

Received 2 September 2015 Accepted 16 September 2015

Edited by G. Smith, Queensland University of Technology, Australia

Keywords: crystal structure; proline; amino acid; strontium coordination polymer; N/O— H···Br hydrogen bonds

CCDC reference: 1424731 **Supporting information**: this article has supporting information at journals.iucr.org/e

OPEN $\widehat{\bigcirc}$ ACCESS

Selladurai Sathiskumar,^a Thangavelu Balakrishnan,^a* Kandasamy Ramamurthi^b and Subbiah Thamotharan^c*

^aCrystal Growth Laboratory, PG and Research Department of Physics, Periyar EVR College (Autonomous), Tiruchirappalli 620 023, India, ^bCrystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, SRM University, Kattankulathur 603 203, India, and ^cBiomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, India. *Correspondence e-mail: balacrystalgrowth@gmail.com, thamu@scbt.sastra.edu

In the title coordination polymer, $\{[Sr(C_5H_9NO_2)(H_2O)_4]Br_2\}_n$, the proline molecule exists in a zwitterionic form with one of the ring C atoms disordered over two sites [site-occupancy factors = 0.57 (6):0.43 (6)]. The Sr^{II} ion is nine-coordinated by six water O atoms, two monodentate and two μ_2 -bridging, and three carboxylate O atoms of the proline ligands, with two bridging [Sr–O range = 2.524 (4)–2.800 (5) Å]. In the crystal, there is no direct interaction between the proline molecules. However, the proline and water molecules associate with the bromide counter-anions through a number of intermolecular $O-H\cdots$ Br and $N-H\cdots$ Br hydrogen-bonding interactions, giving a three-dimensional supramolecular structure.

1. Chemical context

The study of coordination polymers has been an area of rapid development in recent years due to their interesting structures and their wide range of applications as functional materials (Lyhs *et al.*, 2012). Reports of the crystal structures of alkaline earth metal ions combined with anions of amino acids are very limited. As part of our ongoing investigations of the crystal and molecular structures of a series of metal complexes generated from amino acids (Revathi *et al.*, 2015; Sathiskumar *et al.*, 2015*a*,*b*; Balakrishnan *et al.*, 2013), we report here the crystal structure of a polymeric strontium–proline complex, $\{[Sr(C_5H_9NO_2)(H_2O)_4]^{2+} 2(Br^-)\}_n$, (I).

2. Structural commentary

The asymmetric unit of the title complex (I) contains one Sr^{2+} ion, one bridging proline ligand and four water molecules, two of which are monodentate and two bridging, and two bromide

research communications

Figure 1

The coordination sphere of Sr^{2+} in the crystal structure of (I). Only the major components of the disordered proline ligands are shown. Displacement ellipsoids are drawn at the 50% probability level. For symmetry codes, see Table 1.

counter-anions (Fig. 1). In (I), the bond lengths involving the carboxylate atoms and the protonation of the amino group suggest that the proline molecule exists in a zwitterionic form. The Sr^{II} ion is nine-coordinated by six water oxygen atoms

Figure 2

The Sr-water coordination polymeric chain substructure of (I), with peripheral water $O-H\cdots Br$ hydrogen bonds shown as dashed lines.

Table 1		
Selected	bond lengths	(Å).

Sr1–O1	2.524 (4)	Sr1-O2 ⁱ	2.728 (4)
Sr1-O3	2.625 (6)	Sr1-O3 ⁱⁱ	2.707 (6)
Sr1-O4	2.630 (6)	Sr1-O4 ⁱⁱ	2.651 (5)
Sr1–O5	2.593 (5)	$Sr1-O2^{iii}$	2.800 (5)
Sr1-O6	2.582 (6)		

Symmetry codes: (i) x + 1, y, z; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots Br2^{i}$	0.90 (6)	2.52 (5)	3.374 (7)	159 (6)
$N1 - H1B \cdot \cdot \cdot Br3^{i}$	0.90(7)	2.40(7)	3.240 (7)	156 (8)
$O3-H3D\cdots Br2^{v}$	0.84(7) 0.84(7)	2.65 (7) 2.54 (7)	3.376 (6)	105 (7) 172 (5)
$O4-H4E\cdots Br2^{vi}$	0.85 (6)	2.47 (7)	3.281 (6)	162 (7)
$O4-H4F\cdots Br3^{vn}$	0.83(6)	2.52(6)	3.347 (6)	174 (6)
$O5-H5D\cdots Br2$ $O5-H5D\cdots Br3^{vii}$	0.86(5) 0.84(6)	2.54 (5) 2.48 (6)	3.304 (6)	164 (6)
$O6-H6C\cdots Br2^{v}$	0.83 (6)	2.58 (6)	3.393 (6)	167 (5)
$O6-H6D\cdots Br3^{1}$	0.85 (7)	2.56 (6)	3.378 (6)	162 (7)

Symmetry codes: (i) x + 1, y, z; (iv) $-x + \frac{3}{2}, -y + 1, z + \frac{1}{2}$; (v) $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}$; (vi) $-x + \frac{3}{2}, -y, z + \frac{1}{2}$; (vii) $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}$.

[Sr-O = 2.582 (6) - 2.707 (5)Å] and three carboxylate oxygen atoms of zwitterionic proline ligands [Sr-O = 2.524 (4)-2.800 (4) Å; Table 1]. In the strontium-glycine complex, the Sr-O (water) and Sr-O(carboxylate) distances ranges are 2.526 (4)-2.661 (2) and 2.605 (2)-2.703 (2) Å, respectively (Revathi et al., 2015). In (I), one of the carbon atoms (C4) of the pyrrolidine ring is disordered over two sites. In the major component of the pyrrolidine ring, there is a twist conformation on the C2–C5 bond with a pseudo-rotation angle Δ = 40.1 (14)° and a maximum torsion angle $\varphi_{\rm m} = 43.8$ (10)° for the atom sequence N1-C2-C5-C4A-C3 (Rao et al., 1981). In the minor component, the pyrrolidine ring exhibits an envelope conformation on N1 with a pseudo-rotation angle Δ = 341.5 (19)° and a maximum torsion angle $\varphi_{\rm m} = 36.0~(9)^{\circ}$ for the atom sequence N1-C2-C5-C4B-C3 (Rao et al., 1981). As shown in Fig. 2, the title complex forms a coordination polymeric chain that lies parallel to the *a* axis. Adjacent Sr^{II} ions are separated by 3.9387 (7) Å within a chain.

3. Supramolecular features

The crystal structure of (I), is stabilized by intermolecular N– H···Br and O–H···Br hydrogen bonds (Table 2). One of the characteristic features observed in amino acid complexes is the head-to-tail sequence in which amino acids are self-associated through their amino and carboxylate groups (Sharma *et al.*, 2006; Selvaraj *et al.*, 2007; Balakrishnan *et al.*, 2013; Revathi *et al.*, 2015). In the crystal structure of the L-proline lithium bromide monohydrate complex, there is a head-to-tail sequence observed (Sathiskumar *et al.*, 2015*a*). In contrast, there is no direct hydrogen-bonding interaction between the proline molecules in (I).

research communications

Figure 3

The butterfly-like supramolecular arrangements generated by intermolecular N-H···Br and O-H···Br hydrogen bonds. Only atoms involved in hydrogen-bonding interactions are labelled.

Figure 4

The crystal packing of (I) viewed along the *a* axis, with hydrogen bonds shown as dashed lines. C-bound H atoms have been omitted for clarity.

Crystal data	
Chemical formula	$[Sr(C_5H_9NO_2)(H_2O)_4]Br_2$
M _r	434.63
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	296
a, b, c (Å)	6.7079 (4), 12.9125 (9),
	15.4499 (11)
$V(Å^3)$	1338.20 (16)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	10.01
Crystal size (mm)	$0.15 \times 0.10 \times 0.10$
Data collection	
Diffractometer	Bruker Kappa APEXII CCD
Absorption correction	Multi-scan (SABABS; Bruker,
-	2004)
T_{\min}, T_{\max}	0.26, 0.44
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	14183, 2345, 2081
R _{int}	0.068
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.594
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.032, 0.063, 1.07
No. of reflections	2345
No. of parameters	186
No. of restraints	26
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.60, -0.86
Absolute structure	Flack x determined using 788 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	0.008 (8)

Table 3

Experimental details.

Computer programs: APEX2, SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

As shown in Fig. 3, two water molecules and two bromide anions along with Sr^{2+} ions generate a hydrogen-bonded sheet which lies parallel to the *a* axis. Within this sheet, two Sr^{2+} ions and two water oxygens form a cyclic motif. Water molecules (O3 and O4) interconnect the bromide anions, forming a chain. In (I), two molecules (O5 and O6) act as donors for intermolecular O-H···Br hydrogen bonds. These hydrogen bonds generate a cyclic dibromide motif similar to that observed in a related structure (Revathi et al., 2015). Adjacent dibromide motifs in (I), which run parallel to the b axis, are interconnected by proline ligands through intermolecular N-H...Br hydrogen bonds on both sides (Fig. 3). Adjacent supramolecular arrangements cyclic of dibromide ···proline···cyclic dibromide motifs are interlinked further by water molecules (O3 and O4) through O-H···Br hydrogen bonds. This entire arrangement forms a butterfly-like structure. The overall hydrogen-bonded supramolecular structure (Fig. 4) is three-dimensional.

4. Synthesis and crystallization

Single crystals of the title complex were obtained by slow evaporation from an aqueous solution of L-proline and

research communications

strontium bromide hexahydrate in a 1:1 stoichiometric molar ratio at 306 K. The prepared solution was stirred well and filtered. The resultant filtered solution was left undisturbed to allow evaporation. After 15 days, colourless prismatic crystals were harvested.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. One of the carbon (C4) atoms of the pyrrolidine ring appears to be disordered over two sites. These positions were defined for this atom and constrained refinement of the site-occupation factors led to a value of 0.57 (6) for the major component. The positions of amino and water H atoms were located from difference Fourier maps. Further, the O-H distances in the water molecules were restrained to 0.85 (2) Å. The N–H distances of amino group were also restrained, to 0.89 (2) Å. The remaining hydrogen atoms were placed in geometrically idealized positions (C-H = 0.97 Å with $U_{iso}(H) = 1.2U_{eq}(C)$ and were constrained to ride on their parent atom. The Flack absolute structure parameter was determined to be 0.008 (8) (788 Friedel pairs; Parsons et al., 2013), indicating an S configuration for C2, consistent with that for the parent L-proline (Kayushina & Vainshtein, 1965).

Acknowledgements

TB and SS would like to acknowledge the University Grants Commission (UGC), India for providing financial support

[Project No. 41-956/2012(SR)]. ST is very grateful to the management of SASTRA University for infrastructural and financial support (Professor TRR grant).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Balakrishnan, T., Ramamurthi, K., Jeyakanthan, J. & Thamotharan, S. (2013). Acta Cryst. E69, m60–m61.
- Bruker (2004). *APEX2*, *SAINT*, *XPREP* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kayushina, R. L. & Vainshtein, B. K. (1965). *Kristallografiya*, **10**, 833–844.
- Lyhs, B., Bläser, D., Wölper, C., Haack, R., Jansen, G. & Schulz, S. (2012). *Eur. J. Inorg. Chem.* pp. 4350–4355.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.
- Revathi, P., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015). Acta Cryst. E71, 875–878.
- Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015a). Spectrochim. Acta Part A, 138, 187–194.
- Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015b). *Acta Cryst.* E**71**, 217–219.
- Selvaraj, M., Thamotharan, S., Roy, S. & Vijayan, M. (2007). Acta Cryst. B63, 459–468.
- Sharma, A., Thamotharan, S., Roy, S. & Vijayan, M. (2006). Acta Cryst. C62, 0148–0152.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2015). E71, 1199-1202 [doi:10.1107/S2056989015017302]

Crystal structure of poly[[μ_2 -diaqua-diaqua- μ_2 -L-proline- $\kappa^2 O:O'$ -strontium] dibromide]

Selladurai Sathiskumar, Thangavelu Balakrishnan, Kandasamy Ramamurthi and Subbiah Thamotharan

Computing details

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *PLATON* (Spek, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015).

Poly[[μ_2 -diaqua-diaqua- μ_2 -*L*-proline- $\kappa^2 O:O'$ -\ strontium] dibromide]

Crystal data [Sr(C ₅ H ₉ NO ₂)(H ₂ O) ₄]Br ₂ $M_r = 434.63$ Orthorhombic, $P2_12_12_1$ a = 6.7079 (4) Å b = 12.9125 (9) Å c = 15.4499 (11) Å V = 1338.20 (16) Å ³ Z = 4 F(000) = 840	$D_x = 2.157 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7063 reflections $\theta = 2.6-28.5^{\circ}$ $\mu = 10.01 \text{ mm}^{-1}$ T = 296 K Block, brown $0.15 \times 0.10 \times 0.10 \text{ mm}$
Data collection Bruker Kappa APEXII CCD diffractometer Radiation source: Sealed tube ω nd φ scan Absorption correction: multi-scan (SABABS; Bruker, 2004) $T_{min} = 0.26, T_{max} = 0.44$ 14183 measured reflections	2345 independent reflections 2081 reflections with $I > 2\sigma(I)$ $R_{int} = 0.068$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -7 \rightarrow 7$ $k = -15 \rightarrow 15$ $l = -18 \rightarrow 18$
RefinementRefinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.063$ $S = 1.07$ 2345 reflections186 parameters26 restraintsHydrogen site location: mixed	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0267P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.60$ e Å ⁻³ $\Delta\rho_{min} = -0.86$ e Å ⁻³

Absolute structure: Flack *x* determined using 788 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: 0.008 (8)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Sr1	1.34882 (8)	0.24302 (5)	0.43342 (4)	0.0174 (2)	
01	1.0492 (6)	0.2322 (4)	0.3350 (3)	0.0257 (16)	
O2	0.7439 (6)	0.2420 (4)	0.3916 (3)	0.0243 (16)	
O3	1.5725 (8)	0.3885 (5)	0.5016 (4)	0.0243 (19)	
O4	1.5819 (8)	0.1162 (4)	0.5200 (4)	0.0213 (17)	
05	1.3443 (9)	0.0648 (4)	0.3561 (4)	0.035 (2)	
O6	1.3860 (9)	0.3899 (5)	0.3212 (4)	0.038 (2)	
N1	0.9404 (8)	0.2529 (6)	0.1734 (4)	0.026 (2)	
C1	0.8660 (9)	0.2426 (5)	0.3307 (4)	0.018 (2)	
C2	0.7837 (9)	0.2600 (6)	0.2411 (4)	0.021 (2)	
C3	0.8370 (12)	0.2347 (7)	0.0890 (5)	0.042 (3)	
C4A	0.623 (2)	0.211 (3)	0.1117 (11)	0.034 (7)	0.57 (6)
C5	0.6277 (12)	0.1840 (7)	0.2082 (5)	0.042 (3)	
C4B	0.660 (5)	0.167 (3)	0.1117 (13)	0.035 (8)	0.43 (6)
Br2	0.18627 (12)	0.02641 (6)	0.15165 (6)	0.0389 (3)	
Br3	0.22307 (13)	0.44596 (7)	0.11973 (6)	0.0466 (3)	
H1A	1.024 (9)	0.199 (4)	0.180 (5)	0.02 (2)*	
H1B	1.033 (10)	0.303 (5)	0.175 (6)	0.05 (3)*	
H3C	1.522 (13)	0.429 (5)	0.538 (4)	0.06 (3)*	
H3D	1.622 (13)	0.422 (5)	0.460 (4)	0.07 (4)*	
H4E	1.532 (12)	0.085 (5)	0.563 (3)	0.05 (3)*	
H4F	1.640 (10)	0.075 (4)	0.487 (4)	0.04 (3)*	
H5C	1.281 (10)	0.060 (6)	0.308 (3)	0.06 (3)*	
H5D	1.450 (7)	0.030 (6)	0.353 (5)	0.06 (3)*	
H6C	1.478 (8)	0.432 (5)	0.327 (5)	0.03 (3)*	
H6D	1.319 (11)	0.402 (7)	0.276 (4)	0.09 (4)*	
H31	0.89720	0.17700	0.05850	0.0500*	0.57 (6)
H32	0.84480	0.29580	0.05270	0.0500*	0.57 (6)
H41	0.57440	0.15290	0.07800	0.0410*	0.57 (6)
H42	0.53890	0.27050	0.10120	0.0410*	0.57 (6)
H51	0.49920	0.19560	0.23530	0.0500*	0.57 (6)
H52	0.66830	0.11280	0.21770	0.0500*	0.57 (6)
H2	0.72630	0.32970	0.23900	0.0250*	
H33	0.92450	0.19970	0.04850	0.0500*	0.43 (6)
H34	0.79360	0.29960	0.06370	0.0500*	0.43 (6)
H43	0.68850	0.09490	0.09960	0.0420*	0.43 (6)

supporting information

H44	0.54310	0.18790	0.07910	0.0420*	0.43 (6)
H53	0.49510	0.21140	0.21840	0.0500*	0.43 (6)
H54	0.63970	0.11870	0.23880	0.0500*	0.43 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sr1	0.0142 (3)	0.0215 (4)	0.0165 (3)	0.0003 (3)	-0.0010 (3)	0.0006 (3)
01	0.017 (2)	0.041 (3)	0.019 (3)	0.006 (2)	-0.001 (2)	-0.003 (3)
02	0.024 (2)	0.033 (3)	0.016 (3)	0.004 (3)	0.004 (2)	0.002 (3)
03	0.025 (3)	0.029 (3)	0.019 (4)	0.000 (2)	0.000 (3)	-0.003 (3)
O4	0.024 (3)	0.024 (3)	0.016 (3)	0.000 (2)	0.003 (3)	0.000 (3)
05	0.033 (3)	0.044 (4)	0.029 (4)	0.006 (3)	-0.002 (3)	-0.010 (3)
06	0.034 (4)	0.043 (4)	0.037 (4)	-0.012 (3)	-0.011 (3)	0.017 (3)
N1	0.022 (3)	0.035 (4)	0.022 (4)	-0.005 (4)	0.000 (3)	0.004 (4)
C1	0.025 (4)	0.011 (3)	0.017 (4)	-0.001 (3)	-0.003 (3)	-0.004 (3)
C2	0.024 (3)	0.026 (4)	0.013 (4)	0.005 (4)	0.002 (3)	0.000 (4)
C3	0.052 (5)	0.059 (6)	0.015 (4)	0.000 (5)	-0.001 (4)	-0.001 (4)
C4A	0.036 (10)	0.041 (15)	0.025 (9)	0.001 (8)	-0.007 (7)	-0.014 (9)
C5	0.035 (5)	0.066 (6)	0.025 (5)	-0.025 (4)	-0.006 (4)	-0.004 (5)
C4B	0.033 (13)	0.042 (17)	0.030 (11)	-0.010 (13)	0.005 (10)	-0.023 (11)
Br2	0.0357 (5)	0.0379 (5)	0.0432 (5)	0.0057 (4)	-0.0102 (4)	-0.0197 (4)
Br3	0.0505 (6)	0.0484 (6)	0.0409 (6)	-0.0239 (4)	-0.0107 (4)	0.0197 (5)

Geometric parameters (Å, °)

Sr1—O1	2.524 (4)	N1—H1A	0.90 (6)
Sr1—O3	2.625 (6)	N1—H1B	0.90 (7)
Sr104	2.630 (6)	C1—C2	1.507 (9)
Sr1—O5	2.593 (5)	C2—C5	1.522 (11)
Sr106	2.582 (6)	C3—C4A	1.509 (17)
Sr1—O2 ⁱ	2.728 (4)	C3—C4B	1.52 (4)
Sr1—O3 ⁱⁱ	2.707 (6)	C4A—C5	1.53 (2)
Sr1—O4 ⁱⁱ	2.651 (5)	C4B—C5	1.52 (2)
Sr1—O2 ⁱⁱⁱ	2.800 (5)	C2—H2	0.9800
01—C1	1.238 (7)	С3—Н31	0.9700
O2—C1	1.248 (8)	С3—Н32	0.9700
O3—H3C	0.84 (7)	С3—Н33	0.9700
O3—H3D	0.84 (7)	С3—Н34	0.9700
O4—H4E	0.85 (6)	C4A—H41	0.9700
O4—H4F	0.83 (6)	C4A—H42	0.9700
O5—H5D	0.84 (6)	C4B—H43	0.9700
O5—H5C	0.86 (5)	C4B—H44	0.9700
O6—H6D	0.85 (7)	C5—H51	0.9700
O6—H6C	0.83 (6)	С5—Н54	0.9700
N1—C3	1.496 (10)	С5—Н52	0.9700
N1—C2	1.486 (8)	С5—Н53	0.9700

O1—Sr1—O3	137.44 (18)	Sr1—O6—H6D	130 (6)
O1—Sr1—O4	138.19 (17)	Sr1—O6—H6C	119 (5)
O1—Sr1—O5	70.37 (18)	H6C—O6—H6D	111 (8)
O1—Sr1—O6	73.32 (18)	C2—N1—C3	107.2 (5)
O1—Sr1—O2 ⁱ	129.10 (14)	C3—N1—H1B	117 (6)
O1—Sr1—O3 ⁱⁱ	69.11 (17)	H1A—N1—H1B	97 (5)
O1—Sr1—O4 ⁱⁱ	70.35 (17)	C2—N1—H1A	114 (5)
O1—Sr1—O2 ⁱⁱⁱ	112.66 (13)	C2—N1—H1B	115 (5)
O3—Sr1—O4	84.36 (18)	C3—N1—H1A	105 (5)
03—Sr1—05	145.76 (18)	O1—C1—C2	115.4 (5)
03 - 8r1 - 06	71.85 (19)	02-C1-C2	117.0 (5)
02^{i} Sr1-03	62.82 (16)	01 - C1 - 02	127.6 (6)
$03 - 8r1 - 03^{ii}$	13375(19)	N1 - C2 - C5	102.2(6)
03 Sr1 03	77 67 (17)	N1 - C2 - C1	102.2(0) 112.2(5)
O^{2iii} Sr1 O^3	72.95 (16)	C1 $C2$ $C5$	112.2 (5)
02 - 311 - 05	72.95 (10)	$C_1 - C_2 - C_3$ N1 C3 C4B	101.0(0)
04 - 511 - 05	(10)	N1 = C3 = C4B	104.0(10) 105.7(8)
04 - 51 - 00	(2, (0, (10)))	N1 = C3 = C4A	103.7(8)
02 SrI 04	62.00 (16)	$C_3 = C_4 A = C_5$	104.7(10)
03° SrI-04	80.08 (17)	$C_3 = C_4 B = C_5$	104.8 (19)
04—Sr1—04"	133.67 (19)	C2 - C5 - C4A	101.1 (12)
02 ^m —Sr1—04	72.62 (16)	C2—C5—C4B	108.8 (15)
05—Srl—06	110.10 (19)	N1—C2—H2	108.00
$O2^{i}$ —Sr1—O5	84.14 (17)	C1—C2—H2	108.00
$O3^{ii}$ —Sr1—O5	66.80 (19)	С5—С2—Н2	108.00
O4 ⁱⁱ —Sr1—O5	136.53 (18)	N1—C3—H31	111.00
$O2^{iii}$ —Sr1—O5	120.21 (17)	N1—C3—H32	111.00
O2 ⁱ —Sr1—O6	75.56 (17)	N1—C3—H33	111.00
O3 ⁱⁱ —Sr1—O6	140.90 (18)	N1—C3—H34	111.00
O4 ⁱⁱ —Sr1—O6	75.16 (19)	C4A—C3—H31	111.00
O2 ⁱⁱⁱ —Sr1—O6	128.45 (18)	C4A—C3—H32	111.00
O2 ⁱ —Sr1—O3 ⁱⁱ	138.60 (17)	H31—C3—H32	109.00
$O2^{i}$ —Sr1—O4 ⁱⁱ	136.37 (16)	C4B—C3—H33	111.00
O2 ⁱ —Sr1—O2 ⁱⁱⁱ	118.24 (13)	C4B—C3—H34	111.00
O3 ⁱⁱ —Sr1—O4 ⁱⁱ	82.36 (17)	H33—C3—H34	109.00
O2 ⁱⁱⁱ —Sr1—O3 ⁱⁱ	60.87 (16)	C3—C4A—H41	111.00
O2 ⁱⁱⁱ —Sr1—O4 ⁱⁱ	61.37 (16)	C3—C4A—H42	111.00
Sr1—O1—C1	144.8 (4)	C5—C4A—H41	111.00
$Sr1^{iv}$ O2 C1	144.7 (4)	C5—C4A—H42	111.00
Sr1 ⁱⁱ —O2—C1	124.2 (4)	H41—C4A—H42	109.00
$Sr1^{iv} O2 Sr1^{ii}$	90.87 (13)	H43—C4B—H44	109.00
$sr1-03-sr1^{iii}$	95 2 (2)	C3-C4B-H44	111.00
$r_{\rm m} = 0.05$ $r_{\rm m}$	96 47 (17)	C5-C4B-H43	111.00
$H_{3}C_{}O_{3}$ $H_{3}D$	111 (6)	C3-C4B-H43	111.00
Sr1 ⁱⁱⁱ	115 (5)	C5 - C4B - H44	111.00
Sr1 ⁱⁱⁱ	110 (5)	C2_C5_H52	112.00
Sr1H3C	110 (3)	$C_2 = C_3 = H_{52}$	110.00
Sr1 02 H2D	117(0) 107(5)	$C_2 = C_3 = 1155$	112.00
	107(3) 111(6)	$C_2 = C_3 = \Pi_3 I$	112.00
п4с—04—п4Г	111 (0)	С4Д—СЭ—ПЭ4	110.00

Sr104H4F	117 (5)	H53C5H54	108.00
Sr1	111 (4)	C2-C5-H54	110.00
Sr1 ⁱⁱⁱ	107(4)	C4A - C5 - H51	112.00
$Sr1^{iii}$ $O4$ $H4F$	112 (5)	C4A - C5 - H52	112.00
Sr1H5D	112 (5)	H_{51} C_{5} H_{52}	109.00
Sr1_05_H5C	119 (5)	C4P C5 H53	109.00
	110(3)	C4B—C3—H33	110.00
HSC-OS-HSD	109(7)		
O3—Sr1—O1—C1	-76.6 (8)	O5 ⁱⁱⁱ —Sr1 ⁱⁱⁱ —O3—Sr1	-158.1 (2)
O4—Sr1—O1—C1	101.4 (8)	$O6^{iii}$ — $Sr1^{iii}$ — $O3$ — $Sr1$	-64.4(3)
O5—Sr1—O1—C1	128.0 (8)	O1— $Sr1$ — $O4$ — $Sr1$ ⁱⁱⁱ	171.61 (16)
$06-sr_1-01-c_1$	-112.8(8)	O_{3} -Sr1- O_{4} -Sr1 ⁱⁱⁱ	-9.71(18)
$O2^{i}$ —Sr1—O1—C1	-167.5(7)	$05-Sr1-04-Sr1^{iii}$	145.3 (2)
$O3^{ii}$ —Sr1—O1—C1	56.1 (8)	$O6$ — $Sr1$ — $O4$ — $Sr1^{iii}$	45.1 (3)
$O4^{ii}$ —Sr1—O1—C1	-33.0(8)	$O2^{i}$ —Sr1—O4—Sr1 ⁱⁱⁱ	52.53 (16)
$O2^{iii}$ —Sr1—O1—C1	12.5 (8)	$O3^{ii}$ —Sr1—O4—Sr1 ⁱⁱⁱ	-146.0(2)
$O1^{iv}$ — $Sr1^{iv}$ — $O2$ — $C1$	5.3 (8)	$O4^{ii}$ —Sr1—O4—Sr1 ⁱⁱⁱ	-76.7(3)
$O3^{iv}$ — $Sr1^{iv}$ — $O2$ — $C1$	-125.2(8)	$O2^{iii}$ —Sr1—O4—Sr1 ⁱⁱⁱ	-83.58 (18)
$O4^{iv}$ — $Sr1^{iv}$ — $O2$ — $C1$	136.7 (8)	O3—Sr1 ⁱⁱⁱ —O4—Sr1	9.45 (18)
$O5^{iv}$ — $Sr1^{iv}$ — $O2$ — $C1$	64.1 (8)	O2 ⁱ —Sr1 ⁱⁱⁱ —O4—Sr1	-51.45 (16)
$O6^{iv}$ — $Sr1^{iv}$ — $O2$ — $C1$	-48.4 (8)	$O1^{iii}$ — $Sr1^{iii}$ — $O4$ — $Sr1$	79.93 (18)
$O2^{ii}$ —Sr1 ^{iv} —O2—C1	-174.6 (7)	O3 ⁱⁱⁱ —Sr1 ⁱⁱⁱ —O4—Sr1	-128.6(2)
$O3^{iv}$ — $Sr1^{ii}$ — $O2$ — $C1$	127.5 (6)	O4 ⁱⁱⁱ —Sr1 ⁱⁱⁱ —O4—Sr1	-58.9 (3)
$O4^{iv}$ — $Sr1^{ii}$ — $O2$ — $C1$	-135.0 (6)	O5 ⁱⁱⁱ —Sr1 ⁱⁱⁱ —O4—Sr1	53.5 (3)
$O1^{ii}$ —Sr 1^{ii} —O2—C1	175.1 (5)	O6 ⁱⁱⁱ —Sr1 ⁱⁱⁱ —O4—Sr1	157.2 (2)
$O3^{ii}$ —Sr1 ⁱⁱ —O2—C1	-50.0 (5)	Sr1-01-C1-02	-19.8 (13)
$O4^{ii}$ —Sr1 ⁱⁱ —O2—C1	39.4 (5)	Sr1-01-C1-C2	158.9 (6)
O5 ⁱⁱ —Sr1 ⁱⁱ —O2—C1	95.3 (5)	Sr1 ^{iv}	-172.8 (5)
$O6^{ii}$ — $Sr1^{ii}$ — $O2$ — $C1$	-98.7 (5)	Sr1 ⁱⁱ —O2—C1—O1	13.2 (10)
O2 ⁱⁱⁱⁱ —Sr1 ⁱⁱ —O2—C1	-5.0 (6)	Sr1 ^{iv}	8.5 (11)
O1—Sr1—O3—Sr1 ⁱⁱⁱ	-171.81 (15)	Sr1 ⁱⁱ —O2—C1—C2	-165.5 (4)
O4—Sr1—O3—Sr1 ⁱⁱⁱ	9.48 (18)	C2—N1—C3—C4A	-10.6 (17)
O5—Sr1—O3—Sr1 ⁱⁱⁱ	-36.0 (4)	C3—N1—C2—C5	34.0 (8)
O6—Sr1—O3—Sr1 ⁱⁱⁱ	-135.3 (2)	C3—N1—C2—C1	160.9 (6)
O2 ⁱ —Sr1—O3—Sr1 ⁱⁱⁱ	-52.54 (16)	O1—C1—C2—N1	4.6 (9)
O3 ⁱⁱ —Sr1—O3—Sr1 ⁱⁱⁱ	80.0 (3)	O2—C1—C2—C5	-58.5 (9)
O4 ⁱⁱ —Sr1—O3—Sr1 ⁱⁱⁱ	146.5 (2)	O2—C1—C2—N1	-176.6 (6)
O2 ⁱⁱⁱ —Sr1—O3—Sr1 ⁱⁱⁱ	83.01 (17)	O1—C1—C2—C5	122.7 (7)
O4—Sr1 ⁱⁱⁱ —O3—Sr1	-9.45 (18)	N1-C2-C5-C4A	-43.4 (12)
O2 ⁱ —Sr1 ⁱⁱⁱ —O3—Sr1	51.95 (16)	C1—C2—C5—C4A	-166.7 (12)
O1 ⁱⁱⁱ —Sr1 ⁱⁱⁱ —O3—Sr1	-81.27 (18)	N1—C3—C4A—C5	-17 (2)
O3 ⁱⁱⁱ —Sr1 ⁱⁱⁱ —O3—Sr1	55.3 (3)	C3—C4A—C5—C2	37 (2)
O4 ⁱⁱⁱ —Sr1 ⁱⁱⁱ —O3—Sr1	127.5 (2)		

Symmetry codes: (i) x+1, y, z; (ii) x-1/2, -y+1/2, -z+1; (iii) x+1/2, -y+1/2, -z+1; (iv) x-1, y, z.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1A····Br2 ⁱ	0.90 (6)	2.52 (5)	3.374 (7)	159 (6)
N1—H1 <i>B</i> ····Br3 ⁱ	0.90 (7)	2.40(7)	3.240 (7)	156 (8)
O3—H3C···Br3 ^v	0.84 (7)	2.63 (7)	3.440 (6)	163 (7)
O3—H3D····Br2 ^{vi}	0.84 (7)	2.54 (7)	3.376 (6)	172 (5)
O4—H4 E ····Br2 ^{vii}	0.85 (6)	2.47 (7)	3.281 (6)	162 (7)
O4—H4 <i>F</i> ···Br3 ^{viii}	0.83 (6)	2.52 (6)	3.347 (6)	174 (6)
O5—H5C···Br2 ⁱ	0.86 (5)	2.54 (5)	3.369 (6)	164 (6)
O5—H5D····Br3 ^{viii}	0.84 (6)	2.48 (6)	3.304 (6)	166 (6)
$O6-H6C\cdots Br2^{vi}$	0.83 (6)	2.58 (6)	3.393 (6)	167 (5)
O6—H6D····Br3 ⁱ	0.85 (7)	2.56 (6)	3.378 (6)	162 (7)

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) x+1, y, z; (v) -x+3/2, -y+1, z+1/2; (vi) -x+2, y+1/2, -z+1/2; (vii) -x+3/2, -y, z+1/2; (viii) -x+2, y-1/2, -z+1/2.