.9800
С33—Н33В	0.9800	C72B—H72D	0.9800
С33—Н33С	0.9800	С72В—Н72Е	0.9800
C34—O16	1.251 (5)	C72B—H72F	0.9800
C34—O15	1.259 (5)	N1—01	1.415 (4)
C34—C35	1.534 (6)	N1—Mn2	1.964 (3)
C35—C36	1.518 (7)	N2—O4	1.408 (4)
C35—C38	1.527 (6)	N2—Mn3	1.956 (3)
C35—C37	1.553 (7)	N3—07	1.411 (4)
С36—Н36А	0.9800	N3—Mn4	1.962 (3)
С36—Н36В	0.9800	N4—O10	1.406 (4)
С36—Н36С	0.9800	N4—Mn1	1.963 (3)
С37—Н37А	0.9800	O1—Mn1	1.925 (2)
С37—Н37В	0.9800	O1—Y1	2.439 (2)
С37—Н37С	0.9800	O1—Na1	2.717 (3)
C38—H38A	0.9800	O2—Mn1	1.956 (2)
C38—H38B	0.9800	O3—Mn2	1.850 (3)
C38—H38C	0.9800	O4—Mn2	1.925 (2)
C39—O18	1.250 (5)	O4—Y1	2.419 (2)
C39—O17	1.274 (5)	O4—Na1	2.752 (3)
C39—C40	1.529 (6)	O5—Mn2	1.956 (2)
C40—C43	1.516 (7)	O6—Mn3	1.850 (3)
C40—C41	1.523 (6)	O7—Mn3	1.919 (2)
C40—C42	1.547 (8)	O7—Y1	2.429 (2)
C41—H41A	0.9800	O7—Na1	2.676 (3)
C41—H41B	0.9800	O8—Mn3	1.943 (2)
C41—H41C	0.9800	O9—Mn4	1.846 (3)
C42—H42A	0.9800	O10—Mn4	1.927 (2)
C42—H42B	0.9800	O10—Y1	2.427 (2)
C42—H42C	0.9800	O10—Na1	2.667 (3)
C43—H43A	0.9800	O11—Mn4	1.954 (2)
C43—H43B	0.9800	O12—Mn1	1.854 (3)
C43—H43C	0.9800	O13—Y1	2.261 (2)
C44—O20	1.248 (5)	O14—Mn1	2.140 (3)
C44—O19	1.271 (5)	O15—Y1	2.270 (2)
C44—C45	1.540 (6)	O16—Mn2	2.143 (3)
C45—C46	1.522 (6)	O17—Y1	2.281 (3)
C45—C48	1.526 (6)	O18—Mn3	2.132 (3)
C45—C47	1.542 (6)	O19—Y1	2.261 (2)
C46—H46A	0.9800	O20—Mn4	2.152 (3)
C46—H46B	0.9800	O21—Na1	2.460 (3)
C46—H46C	0.9800	O21—Mn1	2.466 (3)

C47—H47A	0.9800	O21—H21A	0.82 (2)
C47—H47B	0.9800	O21—H21B	0.83 (2)
C47—H47C	0.9800	O22—Mn2	2.423 (3)
C48—H48A	0.9800	O22—Na1	2.463 (3)
C48—H48B	0.9800	O22—H22A	0.84 (2)
C48—H48C	0.9800	022—H22B	0.83 (2)
026-052	1.252 (6)	023—Na1	2.449(3)
C52—N6	1 312 (6)	023—H23A	0.84(2)
C52—H52	0.9500	023—H23R	0.86(2)
N6_C53	1 440 (8)	025^{-1125D} $024C_{}N_{2}1$	2,424(3)
N6 C54	1.455 (7)	O24C MpA	2.424(3)
C52 U52A	0.0800	O24C H24A	2.409(3)
C52 H52P	0.9800	O24C H24P	0.803(19)
C52 U52C	0.9800	$O24C - \Pi 24B$	0.839(19)
	0.9800	024—C/3	1.231(12)
C54—H54A	0.9800	024—Na1	2.424 (3)
С54—Н54В	0.9800	024—Min4	2.469 (3)
С54—Н54С	0.9800	C/3—N13	1.313 (14)
027—C55	1.271 (9)	С73—Н73	0.9500
C55—N7	1.298 (9)	N13—C75	1.447 (15)
С55—Н55	0.9500	N13—C74	1.483 (15)
N7—C57	1.444 (10)	С74—Н74А	0.9800
N7—C56	1.477 (10)	C74—H74B	0.9800
C56—H56A	0.9800	C74—H74C	0.9800
C56—H56B	0.9800	С75—Н75А	0.9800
С56—Н56С	0.9800	С75—Н75В	0.9800
С57—Н57А	0.9800	С75—Н75С	0.9800
С57—Н57В	0.9800	О33—Н33Е	0.8447
С57—Н57С	0.9800	O33—H33F	0.8356
O27B—C55B	1.232 (6)	O34—H34A	0.8494
C55B—N7B	1.311 (6)	O34—H34B	0.8475
С55В—Н55В	0.9500	O25—C49	1.232 (5)
N7B—C56B	1.453 (7)	C49—N5	1.311 (6)
N7B—C57B	1,460 (6)	C49—H49	0.9500
C56B—H56D	0.9800	N5-C50	1 452 (7)
C56B—H56E	0.9800	N5-C51	1 459 (6)
C56B—H56F	0.9800	C50—H50A	0.9800
C57B—H57D	0.9800	C50—H50R	0.9800
C57B H57E	0.9800	C50 H50D	0.9800
C57B H57E	0.9800	C51_H51A	0.9800
C_{2} C_{2} C_{2}	1,218 (8)	C51_H51R	0.9800
C59 N9	1.210(0) 1.206(0)	C51_H51C	0.9800
	1.500 (9)		0.9800
С36—П36	0.9300	031-07	1.284 (10)
	1.439 (10)	C0/-N11	1.304 (8)
N8	1.4/6 (11)		0.9500
Сэу—НэуА	0.9800		1.445 (9)
Сэу—Нэув	0.9800	N11—C69	1.461 (10)
С59—Н59С	0.9800	C68—H68A	0.9800
C60—H60A	0.9800	C68—H68B	0.9800

C60—H60B	0.9800	C68—H68C	0.9800
C60—H60C	0.9800	С69—Н69А	0.9800
O28B—C58B	1.233 (15)	С69—Н69В	0.9800
C58B—N8B	1.304 (14)	С69—Н69С	0.9800
C58B—H58B	0.9500	O31B—C67B	1.232 (6)
N8B—C60B	1.444 (15)	C67B—N11B	1.311 (6)
N8B—C59B	1.455 (15)	C67B—H67B	0.9500
C59B—H59D	0.9800	N11B—C68B	1.452 (7)
С59В—Н59Е	0.9800	N11B—C69B	1.459 (6)
C59B—H59F	0.9800	C68B—H68D	0.9800
C60B—H60D	0.9800	C68B—H68E	0.9800
C60B—H60E	0.9800	C68B—H68F	0.9800
C60B—H60F	0.9800	C69B—H69D	0.9800
O24B—C73B	1.215 (15)	С69В—Н69Е	0.9800
C73B—N13B	1.290 (14)	C69B—H69F	0.9800
С73В—Н73В	0.9500	Na1—Y1	3.5343 (15)
N13B—C75B	1.448 (15)	Na1—Mn4	3.6079 (16)
N13B—C74B	1.454 (15)	Na1—Mn3	3.6382 (15)
O2—C1—N1	121.6 (3)	O32—C70—N12	122.8 (13)
O2—C1—C2	119.4 (3)	О32—С70—Н70	118.6
N1—C1—C2	119.0 (3)	N12—C70—H70	118.6
C7—C2—C3	119.6 (3)	C70—N12—C71	129.9 (11)
C7—C2—C1	117.7 (3)	C70—N12—C72	119.3 (10)
C3—C2—C1	122.8 (3)	C71—N12—C72	110.5 (11)
O3—C3—C4	117.6 (3)	N12—C71—H71A	109.5
O3—C3—C2	124.1 (3)	N12—C71—H71B	109.5
C4—C3—C2	118.2 (3)	H71A—C71—H71B	109.5
C5—C4—C3	121.1 (4)	N12—C71—H71C	109.5
С5—С4—Н4	119.5	H71A—C71—H71C	109.5
C3—C4—H4	119.5	H71B—C71—H71C	109.5
C4—C5—C6	120.9 (3)	N12—C72—H72A	109.5
С4—С5—Н5	119.5	N12—C72—H72B	109.5
С6—С5—Н5	119.5	H72A—C72—H72B	109.5
C7—C6—C5	119.2 (4)	N12—C72—H72C	109.5
С7—С6—Н6	120.4	H72A—C72—H72C	109.5
С5—С6—Н6	120.4	H72B—C72—H72C	109.5
C6—C7—C2	121.0 (4)	O32B—C70B—N12B	120 (3)
С6—С7—Н7	119.5	O32B—C70B—H70B	120.2
С2—С7—Н7	119.5	N12B-C70B-H70B	120.2
O5—C8—N2	121.2 (3)	C70B—N12B—C72B	122 (3)
O5—C8—C9	119.8 (3)	C70B—N12B—C71B	117 (2)
N2—C8—C9	119.0 (3)	C72B—N12B—C71B	118 (2)
C14—C9—C10	118.9 (3)	N12B—C71B—H71D	109.5
C14—C9—C8	117.9 (3)	N12B—C71B—H71E	109.5
C10—C9—C8	123.2 (3)	H71D—C71B—H71E	109.5
O6—C10—C11	117.7 (3)	N12B—C71B—H71F	109.5
O6—C10—C9	123.7 (3)	H71D—C71B—H71F	109.5

C11—C10—C9	118.6 (3)	H71E—C71B—H71F	109.5
C12—C11—C10	121.5 (4)	N12B—C72B—H72D	109.5
C12—C11—H11	119.3	N12B—C72B—H72E	109.5
C10—C11—H11	119.3	H72D—C72B—H72E	109.5
C11—C12—C13	120.7 (4)	N12B—C72B—H72F	109.5
C11—C12—H12	1197	H72D—C72B—H72F	109.5
C13 - C12 - H12	119.7	H72F $C72B$ $H72F$	109.5
C14 - C13 - C12	118.9 (4)	C1 - N1 - O1	1127(3)
C14 - C13 - H13	120.6	C1 $M1$ $Mn2$	112.7(3) 130.4(2)
$C_{12} = C_{13} = H_{13}$	120.6	O1 N1 Mn2	130.4(2)
$C_{12} = C_{13} = M_{13}$	120.0	$C_{1} = N_{1} = M_{1}$	114.50(19)
$C_{13} = C_{14} = C_{9}$	121.4 (4)	C_{0} N2 M_{π}^{2}	112.0(3)
С13—С14—Н14	119.5	$C_0 = N_2 = M_{12}$	150.1(2)
C9 - C14 - H14	119.3	04—N2—Mn3	115.3 (2)
08—C15—N3	121.0 (3)	C15 - N3 - O/	112.3 (3)
08-015-016	119.3 (3)	C15—N3—Mn4	130.6 (2)
N3—C15—C16	119.7 (3)	O7—N3—Mn4	115.36 (19)
C21—C16—C17	119.6 (3)	C22—N4—O10	112.9 (3)
C21—C16—C15	117.9 (3)	C22—N4—Mn1	129.9 (2)
C17—C16—C15	122.5 (3)	O10—N4—Mn1	115.28 (19)
O9—C17—C18	117.5 (3)	N1—O1—Mn1	112.17 (18)
O9—C17—C16	124.5 (3)	N1-01-Y1	121.55 (18)
C18—C17—C16	118.0 (3)	Mn1—O1—Y1	120.20 (11)
C19—C18—C17	121.3 (4)	N1—O1—Na1	106.95 (17)
C19—C18—H18	119.4	Mn1—O1—Na1	102.09 (10)
C17—C18—H18	119.4	Y1—O1—Na1	86.36 (8)
C18—C19—C20	121.0 (4)	C1—O2—Mn1	111.7 (2)
С18—С19—Н19	119.5	C3—O3—Mn2	130.0 (2)
С20—С19—Н19	119.5	N2—O4—Mn2	112.58 (18)
$C_{21} - C_{20} - C_{19}$	118.9 (4)	N2-04-Y1	121.43 (18)
$C_{21} = C_{20} = H_{20}$	120.6	Mn2—04—Y1	120.63(11)
C19 - C20 - H20	120.6	N2 = 04 = Na1	104.91(17)
C_{20} C_{21} C_{16}	120.0	Mn2 = O4 = Na1	107.91(17) 102.99(10)
$C_{20} = C_{21} = C_{10}$	110 /	$V_1 \cap A$ Na1	85 00 (8)
$C_{20} = C_{21} = H_{21}$	119.4	$\Gamma = 0 + 1 \tan \theta$	(3).99(0)
C10 - C21 - H21	119.4	$C_{0} = 0.06 \text{ Mm}^{2}$	111.9(2) 120.7(2)
011 - 022 - 022	121.0(3)	10-00-100	129.7(2)
011 - 022 - 023	119.4 (3)	N3-07-Min5	112.08 (18)
N4—C22—C23	119.6 (3)		121.91 (18)
C28—C23—C24	119.2 (3)	Mn3—O/—YI	119.81 (11)
C28—C23—C22	117.9 (3)	N3—O7—Nal	103.38 (17)
C24—C23—C22	122.9 (3)	Mn3—O7—Nal	103.48 (10)
O12—C24—C25	117.7 (3)	Y1—O7—Na1	87.50 (8)
O12—C24—C23	124.1 (3)	C15—O8—Mn3	112.2 (2)
C25—C24—C23	118.2 (3)	C17—O9—Mn4	130.9 (2)
C26—C25—C24	121.3 (4)	N4—O10—Mn4	112.48 (18)
C26—C25—H25	119.3	N4—O10—Y1	121.36 (18)
C24—C25—H25	119.3	Mn4—O10—Y1	119.71 (11)
C25—C26—C27	121.0 (4)	N4—O10—Na1	106.01 (17)
C25—C26—H26	119.5	Mn4—O10—Na1	102.31 (10)

С27—С26—Н26	119.5	Y1	87.74 (8)
C28—C27—C26	118.8 (4)	C22—O11—Mn4	111.9 (2)
C28—C27—H27	120.6	C24—O12—Mn1	129.6 (2)
С26—С27—Н27	120.6	C29—O13—Y1	139.9 (2)
C27—C28—C23	121.4 (4)	C29—O14—Mn1	123.2 (2)
С27—С28—Н28	119.3	C34—O15—Y1	139.9 (2)
С23—С28—Н28	119.3	C34—O16—Mn2	123.8 (2)
014-C29-013	124.8 (4)	C39—O17—Y1	140.9 (2)
014-029-030	116.8 (3)	C39—O18—Mn3	124.7(2)
013 - C29 - C30	118.4 (3)	C44-019-Y1	1391(2)
C_{32} C_{30} C_{31}	110.1 (4)	C44-O20-Mn4	123.9(2)
C_{32} C_{30} C_{29}	109 5 (4)	Na1—O21—Mn1	95 42 (10)
C_{31} C_{30} C_{29}	1114(4)	Na1 -021 H21A	116(4)
C_{32} C_{30} C_{33}	110 1 (4)	Mn1 = O21 = H21A	110(1) 111(4)
C_{31} $-C_{30}$ $-C_{33}$	1094(4)	Na1 $-\Omega$ 21 $-H$ 21B	121(4)
C_{29} C_{30} C_{33}	105.4(4) 106.2(4)	Mn1 = O21 = H21B	121(4) 114(4)
$C_{20} = C_{30} = C_{30}$	100.2 (4)	$H_{21A} = O_{21} = H_{21B}$	100(5)
C_{30} C_{31} H_{31R}	109.5	$Mn^2 = O22 = Na1$	100(3)
$H_{21A} = C_{21} = H_{21B}$	109.5	Mn2 = O22 = Na1	30.20(11)
$\begin{array}{cccc} 1151A - C51 - 1151B \\ C20 & C21 & H21C \\ \end{array}$	109.5	$N_{01} = 022 = H22A$	113(4)
$H_{21A} = C_{21} = H_{21C}$	109.5	$Mn^2 O22 H22R$	117(4) 122(4)
$H_{21}^{21} P = C_{21}^{21} H_{21}^{21} C$	109.5	$M_{12} = 022 = 1122B$	122(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	Na1 = 022 = n22B	110 (4) 88 (5)
$C_{30} = C_{32} = H_{32}$	109.5	HZZA - OZZ - HZZD	88 (<i>3</i>)
C_{30} C_{32} C_{32} C_{32} C_{32} C_{32} C_{32} C_{32} C_{32} C_{32} C_{33} C	109.5	Na1-022-H22A	135 (4)
H32A—C32—H32B	109.5	Na1 = 023 = H23B	115(4)
$C_{30} - C_{32} - H_{32} C_{32}$	109.5	H23A = 023 = H23B	90(3)
H32A-C32-H32C	109.5	Na1 = O24C = II24A	95.00 (10)
$H_{32B} = C_{32} = H_{32}C$	109.5	Na1 = 024C = H24A	115 (2)
C30—C33—H33A	109.5	Mn4—O24C—H24A	119 (4)
C30—C33—H33B	109.5	Na1—O24C—H24B	112.6 (19)
H33A—C33—H33B	109.5	Mn4—O24C—H24B	113 (4)
C30—C33—H33C	109.5	H24A—O24C—H24B	103 (3)
H33A—C33—H33C	109.5	C/3—024—Na1	157.0 (10)
H33B—C33—H33C	109.5	C/3—O24—Mn4	108.0 (10)
016-034-015	124.4 (4)	Nal—O24—Mn4	95.00 (10)
016	116.8 (3)	O24—C73—N13	131.1 (17)
015	118.8 (4)	O24—C73—H73	114.5
C36—C35—C38	110.3 (4)	N13—C73—H73	114.5
C36—C35—C34	109.2 (4)	C73—N13—C75	120.8 (19)
C38—C35—C34	111.7 (3)	C73—N13—C74	115.0 (18)
C36—C35—C37	110.5 (4)	C75—N13—C74	112.9 (19)
C38—C35—C37	109.0 (4)	N13—C74—H74A	109.5
C34—C35—C37	106.0 (3)	N13—C74—H74B	109.5
С35—С36—Н36А	109.5	H74A—C74—H74B	109.5
C35—C36—H36B	109.5	N13—C74—H74C	109.5
H36A—C36—H36B	109.5	H74A—C74—H74C	109.5
C35—C36—H36C	109.5	H74B—C74—H74C	109.5
H36A—C36—H36C	109.5	N13—C75—H75A	109.5

H36B—C36—H36C	109.5	N13—C75—H75B	109.5
С35—С37—Н37А	109.5	Н75А—С75—Н75В	109.5
С35—С37—Н37В	109.5	N13—C75—H75C	109.5
Н37А—С37—Н37В	109.5	Н75А—С75—Н75С	109.5
С35—С37—Н37С	109.5	H75B—C75—H75C	109.5
Н37А—С37—Н37С	109.5	H33E—O33—H33F	107.6
Н37В—С37—Н37С	109.5	H34A—O34—H34B	106.1
С35—С38—Н38А	109.5	O25—C49—N5	125.1 (5)
С35—С38—Н38В	109.5	O25—C49—H49	117.5
H38A—C38—H38B	109.5	N5—C49—H49	117.5
С35—С38—Н38С	109.5	C49—N5—C50	119.1 (5)
H38A—C38—H38C	109.5	C49—N5—C51	121.8 (5)
H38B—C38—H38C	109.5	C50—N5—C51	119.0 (5)
O18—C39—O17	123.6 (4)	N5-C50-H50A	109.5
O18—C39—C40	117.6 (3)	N5-C50-H50B	109.5
O17—C39—C40	118.7 (3)	H50A—C50—H50B	109.5
C43—C40—C41	110.0 (4)	N5—C50—H50C	109.5
C43—C40—C39	109.3 (4)	H50A—C50—H50C	109.5
C41—C40—C39	112.9 (4)	H50B-C50-H50C	109.5
C43—C40—C42	109.9 (5)	N5—C51—H51A	109.5
C41—C40—C42	108.7 (4)	N5—C51—H51B	109.5
C39—C40—C42	105.8 (4)	H51A—C51—H51B	109.5
C40—C41—H41A	109.5	N5—C51—H51C	109.5
C40—C41—H41B	109.5	H51A—C51—H51C	109.5
H41A—C41—H41B	109.5	H51B—C51—H51C	109.5
C40—C41—H41C	109.5	O31—C67—N11	125.0 (9)
H41A—C41—H41C	109.5	O31—C67—H67	117.5
H41B—C41—H41C	109.5	N11—C67—H67	117.5
C40—C42—H42A	109.5	C67—N11—C68	125.4 (8)
C40—C42—H42B	109.5	C67—N11—C69	118.5 (8)
H42A—C42—H42B	109.5	C68—N11—C69	116.1 (7)
C40—C42—H42C	109.5	N11—C68—H68A	109.5
H42A—C42—H42C	109.5	N11—C68—H68B	109.5
H42B—C42—H42C	109.5	H68A—C68—H68B	109.5
C40—C43—H43A	109.5	N11—C68—H68C	109.5
C40—C43—H43B	109.5	H68A—C68—H68C	109.5
H43A—C43—H43B	109.5	H68B—C68—H68C	109.5
C40—C43—H43C	109.5	N11—C69—H69A	109.5
H43A—C43—H43C	109.5	N11—C69—H69B	109.5
H43B—C43—H43C	109.5	H69A—C69—H69B	109.5
O20—C44—O19	124.0 (4)	N11—C69—H69C	109.5
O20—C44—C45	117.9 (3)	Н69А—С69—Н69С	109.5
O19—C44—C45	118.2 (4)	H69B—C69—H69C	109.5
C46—C45—C48	110.2 (4)	O31B—C67B—N11B	125.1 (6)
C46—C45—C44	111.7 (3)	O31B—C67B—H67B	117.5
C48—C45—C44	109.6 (4)	N11B—C67B—H67B	117.5
C46—C45—C47	109.0 (4)	C67B—N11B—C68B	119.1 (5)
C48—C45—C47	110.1 (4)	C67B—N11B—C69B	121.9 (5)

C44 C45 C47	$106 \ 1 \ (2)$	CCOD NIID COD	110.0(5)
C44 - C45 - C47	100.1 (5)	CosB—NIIB—Co9B	119.0 (5)
C45—C46—H46A	109.5	NIIB—C68B—H68D	109.5
C45—C46—H46B	109.5	N11B—C68B—H68E	109.5
H46A—C46—H46B	109.5	H68D—C68B—H68E	109.5
C45—C46—H46C	109.5	N11B—C68B—H68F	109.5
H46A—C46—H46C	109.5	H68D—C68B—H68F	109.5
H46B—C46—H46C	109.5	H68E—C68B—H68F	109.5
С45—С47—Н47А	109.5	N11B—C69B—H69D	109.5
C45—C47—H47B	109.5	N11B—C69B—H69E	109.5
H47A—C47—H47B	109.5	H69D—C69B—H69E	109.5
C45—C47—H47C	109.5	N11B—C69B—H69F	109.5
H47A—C47—H47C	109.5	H69D—C69B—H69F	109.5
H47B-C47-H47C	109.5	H69E—C69B—H69F	109.5
C45 C48 H48A	109.5	$0.24 = N_{2}1 = 0.23$	87 79 (11)
C_{45} C_{48} H_{48} H_{48}	109.5	O24 Nal $O23$	87.79 (11)
$\begin{array}{c} C43 \\ \hline \\ C40 \\ \hline C$	109.5	O24 No1 $O21$	87.79 (11) 85.54 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	024 Na1 021	85.54(11)
C45—C48—H48C	109.5	024C—Na1—021	85.54 (11)
H48A—C48—H48C	109.5	023—Na1—021	146.26 (12)
H48B—C48—H48C	109.5	O24—Na1—O22	149.78 (12)
O26—C52—N6	123.2 (5)	O24C—Na1—O22	149.78 (12)
O26—C52—H52	118.4	O23—Na1—O22	84.02 (11)
N6—C52—H52	118.4	O21—Na1—O22	85.33 (11)
C52—N6—C53	120.0 (5)	O24—Na1—O10	68.52 (9)
C52—N6—C54	121.3 (5)	O24C-Na1-O10	68.52 (9)
C53—N6—C54	118.6 (5)	O23—Na1—O10	124.35 (11)
N6—C53—H53A	109.5	O21—Na1—O10	83.38 (9)
N6—C53—H53B	109.5	O22—Na1—O10	138.49 (10)
H53A—C53—H53B	109.5	O24—Na1—O7	84.56 (10)
N6—C53—H53C	109.5	O24C—Na1—O7	84.56 (10)
Н53А—С53—Н53С	109.5	023—Na1— 07	69.82 (10)
H53B-C53-H53C	109.5	021—Na1—07	141.90(11)
N6_C54_H54A	109.5	021 Na1 07	119 17 (10)
N6 C54 H54B	109.5	0.10 Na1 0.7	58 78 (8)
H54A C54 H54D	109.5	$O_1 O_1 O_1$	121.82(10)
$M_{A} = C_{34} = M_{34B}$	109.5	O24—Na1—O1 O24C Na1—O1	121.02(10) 121.82(10)
	109.5	024C—Na1—O1	121.82(10)
H54A-C54-H54C	109.5	023—Na1—O1	140.89 (11)
H54B—C54—H54C	109.5	021—Na1—OI	67.70(9)
027—C55—N7	128.1 (9)	022—Na1—01	80.57 (9)
O27—C55—H55	116.0	O10—Na1—O1	58.19 (8)
N7—C55—H55	116.0	O7—Na1—O1	86.88 (8)
C55—N7—C57	123.4 (8)	O24—Na1—O4	142.11 (11)
C55—N7—C56	122.2 (9)	O24C—Na1—O4	142.11 (11)
C57—N7—C56	114.4 (8)	O23—Na1—O4	83.54 (10)
N7—C56—H56A	109.5	O21—Na1—O4	120.40 (10)
N7—C56—H56B	109.5	O22—Na1—O4	65.63 (9)
H56A—C56—H56B	109.5	O10-Na1-O4	86.37 (8)
N7—C56—H56C	109.5	O7—Na1—O4	57.82 (7)
H56A—C56—H56C	109.5	O1—Na1—O4	57.35 (7)
			(.)

H56B—C56—H56C	109.5	O24—Na1—Y1	106.73 (9)
N7—C57—H57A	109.5	O24C—Na1—Y1	106.73 (9)
N7—C57—H57B	109.5	O23—Na1—Y1	107.52 (9)
Н57А—С57—Н57В	109.5	O21—Na1—Y1	106.08 (8)
N7—C57—H57C	109.5	O22—Na1—Y1	103.48 (8)
Н57А—С57—Н57С	109.5	O10—Na1—Y1	43.32 (5)
Н57В—С57—Н57С	109.5	O7—Na1—Y1	43.36 (5)
O27B—C55B—N7B	125.0 (6)	O1—Na1—Y1	43.53 (5)
O27B—C55B—H55B	117.5	O4—Na1—Y1	43.05 (5)
N7B—C55B—H55B	117.5	O24—Na1—Mn4	42.98 (8)
C55B—N7B—C56B	118.9 (5)	O24C—Na1—Mn4	42.98 (8)
C55B—N7B—C57B	121.7 (5)	O23—Na1—Mn4	99.01 (9)
C56B—N7B—C57B	118.8 (5)	O21—Na1—Mn4	98.38 (8)
N7B—C56B—H56D	109.5	O22—Na1—Mn4	167.24 (9)
N7B—C56B—H56E	109.5	010—Na1—Mn4	31.45 (5)
H56D—C56B—H56E	109.5	O7—Na1—Mn4	51.71 (6)
N7B—C56B—H56F	109.5	Ol—Nal—Mn4	89.51 (6)
H56D—C56B—H56F	109.5	O4—Na1—Mn4	102.24(7)
H56E—C56B—H56F	109.5	Y1—Na1—Mn4	63 77 (3)
N7B-C57B-H57D	109.5	Ω^{24} Na1 Mn3	99 33 (8)
N7B-C57B-H57E	109.5	O24C—Na1—Mn3	99 33 (8)
H57D - C57B - H57E	109.5	O_2^3 —Na1—Mn3	44 12 (8)
N7B-C57B-H57F	109.5	O21—Na1—Mn3	169 26 (9)
H57D $C57B$ $H57F$	109.5	O22 Na1-Mn3	94 84 (8)
H57E_C57B_H57E	109.5	O10—Na1—Mn3	89.48 (6)
028 - C58 - N8	107.5	Ω^{7} Na1 Mn3	30.86 (5)
028 - C58 - H58	116.2	O1—Na1—Mn3	$101\ 70\ (7)$
N8-C58-H58	116.2	O4—Na1—Mn3	50.83 (5)
C_{58} N8 C_{60}	126.4 (8)	$V1_Na1_Mn3$	63 41 (3)
C_{58} N8 C_{59}	117 5 (7)	Mn4 Na1 $Mn3$	79.24(3)
$C_{50} = 10 = C_{50}$	117.5(7) 116.1(7)	012 Mp1 01	17251(12)
$N_{8} C_{50} H_{50A}$	100.5	012 - Mm1 = 01	172.31(12)
N8 C50 H50B	109.5	012 - Mn1 - 02	90.78 (11) 81.85 (10)
H50A C50 H50P	109.5	O12 Mp1 N4	00.03(11)
N8 C50 H50C	109.5	O12 Mp1 N4	90.93 (11) 80.15 (11)
H50A C50 H50C	109.5	$O_1 - Mn_1 - N_4$ $O_2 - Mn_1 - N_4$	166.05(11)
H50B C50 H50C	109.5	O_2 Mn1 O_14	94.63(11)
N9 C60 H60A	109.5	012 Mm1 014	94.03(11)
N8 C60 H60P	109.5	01 - Mn1 - 014	92.70(10)
	109.5	$N_4 M_{p1} = 014$	90.79 (11)
$N_{0} = C_{0} = H_{0} C_{0}$	109.5	N4 - MiII - 014	99.10 (11)
	109.5	012 Mm1 021	91.10(11)
H00A = C00 = H00C	109.5	01 - Mi1 = 021	81.40 (10)
H00B - C00 - H00C	109.5	02 - Mm1 - 021	85.59 (10)
	120 (2)	N4 - Mn1 - O21	83.73 (11)
$U_{0}B = U_{0}B = H_{0}B$	117.0	O12 Mr1 O21	1/3.51(10)
	11/.0	O12—Min1—Nal	126.89 (9)
	120.2 (19)	OI-WINI-Nal	40.81 (8)
C38B—N8B—C59B	124.0 (19)	O2—Mn1—Na1	101.65 (8)

$\begin{array}{llllllllllllllllllllllllllllllllllll$	7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(12)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(11)
N8B—C60B—H60F109.5 04 —Mn2—01692.66 (1H60D—C60B—H60F109.5 05 —Mn2—01690.25 (1)H60E—C60B—H60F109.5 $N1$ —Mn2—01698.98 (1)024B—C73B—N13B136 (3) 03 —Mn2—02292.31 (1)024B—C73B—H73B111.9 04 —Mn2—02280.55 (1)N13B—C73B—H73B111.9 05 —Mn2—02286.75 (1)C73B—N13B—C74B126.8 (19) 016 —Mn2—02283.14 (1)C73B—N13B—C74B126.8 (19) 016 —Mn2—022172.91 (1)C75B—N13B—C74B118.1 (18) 03 —Mn2—Na1127.54 (1)N13B—C74B109.5 04 —Mn2—Na146.51 (8)N13B—C74B109.5 05 —Mn2—Na1101.65 (1)N13B—C74B109.5 016 —Mn2—Na1133.63 (1)N13B—C74B—H74E109.5 022 —Mn2—Na1101.65 (1)N13B—C74B109.5 022 —Mn2—Na1133.63 (1)N13B—C74B109.5 06 —Mn3—07170.54 (1)N13B—C74B109.5 06 —Mn3—07170.54 (1)N13B—C75B—H75E109.5 06 —Mn3—N291.04 (1)N13B—C75B—H75F109.5 06 —Mn3—N291.04 (1)N13B—C75B—H75F109.5 06 —Mn3—N295.86 (1)N13B—C75B—H75F109.5 06 —Mn3—N295.75 (1)029—C61—H61118.4 08 —Mn3—01895.75 (1)029—C61—H61118.4 02 —Mn3—01891.75 (1)029—C61—H61118.4 02 —Mn3—01891.75 (1)029—C61—H61118.4 02 —Mn3—01891.75 (1)029—C61—H	11)
H60D—C60B—H60F109.505—Mn2—01690.25 (1H60E—C60B—H60F109.5N1—Mn2—01698.98 (1024B—C73B—N13B136 (3)03—Mn2—02292.31 (1024B—C73B—H73B111.904—Mn2—02280.55 (1N13B—C73B—H73B111.905—Mn2—02286.75 (1C73B—N13B—C74B115.0 (18)N1—Mn2—02283.14 (1C73B—N13B—C74B126.8 (19)016—Mn2—022172.91 (1)C75B—N13B—C74B118.1 (18)03—Mn2—Na1127.54 (1)N13B—C74B118.1 (18)03—Mn2—Na1127.54 (1)N13B—C74B109.504—Mn2—Na166.07 (8N13B—C74B—H74E109.5016—Mn2—Na1101.65 (1)N13B—C74B—H74F109.5016—Mn2—Na1133.63 (1)H74D—C74B—H74F109.5022—Mn2—Na141.26 (7)H74E—C74B—H74F109.506—Mn3—07170.54 (1)N13B—C75B—H75D109.506—Mn3—0895.86 (1)N13B—C75B—H75E109.506—Mn3—N291.04 (1)N13B—C75B—H75F109.506—Mn3—N291.94 (1)N13B—C75B—H75F109.506—Mn3—N295.75 (1)029—C61—H61118.408—Mn3—01895.75 (1)029—C61—H61118.4N2—Mn3—01893.46 (1)029—C61—H61118.4N2—Mn3—01893.46 (1)029—C61—H61118.4N2—Mn3—01893.46 (1)029—C61—H61118.4N2—Mn3—01893.46 (1)029—C61—H61118.4N2—Mn3—01893.46 (1)029—C61—H61118.4N2—Mn3—018<	11)
H60E—C60B—H60F109.5N1—Mn2—O1698.98 (1O24B—C73B—N13B136 (3)O3—Mn2—O2292.31 (1O24B—C73B—H73B111.9O4—Mn2—O2280.55 (1N13B—C73B—H73B111.9O5—Mn2—O2286.75 (1C73B—N13B—C75B115.0 (18)N1—Mn2—O2283.14 (1C73B—N13B—C74B126.8 (19)O16—Mn2—O22172.91 (1)C75B—N13B—C74B118.1 (18)O3—Mn2—Na1127.54 (1)N13B—C74B118.1 (18)O3—Mn2—Na1127.54 (1)N13B—C74B118.1 (18)O3—Mn2—Na1101.65 (1)N13B—C74B—H74E109.5O5—Mn2—Na1101.65 (1)N13B—C74B—H74E109.5O5—Mn2—Na1133.63 (1)N13B—C74B—H74F109.5O16—Mn2—Na1133.63 (1)N13B—C74B—H74F109.5O22—Mn2—Na141.26 (7)N13B—C74B—H74F109.5O6—Mn3—O7170.54 (1)N13B—C75B—H75D109.5O6—Mn3—O895.86 (1)N13B—C75B—H75E109.5O7—Mn3—O881.69 (1)N13B—C75B—H75F109.5O7—Mn3—O881.69 (1)N13B—C75B—H75F109.5O6—Mn3—N291.04 (1)N13B—C75B—H75F109.5O6—Mn3—N295.86 (1)N13B—C75B—H75F109.5O6—Mn3—N295.86 (1)N13B—C75B—H75F109.5O6—Mn3—N295.75 (1)O29—C61—N9123.3 (7)O7—Mn3—O1895.75 (1)O29—C61—H61118.4N2—Mn3—O1893.46 (1)O29—C61—H61118.4N2—Mn3—O1893.46 (1)O29—C61—H61118.4 <td>11)</td>	11)
024B-C73B-N13B $136 (3)$ $03-Mn2-O22$ $92.31 (1)$ $024B-C73B-H73B$ 111.9 $04-Mn2-O22$ $80.55 (1)$ $N13B-C73B-H73B$ 111.9 $05-Mn2-O22$ $86.75 (1)$ $C73B-N13B-C75B$ $115.0 (18)$ $N1-Mn2-O22$ $83.14 (1)$ $C73B-N13B-C74B$ $126.8 (19)$ $016-Mn2-O22$ $83.14 (1)$ $C73B-N13B-C74B$ $126.8 (19)$ $016-Mn2-O22$ $172.91 (1)$ $C75B-N13B-C74B$ $118.1 (18)$ $03-Mn2-Na1$ $127.54 (1)$ $N13B-C74B-H74D$ 109.5 $04-Mn2-Na1$ $46.51 (8)$ $N13B-C74B-H74E$ 109.5 $05-Mn2-Na1$ $101.65 (1)$ $N13B-C74B-H74E$ 109.5 $016-Mn2-Na1$ $133.63 (1)$ $N13B-C74B-H74F$ 109.5 $016-Mn2-Na1$ $133.63 (1)$ $N13B-C74B-H74F$ 109.5 $022-Mn2-Na1$ $41.26 (7) (7)$ $N13B-C74B-H74F$ 109.5 $02-Mn2-Na1$ $41.26 (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)$	11)
024B—C73B—H73B 111.9 04—Mn2—022 80.55 (1 N13B—C73B—H73B 111.9 05—Mn2—022 86.75 (1 C73B—N13B—C75B 115.0 (18) N1—Mn2—022 83.14 (1 C73B—N13B—C74B 126.8 (19) 016—Mn2—022 172.91 (1) C75B—N13B—C74B 118.1 (18) 03—Mn2—Na1 127.54 (1) N13B—C74B—H74D 109.5 04—Mn2—Na1 46.51 (8) N13B—C74B—H74E 109.5 05—Mn2—Na1 101.65 (1) N13B—C74B—H74E 109.5 05—Mn2—Na1 101.65 (1) N13B—C74B—H74E 109.5 016—Mn2—Na1 133.63 (1) N13B—C74B—H74F 109.5 016—Mn2—Na1 133.63 (1) N13B—C74B—H74F 109.5 022—Mn2—Na1 41.26 (7) H74D—C74B—H74F 109.5 06—Mn3—O7 170.54 (1) N13B—C75B—H75D 109.5 06—Mn3—N2 91.04 (1) N13B—C75B—H75F 109.5 06—Mn3—N2 91.04 (1) N13B—C75B—H75F 109.5 06—Mn3—N2 91.64 (1) N13B—C75B—H75F 109.5 06—Mn3—N2 95.86 (1) N13B—C75B—H75F 109.5 06—Mn3—N2<	11)
N13B—C73B—H73B 111.9 O5—Mn2—O22 86.75 (1 C73B—N13B—C73B 115.0 (18) N1—Mn2—O22 83.14 (1 C73B—N13B—C74B 126.8 (19) O16—Mn2—O22 172.91 (1) C75B—N13B—C74B 118.1 (18) O3—Mn2—Na1 127.54 (1) N13B—C74B—H74D 109.5 O4—Mn2—Na1 46.51 (8) N13B—C74B—H74D 109.5 O5—Mn2—Na1 101.65 (1) N13B—C74B—H74E 109.5 O5—Mn2—Na1 101.65 (1) N13B—C74B—H74E 109.5 O16—Mn2—Na1 166.07 (8) N13B—C74B—H74E 109.5 O16—Mn2—Na1 133.63 (1) H74D—C74B—H74F 109.5 O22—Mn2—Na1 41.26 (7) H74D—C74B—H74F 109.5 O6—Mn3—O7 170.54 (1) N13B—C75B—H75D 109.5 O6—Mn3—O8 95.86 (1) N13B—C75B—H75E 109.5 O6—Mn3—O2 91.04 (1) N13B—C75B—H75E 109.5 O6—Mn3—N2 91.04 (1) N13B—C75B—H75F 109.5 O6—Mn3—N2 95.86 (1) N13B—C75B—H75F 109.5 O6—Mn3—N2 95.86 (1) N13B—C75B—H75F 109.5 O6—Mn3—N2<	10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10)
C73B—N13B—C74B126.8 (19)O16—Mn2—O22172.91 (C75B—N13B—C74B118.1 (18)O3—Mn2—Na1127.54 (N13B—C74B—H74D109.5O4—Mn2—Na1127.54 (N13B—C74B—H74D109.5O4—Mn2—Na146.51 (8N13B—C74B—H74E109.5O5—Mn2—Na1101.65 (H74D—C74B—H74E109.5O16—Mn2—Na166.07 (8N13B—C74B—H74F109.5O16—Mn2—Na1133.63 (H74D—C74B—H74F109.5O22—Mn2—Na141.26 (7H74E—C74B—H74F109.5O6—Mn3—O7170.54 (N13B—C75B—H75D109.5O6—Mn3—O895.86 (1N13B—C75B—H75E109.5O7—Mn3—O881.69 (1H75D—C75B—H75F109.5O7—Mn3—N291.04 (1N13B—C75B—H75F109.5O6—Mn3—N291.64 (2)H75D—C75B—H75F109.5O6—Mn3—N291.64 (1N13B—C75B—H75F109.5O6—Mn3—N293.46 (1)O29—C61—N9123.3 (7)O7—Mn3—O1893.46 (1)O29—C61—H61118.4N2—Mn3—O1891.75 (1)N9—C61—H61118.4N2—Mn3—O1899.36 (1)C61—N9—C62122.6 (7)O7—Mn3—Na145.66 (8)	11)
C75B—N13B—C74B118.1 (18)O3—Mn2—Na1127.54 (N13B—C74B—H74D109.5O4—Mn2—Na146.51 (8N13B—C74B—H74E109.5O5—Mn2—Na1101.65 (H74D—C74B—H74E109.5N1—Mn2—Na166.07 (8N13B—C74B—H74F109.5O16—Mn2—Na1133.63 (H74D—C74B—H74F109.5O22—Mn2—Na1133.63 (H74D—C74B—H74F109.5O22—Mn2—Na141.26 (7)H74E—C74B—H74F109.5O6—Mn3—O7170.54 (N13B—C75B—H75D109.5O6—Mn3—O895.86 (1)N13B—C75B—H75E109.5O7—Mn3—O881.69 (1)H75D—C75B—H75E109.5O6—Mn3—N291.04 (1)N13B—C75B—H75F109.5O6—Mn3—N295.86 (1)N13B—C75B—H75F109.5O6—Mn3—N295.86 (1)N13B—C75B—H75F109.5O6—Mn3—N295.75 (1)O29—C61—N9123.3 (7)O7—Mn3—O1893.46 (1)O29—C61—H61118.4N2—Mn3—O1891.75 (1)N9—C61—H61118.4N2—Mn3—O1899.36 (1)C61—N9—C63118.8 (7)O6—Mn3—Na1126.47 (1)C61—N9—C62122.6 (7)O7—Mn3—Na145.66 (8)	(10)
N13B—C74B—H74D109.5O4—Mn2—Na146.51 (8N13B—C74B—H74E109.5O5—Mn2—Na1101.65 (H74D—C74B—H74E109.5N1—Mn2—Na166.07 (8N13B—C74B—H74F109.5O16—Mn2—Na1133.63 (H74D—C74B—H74F109.5O22—Mn2—Na141.26 (7H74E—C74B—H74F109.5O6—Mn3—O7170.54 (N13B—C75B—H75D109.5O6—Mn3—O895.86 (1N13B—C75B—H75E109.5O6—Mn3—O895.86 (1N13B—C75B—H75E109.5O7—Mn3—O881.69 (1H75D—C75B—H75F109.5O6—Mn3—N291.04 (1N13B—C75B—H75F109.5O6—Mn3—N289.58 (1N13B—C75B—H75F109.5O6—Mn3—N293.46 (1O29—C61—N9123.3 (7)O7—Mn3—O1893.46 (1O29—C61—H61118.4N2—Mn3—O1891.75 (1N9—C61—H61118.8 (7)O6—Mn3—Na1126.47 (C61—N9—C62C61—N9—C62122.6 (7)O7—Mn3—Na145.66 (8	(9)
N13B—C74B—H74E 109.5 O5—Mn2—Na1 101.65 (H74D—C74B—H74E 109.5 N1—Mn2—Na1 66.07 (8 N13B—C74B—H74F 109.5 O16—Mn2—Na1 133.63 (H74D—C74B—H74F 109.5 O22—Mn2—Na1 141.26 (7 H74D—C74B—H74F 109.5 O6—Mn3—O7 170.54 (H74E—C74B—H74F 109.5 O6—Mn3—O7 170.54 (N13B—C75B—H75D 109.5 O6—Mn3—O8 95.86 (1 N13B—C75B—H75E 109.5 O6—Mn3—O8 95.86 (1 N13B—C75B—H75E 109.5 O6—Mn3—O8 95.86 (1 N13B—C75B—H75E 109.5 O6—Mn3—N2 91.04 (1 N13B—C75B—H75F 109.5 O7—Mn3—N2 89.58 (1 H75D—C75B—H75F 109.5 O8—Mn3—N2 166.28 (1 H75D—C75B—H75F 109.5 O6—Mn3—O18 95.75 (1 O29—C61—N9 123.3 (7) O7—Mn3—O18 93.46 (1 O29—C61—H61 118.4 O8—Mn3—O18 91.75 (1 N9—C61—H61 118.8 (7) O6—Mn3—Na1 126.47 (1) C61—N9—C62 122.6 (7) O7—Mn3—Na1 45.66 (8	8)
H74D—C74B—H74E109.5N1—Mn2—Na166.07 (8N13B—C74B—H74F109.5O16—Mn2—Na1133.63 (1)H74D—C74B—H74F109.5O22—Mn2—Na141.26 (7)H74E—C74B—H74F109.5O6—Mn3—O7170.54 (1)N13B—C75B—H75D109.5O6—Mn3—O895.86 (1)N13B—C75B—H75E109.5O7—Mn3—O881.69 (1)H75D—C75B—H75E109.5O7—Mn3—N291.04 (1)N13B—C75B—H75F109.5O7—Mn3—N289.58 (1)H75D—C75B—H75F109.5O7—Mn3—N289.58 (1)H75D—C75B—H75F109.5O6—Mn3—O1895.75 (1)O29—C61—N9123.3 (7)O7—Mn3—O1893.46 (1)O29—C61—H61118.4N2—Mn3—O1891.75 (1)N9—C61—H61118.8 (7)O6—Mn3—Na1126.47 (1)C61—N9—C62122.6 (7)O7—Mn3—Na145.66 (8)	(8)
N13B—C74B—H74F 109.5 O16—Mn2—Na1 133.63 (H74D—C74B—H74F 109.5 O22—Mn2—Na1 41.26 (7) H74E—C74B—H74F 109.5 O6—Mn3—O7 170.54 (N13B—C75B—H75D 109.5 O6—Mn3—O8 95.86 (1) N13B—C75B—H75D 109.5 O6—Mn3—O8 95.86 (1) N13B—C75B—H75E 109.5 O7—Mn3—O8 81.69 (1) H75D—C75B—H75E 109.5 O6—Mn3—N2 91.04 (1) N13B—C75B—H75F 109.5 O7—Mn3—N2 89.58 (1) H75D—C75B—H75F 109.5 O6—Mn3—N2 91.04 (1) N13B—C75B—H75F 109.5 O6—Mn3—N2 89.58 (1) H75D—C75B—H75F 109.5 O6—Mn3—N2 89.58 (1) H75E—C75B—H75F 109.5 O6—Mn3—N2 166.28 (1) H75E—C75B—H75F 109.5 O6—Mn3—O18 95.75 (1) O29—C61—N9 123.3 (7) O7—Mn3—O18 93.46 (1) O29—C61—H61 118.4 N2—Mn3—O18 91.75 (1) N9—C61—H61 118.4 N2—Mn3—O18 99.36 (1) C61—N9—C63 118.8 (7) O6—Mn3—Na1 126.47 (2)	8)
H74D—C74B—H74F109.5O22—Mn2—Na141.26 (7)H74E—C74B—H74F109.5O6—Mn3—O7170.54 (1)N13B—C75B—H75D109.5O6—Mn3—O895.86 (1)N13B—C75B—H75E109.5O7—Mn3—O881.69 (1)H75D—C75B—H75E109.5O6—Mn3—N291.04 (1)N13B—C75B—H75F109.5O7—Mn3—N289.58 (1)H75D—C75B—H75F109.5O7—Mn3—N289.58 (1)H75D—C75B—H75F109.5O6—Mn3—N2166.28 (1)H75E—C75B—H75F109.5O6—Mn3—O1895.75 (1)O29—C61—N9123.3 (7)O7—Mn3—O1893.46 (1)O29—C61—H61118.4N2—Mn3—O1891.75 (1)N9—C61—H61118.4N2—Mn3—O1899.36 (1)C61—N9—C63118.8 (7)O6—Mn3—Na1126.47 (1)C61—N9—C62122.6 (7)O7—Mn3—Na145.66 (8)	(8)
H74E—C74B—H74F109.5O6—Mn3—O7170.54 (N13B—C75B—H75D109.5O6—Mn3—O895.86 (1N13B—C75B—H75E109.5O7—Mn3—O881.69 (1H75D—C75B—H75E109.5O6—Mn3—N291.04 (1N13B—C75B—H75F109.5O6—Mn3—N291.04 (1N13B—C75B—H75F109.5O7—Mn3—N289.58 (1H75D—C75B—H75F109.5O7—Mn3—N289.58 (1H75E—C75B—H75F109.5O6—Mn3—O1895.75 (1O29—C61—N9123.3 (7)O7—Mn3—O1893.46 (1O29—C61—H61118.4N2—Mn3—O1891.75 (1N9—C61—H61118.4N2—Mn3—O1899.36 (1C61—N9—C63118.8 (7)O6—Mn3—Na1126.47 (1)C61—N9—C62122.6 (7)O7—Mn3—Na145.66 (8)	7)
N13B—C75B—H75D 109.5 O6—Mn3—O8 95.86 (1) N13B—C75B—H75E 109.5 O7—Mn3—O8 81.69 (1) H75D—C75B—H75E 109.5 O6—Mn3—N2 91.04 (1) N13B—C75B—H75F 109.5 O6—Mn3—N2 91.04 (1) N13B—C75B—H75F 109.5 O6—Mn3—N2 89.58 (1) H75D—C75B—H75F 109.5 O7—Mn3—N2 89.58 (1) H75D—C75B—H75F 109.5 O8—Mn3—N2 166.28 (1) H75E—C75B—H75F 109.5 O6—Mn3—O18 95.75 (1) O29—C61—N9 123.3 (7) O7—Mn3—O18 93.46 (1) O29—C61—H61 118.4 O8—Mn3—O18 91.75 (1) N9—C61—H61 118.4 N2—Mn3—O18 99.36 (1) C61—N9—C63 118.8 (7) O6—Mn3—Na1 126.47 (1) C61—N9—C62 122.6 (7) O7—Mn3—Na1 45.66 (8)	(12)
N13B—C75B—H75E 109.5 O7—Mn3—O8 81.69 (1 H75D—C75B—H75E 109.5 O6—Mn3—N2 91.04 (1 N13B—C75B—H75F 109.5 O7—Mn3—N2 89.58 (1 H75D—C75B—H75F 109.5 O7—Mn3—N2 89.58 (1 H75D—C75B—H75F 109.5 O7—Mn3—N2 89.58 (1 H75E—C75B—H75F 109.5 O8—Mn3—N2 166.28 (1) H75E—C75B—H75F 109.5 O6—Mn3—O18 95.75 (1) O29—C61—N9 123.3 (7) O7—Mn3—O18 93.46 (1) O29—C61—H61 118.4 O8—Mn3—O18 91.75 (1) N9—C61—H61 118.4 O8—Mn3—O18 99.36 (1) C61—N9—C63 118.8 (7) O6—Mn3—Na1 126.47 (1) C61—N9—C62 122.6 (7) O7—Mn3—Na1 45.66 (8)	11)
H75D—C75B—H75E109.5O6—Mn3—N291.04 (1N13B—C75B—H75F109.5O7—Mn3—N289.58 (1H75D—C75B—H75F109.5O8—Mn3—N2166.28 (1H75E—C75B—H75F109.5O6—Mn3—O1895.75 (1O29—C61—N9123.3 (7)O7—Mn3—O1893.46 (1O29—C61—H61118.4O8—Mn3—O1891.75 (1N9—C61—H61118.4N2—Mn3—O1899.36 (1C61—N9—C63118.8 (7)O6—Mn3—Na1126.47 (10)C61—N9—C62122.6 (7)O7—Mn3—Na145.66 (8)	10)
N13B—C75B—H75F 109.5 O7—Mn3—N2 89.58 (1) H75D—C75B—H75F 109.5 O8—Mn3—N2 166.28 (1) H75E—C75B—H75F 109.5 O6—Mn3—O18 95.75 (1) O29—C61—N9 123.3 (7) O7—Mn3—O18 93.46 (1) O29—C61—H61 118.4 O8—Mn3—O18 91.75 (1) N9—C61—H61 118.4 N2—Mn3—O18 99.36 (1) C61—N9—C63 118.8 (7) O6—Mn3—Na1 126.47 (1) C61—N9—C62 122.6 (7) O7—Mn3—Na1 45.66 (8)	11)
H75D—C75B—H75F109.5O8—Mn3—N2166.28 (H75E—C75B—H75F109.5O6—Mn3—O1895.75 (1O29—C61—N9123.3 (7)O7—Mn3—O1893.46 (1O29—C61—H61118.4O8—Mn3—O1891.75 (1N9—C61—H61118.4N2—Mn3—O1899.36 (1C61—N9—C63118.8 (7)O6—Mn3—Na1126.47 (C61—N9—C62122.6 (7)O7—Mn3—Na145.66 (8	11)
H75E—C75B—H75F109.5O6—Mn3—O1895.75 (1O29—C61—N9123.3 (7)O7—Mn3—O1893.46 (1O29—C61—H61118.4O8—Mn3—O1891.75 (1N9—C61—H61118.4N2—Mn3—O1899.36 (1C61—N9—C63118.8 (7)O6—Mn3—Na1126.47 (10)C61—N9—C62122.6 (7)O7—Mn3—Na145.66 (8)	(12)
O29—C61—N9123.3 (7)O7—Mn3—O1893.46 (1O29—C61—H61118.4O8—Mn3—O1891.75 (1N9—C61—H61118.4N2—Mn3—O1899.36 (1C61—N9—C63118.8 (7)O6—Mn3—Na1126.47 (1)C61—N9—C62122.6 (7)O7—Mn3—Na145.66 (8)	11)
O29—C61—H61118.4O8—Mn3—O1891.75 (1N9—C61—H61118.4N2—Mn3—O1899.36 (1C61—N9—C63118.8 (7)O6—Mn3—Na1126.47 (1)C61—N9—C62122.6 (7)O7—Mn3—Na145.66 (8)	10)
N9—C61—H61118.4N2—Mn3—O1899.36 (1C61—N9—C63118.8 (7)O6—Mn3—Na1126.47 (C61—N9—C62122.6 (7)O7—Mn3—Na145.66 (8	11)
C61—N9—C63 118.8 (7) O6—Mn3—Na1 126.47 (C61—N9—C62 122.6 (7) O7—Mn3—Na1 45.66 (8)	11)
C61—N9—C62 122.6 (7) O7—Mn3—Na1 45.66 (8	(9)
	8)
C63—N9—C62 118.6 (8) O8—Mn3—Na1 99.23 (8	8)
N9—C62—H62A 109.5 N2—Mn3—Na1 67.21 (9	9)
N9—C62—H62B 109.5 O18—Mn3—Na1 134.40 ((7)
H62A—C62—H62B 109.5 O9—Mn4—O10 172.02 ((12)
N9—C62—H62C 109.5 O9—Mn4—O11 97.27 (1	$11)^{-1}$
H62A—C62—H62C 109.5 O10—Mn4—O11 81.63 (1	10)
H62B—C62—H62C 109.5 09—Mn4—N3 90.42 (1	11)
N9—C63—H63A 109.5 O10—Mn4—N3 89.20 (1	11)
N9—C63—H63B 109.5 O11—Mn4—N3 166.41 ((12)
H63A—C63—H63B 109.5 O9—Mn4—O20 94.64 (1	12)
N9—C63—H63C 109.5 O10—Mn4—O20 93.27 (1	10)
H63A—C63—H63C 109.5 O11—Mn4—O20 90.16 (1	11)

H63B—C63—H63C	109.5	N3—Mn4—O20	100.40 (12)
O29B—C61B—N9B	125 (3)	O9—Mn4—O24	91.44 (12)
O29B—C61B—H61B	117.4	O10—Mn4—O24	80.60 (10)
N9B—C61B—H61B	117.4	O11—Mn4—O24	85.58 (11)
C61B—N9B—C63B	120 (2)	N3—Mn4—O24	83.03 (11)
C61B—N9B—C62B	124 (2)	O20—Mn4—O24	172.98 (10)
C63B—N9B—C62B	114.4 (19)	O9—Mn4—O24C	91.44 (12)
N9B—C62B—H62D	109.5	O10—Mn4—O24C	80.60 (10)
N9B—C62B—H62E	109.5	O11—Mn4—O24C	85.58 (11)
H62D—C62B—H62E	109.5	N3—Mn4—O24C	83.03 (11)
N9B—C62B—H62F	109.5	O20—Mn4—O24C	172.98 (10)
H62D—C62B—H62F	109.5	O9—Mn4—Na1	126.87 (9)
H62E—C62B—H62F	109.5	O10—Mn4—Na1	46.24 (8)
N9B—C63B—H63D	109.5	O11—Mn4—Na1	101.43 (8)
N9B—C63B—H63E	109.5	N3—Mn4—Na1	65.06 (9)
H63D—C63B—H63E	109.5	O20—Mn4—Na1	134.11 (7)
N9B—C63B—H63F	109.5	O24—Mn4—Na1	42.02 (7)
H63D— $C63B$ — $H63F$	109.5	O24C—Mn4—Na1	42.02.(7)
H63E— $C63B$ — $H63F$	109.5	019 - Y1 - 013	77.98 (9)
O30—C64—N10	126.2 (6)	019 - Y1 - 015	123.27(10)
O30—C64—H64	116.9	013 - Y1 - 015	77.25 (9)
N10—C64—H64	116.9	019 - Y1 - 017	76.42 (9)
C64 - N10 - C65	121.1 (6)	013 - Y1 - 017	124.40(10)
C64—N10—C66	122.1 (5)	015-Y1-017	77.15 (9)
C65 - N10 - C66	116.6 (6)	019-Y1-04	145.05 (9)
N10—C65—H65A	109.5	013-Y1-04	136.80 (8)
N10—C65—H65B	109.5	015-Y1-04	77.39 (9)
H65A—C65—H65B	109.5	017-Y1-04	82.48 (9)
N10-C65-H65C	109.5	019 - Y1 - 010	78.54 (9)
H65A—C65—H65C	109.5	013 - Y1 - 010	82.23 (9)
H65B—C65—H65C	109.5	015 - Y1 - 010	145.10(9)
N10—C66—H66A	109.5	017 - Y1 - 010	137.52 (9)
N10—C66—H66B	109.5	04 - Y1 - 010	99.89 (8)
H66A—C66—H66B	109.5	019-11-07	82.80 (9)
N10—C66—H66C	109.5	013-Y1-07	145.03 (8)
H66A—C66—H66C	109.5	015-Y1-07	137.39 (8)
H66B—C66—H66C	109.5	017-Y1-07	77.84 (9)
O30B—C64B—N10B	124 (2)	04—Y1—07	65.56 (8)
O30B—C64B—H64B	118.0	010-Y1-07	65.37 (8)
N10B—C64B—H64B	118.0	019-Y1-01	138.13 (8)
C64B—N10B—C66B	121.2 (18)	013-Y1-01	77.21 (9)
C64B—N10B—C65B	122.4 (19)	015-Y1-01	82.85 (9)
C66B - N10B - C65B	116.4 (19)	017-Y1-01	145.20 (9)
N10B—C65B—H65D	109.5	04—Y1—01	65.40 (8)
N10B—C65B—H65E	109.5	010—Y1—01	65.11 (8)
H65D—C65B—H65E	109.5	07—Y1—01	99.25 (8)
N10B—C65B—H65F	109.5	O19—Y1—Na1	117.64 (7)
H65D—C65B—H65F	109.5	O13—Y1—Na1	117.35 (7)
			(.)

H65E—C65B—H65F	109.5	O15—Y1—Na1	119.08 (7)
N10B—C66B—H66D	109.5	O17—Y1—Na1	118.24 (7)
N10B—C66B—H66E	109.5	O4—Y1—Na1	50.95 (6)
H66D—C66B—H66E	109.5	O10—Y1—Na1	48.94 (6)
N10B—C66B—H66F	109.5	O7—Y1—Na1	49.15 (6)
H66D—C66B—H66F	109.5	O1—Y1—Na1	50.11 (6)
H66E—C66B—H66F	109.5		
O2—C1—C2—C7	-10.7 (5)	O32—C70—N12—C72	176.0 (13)
N1—C1—C2—C7	167.2 (3)	O32B—C70B—N12B—C72B	-134 (7)
O2—C1—C2—C3	170.0 (3)	O32B—C70B—N12B—C71B	25 (9)
N1—C1—C2—C3	-12.1 (5)	O2-C1-N1-O1	-1.9(5)
C7—C2—C3—O3	175.8 (3)	C2-C1-N1-O1	-179.7(3)
C1—C2—C3—O3	-4.9 (6)	O2—C1—N1—Mn2	-163.5 (2)
C7—C2—C3—C4	-2.3 (5)	C2—C1—N1—Mn2	18.6 (5)
C1—C2—C3—C4	177.0 (3)	O5—C8—N2—O4	-1.1(5)
O3—C3—C4—C5	-177.0 (4)	C9—C8—N2—O4	-179.3(3)
C2—C3—C4—C5	1.3 (6)	O5—C8—N2—Mn3	-164.1(2)
C3—C4—C5—C6	0.6 (6)	C9—C8—N2—Mn3	17.7 (5)
C4—C5—C6—C7	-1.5 (6)	08—C15—N3—O7	-2.7(5)
C5—C6—C7—C2	0.4 (6)	C16—C15—N3—O7	178.6 (3)
C3—C2—C7—C6	1.5 (6)	O8—C15—N3—Mn4	-166.5(3)
C1—C2—C7—C6	-177.8 (4)	C16—C15—N3—Mn4	14.8 (5)
O5—C8—C9—C14	-12.0 (5)	O11—C22—N4—O10	-1.3(5)
N2—C8—C9—C14	166.3 (4)	C23—C22—N4—O10	-179.1(3)
O5—C8—C9—C10	167.7 (3)	O11—C22—N4—Mn1	-164.5(3)
N2-C8-C9-C10	-14.1 (5)	C23—C22—N4—Mn1	17.8 (5)
C14—C9—C10—O6	177.2 (4)	C1—N1—O1—Mn1	0.6 (3)
C8—C9—C10—O6	-2.4 (6)	Mn2—N1—O1—Mn1	165.36 (13)
C14—C9—C10—C11	-1.5 (6)	C1—N1—O1—Y1	153.2 (2)
C8—C9—C10—C11	178.9 (3)	Mn2—N1—O1—Y1	-42.1(3)
O6—C10—C11—C12	-178.4 (4)	C1—N1—O1—Na1	-110.5 (3)
C9—C10—C11—C12	0.3 (6)	Mn2—N1—O1—Na1	54.2 (2)
C10-C11-C12-C13	0.9 (7)	N1—C1—O2—Mn1	2.1 (4)
C11—C12—C13—C14	-1.0 (7)	C2—C1—O2—Mn1	179.9 (2)
C12—C13—C14—C9	-0.2 (7)	C4—C3—O3—Mn2	-165.7(3)
C10-C9-C14-C13	1.4 (6)	C2—C3—O3—Mn2	16.2 (5)
C8—C9—C14—C13	-178.9 (4)	C8—N2—O4—Mn2	-1.5(3)
O8—C15—C16—C21	-7.5 (5)	Mn3—N2—O4—Mn2	164.14 (13)
N3—C15—C16—C21	171.1 (3)	C8—N2—O4—Y1	152.7 (2)
O8—C15—C16—C17	172.9 (3)	Mn3—N2—O4—Y1	-41.6 (3)
N3—C15—C16—C17	-8.4 (5)	C8—N2—O4—Na1	-112.8(3)
C21—C16—C17—O9	177.8 (4)	Mn3—N2—O4—Na1	52.9 (2)
C15—C16—C17—O9	-2.7 (6)	N2—C8—O5—Mn2	3.2 (4)
C21—C16—C17—C18	-1.7 (6)	C9—C8—O5—Mn2	-178.6 (3)
C15—C16—C17—C18	177.8 (3)	C11—C10—O6—Mn3	-165.1 (3)
O9—C17—C18—C19	-179.2 (4)	C9—C10—O6—Mn3	16.3 (5)
C16—C17—C18—C19	0.3 (6)	C15—N3—O7—Mn3	0.7 (3)

C17—C18—C19—C20	0.9 (7)	Mn4—N3—O7—Mn3	167.18 (13)
C18—C19—C20—C21	-0.6 (7)	C15—N3—O7—Y1	154.2 (2)
C19—C20—C21—C16	-0.8 (7)	Mn4—N3—O7—Y1	-39.3 (3)
C17—C16—C21—C20	2.0 (6)	C15—N3—O7—Na1	-110.3 (3)
C15—C16—C21—C20	-177.5 (4)	Mn4—N3—O7—Na1	56.1 (2)
O11—C22—C23—C28	-11.8 (5)	N3—C15—O8—Mn3	3.3 (4)
N4—C22—C23—C28	166.0 (4)	C16—C15—O8—Mn3	-178.0(3)
O11—C22—C23—C24	169.0 (3)	C18—C17—O9—Mn4	-172.5(3)
N4—C22—C23—C24	-13.2 (6)	C16—C17—O9—Mn4	7.9 (6)
C28—C23—C24—O12	177.2 (4)	C22—N4—O10—Mn4	-0.6(3)
C22—C23—C24—O12	-3.6 (6)	Mn1—N4—O10—Mn4	165.20 (13)
C28—C23—C24—C25	-1.1 (6)	C22—N4—O10—Y1	151.1 (2)
C22—C23—C24—C25	178.1 (4)	Mn1—N4—O10—Y1	-43.1 (3)
O12—C24—C25—C26	-177.5 (4)	C22—N4—O10—Na1	-111.6 (3)
C23—C24—C25—C26	0.8 (6)	Mn1—N4—O10—Na1	54.2 (2)
C24—C25—C26—C27	0.1 (7)	N4—C22—O11—Mn4	2.5 (4)
C25—C26—C27—C28	-0.8(7)	C23—C22—O11—Mn4	-179.8 (3)
C26—C27—C28—C23	0.5 (7)	C25—C24—O12—Mn1	-165.3 (3)
C24—C23—C28—C27	0.4 (6)	C23—C24—O12—Mn1	16.5 (5)
C22—C23—C28—C27	-178.8(4)	O14—C29—O13—Y1	-60.1 (6)
O14—C29—C30—C32	-47.8 (6)	C30—C29—O13—Y1	117.9 (4)
O13—C29—C30—C32	134.0 (4)	O13—C29—O14—Mn1	16.7 (5)
O14—C29—C30—C31	-169.9(4)	C30—C29—O14—Mn1	-161.3 (3)
O13—C29—C30—C31	11.9 (6)	O16—C34—O15—Y1	-59.2 (6)
O14—C29—C30—C33	71.0 (5)	C35—C34—O15—Y1	118.9 (4)
O13—C29—C30—C33	-107.1(4)	O15—C34—O16—Mn2	18.4 (5)
O16—C34—C35—C36	-45.5 (5)	C35—C34—O16—Mn2	-159.8 (3)
O15—C34—C35—C36	136.2 (4)	O18—C39—O17—Y1	-54.7 (6)
O16—C34—C35—C38	-167.8(4)	C40—C39—O17—Y1	126.3 (4)
O15—C34—C35—C38	13.9 (5)	O17—C39—O18—Mn3	12.7 (5)
O16—C34—C35—C37	73.6 (5)	C40—C39—O18—Mn3	-168.3 (3)
O15—C34—C35—C37	-104.7 (4)	O20—C44—O19—Y1	-60.2 (6)
O18—C39—C40—C43	-47.7 (6)	C45—C44—O19—Y1	119.3 (4)
O17—C39—C40—C43	131.4 (4)	O19—C44—O20—Mn4	17.2 (5)
O18—C39—C40—C41	-170.5 (4)	C45—C44—O20—Mn4	-162.3(3)
O17—C39—C40—C41	8.5 (6)	Na1—O24—C73—N13	-63 (4)
O18—C39—C40—C42	70.7 (5)	Mn4—O24—C73—N13	116 (3)
O17—C39—C40—C42	-110.3 (4)	O24—C73—N13—C75	155 (3)
O20—C44—C45—C46	-169.2 (4)	O24—C73—N13—C74	14 (4)
O19—C44—C45—C46	11.2 (5)	O25—C49—N5—C50	2.1 (8)
O20—C44—C45—C48	-46.8 (5)	O25—C49—N5—C51	178.0 (5)
O19—C44—C45—C48	133.6 (4)	O31—C67—N11—C68	11.3 (16)
O20—C44—C45—C47	72.0 (4)	O31—C67—N11—C69	-169.6 (10)
O19—C44—C45—C47	-107.5 (4)	O31B—C67B—N11B—C68B	-0.1 (4)
O26—C52—N6—C53	2.1 (7)	O31B—C67B—N11B—C69B	-180.0 (4)
O26—C52—N6—C54	179.3 (5)	C24—O12—Mn1—O2	179.9 (3)
O27—C55—N7—C57	176.1 (11)	C24—O12—Mn1—N4	-10.7 (3)
O27—C55—N7—C56	-6.7 (18)	C24—O12—Mn1—O14	88.5 (3)

O27B—C55B—N7B—C56B	-10 (4)	C24—O12—Mn1—O21	-94.4 (3)
O27B—C55B—N7B—C57B	179 (3)	C24—O12—Mn1—Na1	-70.0 (3)
O28—C58—N8—C60	175.8 (8)	C3—O3—Mn2—O5	-179.4 (3)
O28—C58—N8—C59	-1.4 (12)	C3—O3—Mn2—N1	-9.2 (3)
O28B—C58B—N8B—C60B	180.0 (4)	C3—O3—Mn2—O16	89.8 (3)
O28B—C58B—N8B—C59B	0.0 (4)	C3—O3—Mn2—O22	-92.4 (3)
O24B—C73B—N13B—C75B	179.9 (4)	C3—O3—Mn2—Na1	-69.0 (3)
O24B—C73B—N13B—C74B	0.1 (5)	C10—O6—Mn3—O8	-179.4 (3)
O29—C61—N9—C63	-176.1 (8)	C10—O6—Mn3—N2	-11.3 (3)
O29—C61—N9—C62	2.7 (13)	C10—O6—Mn3—O18	88.2 (3)
O29B—C61B—N9B—C63B	-131 (5)	C10—O6—Mn3—Na1	-73.4 (3)
O29B—C61B—N9B—C62B	64 (7)	C17—O9—Mn4—O11	-171.4 (3)
O30-C64-N10-C65	5.1 (11)	C17—O9—Mn4—N3	-2.7 (3)
O30-C64-N10-C66	179.9 (7)	C17—O9—Mn4—O20	97.8 (3)
O30B—C64B—N10B—C66B	171 (4)	C17—O9—Mn4—O24	-85.7 (3)
O30B—C64B—N10B—C65B	-13 (6)	C17—O9—Mn4—O24C	-85.7 (3)
O32—C70—N12—C71	3 (2)	C17—O9—Mn4—Na1	-61.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C18—H18····O20 ⁱ	0.95	2.60	3.359 (5)	137
C25—H25…O14 ⁱⁱ	0.95	2.59	3.374 (5)	141
C49—H49····O29	0.95	2.58	3.180 (8)	121
C51—H51 <i>B</i> ···O29 ⁱⁱⁱ	0.98	2.56	3.376 (9)	141
C53—H53 <i>B</i> ···O31 ^{iv}	0.98	2.48	3.377 (9)	152
C55—H55…O8	0.95	2.36	3.098 (8)	135
C56—H56A···O32 ^{iv}	0.98	2.56	3.499 (17)	162
C59—H59 <i>B</i> ···O29	0.98	2.56	3.262 (11)	129
C61—H61…O12	0.95	2.52	3.457 (8)	169
C63 <i>B</i> —H63 <i>F</i> ···O32 <i>B</i> ⁱⁱⁱ	0.98	2.53	3.34 (6)	140
C64 <i>B</i> —H64 <i>B</i> ···O3	0.95	2.50	3.40 (3)	157
C71 <i>B</i> —H71 <i>D</i> ···O21	0.98	2.60	3.41 (5)	141
C72 <i>B</i> —H72 <i>E</i> ···O34 ^{iv}	0.98	2.36	3.31 (7)	163
C74—H74 <i>B</i> ···O27	0.98	2.27	2.87 (3)	119
C75—H75C···O31	0.98	2.15	2.99 (3)	143
O21—H21A···O25	0.82 (2)	2.00 (3)	2.767 (4)	155 (5)
O21—H21 <i>B</i> ···O28	0.83 (2)	2.05 (3)	2.792 (5)	148 (5)
O21—H21 <i>B</i> ···O28 <i>B</i>	0.83 (2)	1.87 (3)	2.70 (2)	172 (5)
O22—H22A···O25	0.84 (2)	1.96 (3)	2.727 (4)	151 (5)
O22—H22 <i>B</i> ···O26	0.83 (2)	1.93 (3)	2.688 (4)	151 (5)
O23—H23A···O27	0.84 (2)	2.06 (3)	2.871 (7)	164 (5)
O23—H23 <i>A</i> ···O24 <i>B</i>	0.84 (2)	2.06 (5)	2.696 (19)	132 (5)
O23—H23 <i>B</i> ···O26	0.86 (2)	1.98 (3)	2.789 (5)	155 (5)
O24 <i>C</i> —H24 <i>A</i> ···O33	0.86 (2)	1.91 (4)	2.78 (3)	179 (5)

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+1, -z; (iv) -x+1, -y+1, -z+1.