

CRYSTALLOGRAPHIC

OPEN a ACCESS

Crystal structure of an unknown solvate of dodecakis(μ_2 -alaninato- $1:2\kappa^2 O:N,O$)cerium(III)hexanickel(II) aquatris(hydroxido- κO)tris(nitrato- $\kappa^2 O.O'$)cerate(III)

Stanislav I. Bezzubov,^a* Vladimir D. Doljenko,^b Andrei V. Churakov,^a Irina S. Zharinova^b and Yuri M. Kiselev^b

^aInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow 119991, Russian Federation, and ^bDepartment of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation. *Correspondence e-mail: stas.bezzubov@gmail.com

Received 5 September 2015; accepted 12 September 2015

Edited by M. Weil, Vienna University of Technology, Austria

The chiral title compound, $[CeNi_6(C_3H_6NO_2)_{12}][Ce(NO_3)_3-$ (OH)₃(H₂O)], comprises a complex heterometallic Ni/Ce cation and a homonuclear Ce anion. Both the cation and anion exhibit point group symmetry 3. with the Ce^{III} atom situated on the threefold rotation axis. The cation metal core consists of six Ni^{II} atoms coordinated in a slightly distorted octahedral N₂O₄ configuration by N and O atoms of 12 deprotonated L-alaninate ligands exhibiting both bridging and chelating modes. This metal-organic coordination motif encapsulates one Ce^{III} atom that shows an icosahedral coordination by the O-donor atoms of the L-alaninate ligands, with Ce–O distances varying in the range 2.455(5)– 2.675 (3) Å. In the anion, the central Ce^{III} ion is bound to three bidentate nitrate ligands, to three hydroxide ligands and to one water molecule, with Ce-O distances in the range 2.6808 (19)-2.741 (2) Å. The H atoms of the coordinating water molecule are disordered over three positions due to its location on a threefold rotation axis. Disorder is also observed in fragments of two L-alaninate ligands, with occupancy ratios of 0.608 (14):0.392 (14) and 0.669 (8):0.331 (8), respectively, for the two sets of sites. In the crystal, the complex cations and anions assemble through O-H···O and N-H···O hydrogen bonds into a three-dimensional network with large voids of approximately 1020 Å³. The contributions of highly disordered ethanol and water solvent molecules to the diffraction data were removed with the SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown amount of these solvent molecules.

Keywords: crystal structure; cerium complex; L-alaninate ligand; SQUEEZE procedure

CCDC reference: 1421600

1. Related literature

Molecular magnets based on 3d-4f heterometallic constituents can be prepared easily by self-assembling of simple building blocks such as *d*-metal amino acid salts and lanthanide nitrates (Peristeraki et al., 2011; Yukawa et al., 2005; Igarashi et al., 2000). For an icosahedral coordination environment observed in similar compounds, see: Peristeraki et al. (2011); Zhang et al. (2004). For background to and application of the SOUEEZE procedure, see: Spek (2015).

2. Experimental

2.1. Crystal data

 $[CeNi_6(C_3H_6NO_2)_{12}]$ - $[Ce(NO_3)_3(OH)_3(H_2O)]$ $M_r = 1944.63$ Trigonal, R3 a = 14.6418 (4) Å c = 31.7767 (19) Å

2.2. Data collection

```
Bruker APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2008)
  T_{\min} = 0.420, \ T_{\max} = 0.420
```

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.066$ S = 1.026978 reflections 327 parameters 1 restraint H-atom parameters constrained V = 5899.7 (6) Å³ Z = 3Mo $K\alpha$ radiation $\mu = 2.62 \text{ mm}^{-1}$ T = 150 K $0.40 \times 0.40 \times 0.40$ mm

21829 measured reflections 6978 independent reflections 6734 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.021$

 $\Delta \rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.69 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 3493 Friedel pairs Absolute structure parameter: -0.012(11)

data reports

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots O17^i$	0.85	1.93	2.758 (3)	165
$N11 - H11B \cdot \cdot \cdot O6^{ii}$	0.92	2.38	3.158 (5)	143
$N12-H12D\cdots O5^{iii}$	0.92	2.17	3.086 (4)	174
N13-H13 B ···O2 ^{iv}	0.92	2.66	3.284 (4)	126

Symmetry codes: (i) x - 1, y, z; (ii) -y + 4, x - y + 4, z; (iii) -x + y, -x + 3, z; (iv) $-x + y - \frac{1}{3}, -x + 10/3, z + \frac{1}{3}$.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Acknowledgements

This work was partially supported by the RFBR (project 13-03-00972 A).

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5213).

References

- Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Igarashi, S., Hoshino, Y., Masuda, Y. & Yukawa, Y. (2000). Inorg. Chem. 39, 2509–2515.
- Peristeraki, T., Samios, M., Siczek, M., Lis, T. & Milios, C. J. (2011). Inorg. Chem. 50, 5175–5185.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Yukawa, Y., Aromi, G., Igarashi, S., Ribas, J., Zvyagin, S. A. & Krzystek, J. (2005). Angew. Chem. 117, 2033–2037.
- Zhang, J.-J., Xiang, S.-C., Hu, S.-M., Xia, S.-Q., Fu, R.-B., Wu, X.-T., Li, Y.-M. & Zhang, H.-S. (2004). *Polyhedron*, **23**, 2265–2272.

supporting information

Acta Cryst. (2015). E71, m183-m184 [doi:10.1107/S2056989015017132]

Crystal structure of an unknown solvate of dodecakis(μ_2 alaninato-1:2 $\kappa^2 O$:N,O)cerium(III)hexanickel(II) aquatris(hydroxido- κO)tris-(nitrato- $\kappa^2 O$,O')cerate(III)

Stanislav I. Bezzubov, Vladimir D. Doljenko, Andrei V. Churakov, Irina S. Zharinova and Yuri M. Kiselev

S1. Experimental

Crystals of the title complex were obtained in the course of several days after addition of a $Ce(NO_3)_3$ solution in a waterethanol-methanol mixture to an aquous solution of Ni^{II} *L*-alaninate.

S2. Refinement

The title complex crystallizes in a chiral space group due to the presence of optically pure *L*-alanine in the cation.

A region of electron density was treated with the SQUEEZE procedure in *PLATON* (Spek, 2015). The total potential solvent-accessible void volume is 1020.6 Å³, with an estimated electron count of 437. This accounts to approximately 12–15 disordered solvent ethanol and 6–9 water molecules. Their contributions to the total intensity data were removed. The given chemical formula and other crystal data do not take into account the amount of the unknown solvent molecules.

A part of the *L*-alaninato ligands were found to be disordered over two sets of sites with refined component ratios of 0.608 (14):0.392 (14) for the (C4—C6)/(C41—C61) fragment and 0.669 (8):0.331 (8) for the (C11—C12)/(C21—C22) fragment. Disorder was also observed for the coordinating water molecule (O3) situated on a threefold rotation axis. Owing to symmetry restraints the attached hydrogen atoms are disordered over three sites with an occupancy of one-thirds each.

Hydrogen atoms involved in hydrogen bonds (H1, H11B, H12D, and H13B) were located from difference maps and refined using a riding model, with O—H = 0.85 Å and $U_{iso}(H) = 1.5U_{eq}(O)$, N—H = 0.92 Å and $U_{iso}(H) = 1.2U_{eq}(N)$. All other hydrogen atoms were placed in calculated positions and refined using a riding model with C—H = 0.98 –1.00 Å and $U_{iso}(H) = 1.5U_{eq}(CH_3)$, $1.2U_{eq}(CH)$.

The molecular structure of the ${Ni(ala)_2}_6$ unit of the cation (ala = deprotonated *L*-alanine). Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.

The coordination polyhedron of Ce2 in the complex cation of the title compound. Displacement ellipsoids are shown at the 50% probability level. A and B indicate symmetry operators -y + 3, x - y + 4, z and -x + y, -x + 3, z, respectively.

The structure of the complex anion $[Ce(NO_3)_3(OH)_3(H_2O)]^{3-}$ in the title compound. Displacement ellipsoids are shown at the 50% probability level. Only one of the orientations of the water molecule is shown.

Hydrogen-bonding interactions (dotted lines) between the anion and cations.

$Dodecakis(\mu_2-alaninato-1:2\kappa^2O:N,O) cerium(III) hexanickel(II) aquatris(hydroxido-\kappa O) tris(nitrato-1:2\kappa^2O:N,O) cerium(III) hexanickel(II) aquatris(hydroxido-\kappa O) tris(hydroxido-ko) tris(hydroxido-ko) cerium(III) hexanickel(II) aquatris(hydroxido-ko) tris(hydroxido-ko) tris(h$

$\kappa^2 O, O')$ cerate(III)

Crystal data

$[CeNi_{6}(C_{3}H_{6}NO_{2})_{12}][Ce(NO_{3})_{3}(OH)_{3}(H_{2}O)]$ $M_{r} = 1944.63$ Trigonal, R3 Hall symbol: R 3 a = 14.6418 (4) Å c = 31.7767 (19) Å V = 5899.7 (6) Å ³ Z = 3 F(000) = 2934	$D_x = 1.642 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9898 reflections $\theta = 2.3-30.5^{\circ}$ $\mu = 2.62 \text{ mm}^{-1}$ T = 150 K Prism, violet $0.40 \times 0.40 \times 0.40 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008) $T_{min} = 0.420, T_{max} = 0.420$	21829 measured reflections 6978 independent reflections 6734 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 29.0^{\circ}, \theta_{min} = 1.7^{\circ}$ $h = -19 \rightarrow 19$ $k = -19 \rightarrow 19$ $l = -43 \rightarrow 43$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.025$	H-atom parameters constrained
$wR(F^2) = 0.066$	$w = 1/[\sigma^2(F_o^2) + (0.0434P)^2 + 4.4547P]$
S = 1.02	where $P = (F_o^2 + 2F_c^2)/3$
6978 reflections	$(\Delta/\sigma)_{\rm max} = 0.003$
327 parameters	$\Delta \rho_{\rm max} = 0.57 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.69 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 3493 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: -0.012 (11)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	V	Z	$U_{\rm iso}^*/U_{\rm eq}$	Occ. (<1)
Cel	0.6667	2.3333	-1.143417 (9)	0.03086 (6)	
Ce2	1.0000	2.0000	-1.058354 (6)	0.02110 (5)	
Ni1	1.22355 (3)	2.18294 (3)	-1.125638 (10)	0.02623 (8)	
Ni2	1.04234 (3)	2.22458 (3)	-0.991516 (11)	0.03043 (9)	
01	0.53783 (17)	2.31437 (18)	-1.08711 (7)	0.0354 (5)	
H1	0.4768	2.2597	-1.0881	0.053*	
O2	0.9922 (2)	2.4685 (3)	-1.17180 (10)	0.0583 (8)	
O3	0.6667	2.3333	-1.22069 (16)	0.0798 (17)	
Н3	0.7213	2.3777	-1.2341	0.096*	0.3333
H2	0.6121	2.2889	-1.2341	0.096*	0.3333
O5	0.83829 (19)	2.33357 (19)	-1.15778 (8)	0.0441 (5)	
O6	0.8541 (2)	2.4859 (2)	-1.17100 (9)	0.0484 (6)	
O11	0.95267 (16)	2.15480 (15)	-1.04388 (6)	0.0252 (4)	
O12	1.12234 (16)	2.02412 (17)	-1.12577 (6)	0.0268 (4)	
O13	1.15557 (16)	2.20363 (16)	-1.07328 (6)	0.0274 (4)	
O14	1.09798 (16)	2.12172 (17)	-0.99153 (6)	0.0299 (4)	
O15	1.1670 (2)	2.3264 (2)	-1.02855 (8)	0.0402 (6)	
O16	0.9167 (2)	2.1220 (2)	-0.95514 (7)	0.0446 (6)	
O17	1.32725 (16)	2.16186 (16)	-1.08770 (6)	0.0286 (4)	
O18	1.12072 (18)	2.20121 (19)	-1.16376 (7)	0.0362 (5)	
N1	0.8977 (2)	2.4307 (2)	-1.16730 (9)	0.0407 (6)	
N11	1.3169 (3)	2.3429 (2)	-1.12060 (12)	0.0541 (9)	
H11B	1.3868	2.3617	-1.1229	0.065*	

H11C	1.3012	2.3757	-1.1418	0.065*	
N12	1.2828 (2)	2.1486 (2)	-1.17775 (8)	0.0328 (5)	
H12E	1.2995	2.1995	-1.1980	0.039*	
H12D	1.3432	2.1473	-1.1708	0.039*	
N13	1.1359 (3)	2.2836 (3)	-0.93873(9)	0.0460 (7)	
H13A	1 1661	2 3558	-0.9378	0.055*	
H13B	1 0962	2,2556	-0.9148	0.055*	
N14	0.9681(2)	23129(2)	-0.99455(9)	0.0375 (6)	
H14A	0.9169	2 2909	-0.9741	0.045*	
H14R	1 0163	2 3829	-0.9899	0.045*	
C1	1.0103 1.1303(2)	1 9766 (2)	-1.15825(9)	0.0290 (5)	
C^2	1.1303(2) 1 2482(4)	1.9700(2) 1 9884(4)	-1.21822(13)	0.0290(3) 0.0582(12)	
H2A	1 2934	2 0342	-1 2409	0.087*	
H2R	1 1908	1 9234	-1 2303	0.087*	
H2C	1.1900	1.9234	-1 1002	0.087*	
C3	1.2900	2.0440(3)	-1.1992	0.037 0.0370(7)	
	1.2023 (3)	2.0449 (3)	-1 2140	0.0370(7)	
IIJA C4	1.1373	2.0378	-1.0800(4)	0.044	0 609 (14)
	1.3104 (0)	2.4640(3)	-1.0800 (4)	0.009 (3)	0.008(14)
П4А ЦИР	1.3773	2.5541	1.0934	0.104*	0.008(14)
	1.5104	2.3037	-1.0308	0.104*	0.008(14)
П4C	1.2319	2.4630	-1.0935	0.104°	0.008(14)
	1.2977 (9)	2.3741 (8)	-1.0806 (4)	0.0300 (17)	0.608 (14)
H6A	1.3546	2.3/8/	-1.061/	0.036*	0.608 (14)
C41	1.2506 (9)	2.45//(8)	-1.1104 (4)	0.053 (3)	0.392 (14)
H4IA	1.3097	2.5160	-1.1252	0.080*	0.392 (14)
H41B	1.2183	2.4858	-1.0912	0.080*	0.392 (14)
H41C	1.1980	2.4109	-1.1309	0.080*	0.392 (14)
C61	1.2894 (14)	2.3979 (13)	-1.0862 (6)	0.034 (3)	0.392 (14)
H61A	1.3514	2.4445	-1.0682	0.041*	0.392 (14)
C5	0.9200 (3)	2.3002 (2)	-1.03646 (10)	0.0339 (6)	
H5A	0.8506	2.2970	-1.0332	0.041*	
C7	0.9018 (2)	2.1977 (2)	-1.05742 (9)	0.0256 (5)	
C8	1.1977 (2)	2.2971 (2)	-1.06015 (10)	0.0327 (6)	
C9	0.9906 (3)	2.3928 (3)	-1.06485 (13)	0.0509 (9)	
H9A	1.0024	2.4586	-1.0518	0.076*	
H9B	0.9564	2.3839	-1.0922	0.076*	
H9C	1.0583	2.3956	-1.0687	0.076*	
C10	0.8608 (4)	2.0257 (3)	-0.96288 (11)	0.0478 (9)	
C11	1.2173 (4)	2.2543 (4)	-0.94147 (14)	0.0377 (12)	0.669 (8)
H11A	1.2765	2.3064	-0.9595	0.045*	0.669 (8)
C12	1.2588 (6)	2.2508 (6)	-0.89832 (19)	0.0550 (18)	0.669 (8)
H12A	1.3132	2.2308	-0.9010	0.082*	0.669 (8)
H12B	1.2009	2.1989	-0.8809	0.082*	0.669 (8)
H12C	1.2892	2.3205	-0.8852	0.082*	0.669 (8)
C21	1.1527 (10)	2.1841 (9)	-0.9212 (3)	0.041 (3)	0.331 (8)
H21A	1.2253	2.2204	-0.9089	0.049*	0.331 (8)
C22	1.0844 (12)	2.1161 (9)	-0.8863 (3)	0.056 (3)	0.331 (8)
H22A	1.1039	2.0628	-0.8794	0.084*	0.331 (8)

supporting information

H22B	1.0103	2.0810	-0.8951	0.084*	0.331 (8)
H22C	1.0940	2.1597	-0.8615	0.084*	0.331 (8)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cel	0.03464 (9)	0.03464 (9)	0.02330 (11)	0.01732 (4)	0.000	0.000
Ce2	0.02472 (7)	0.02472 (7)	0.01385 (9)	0.01236 (3)	0.000	0.000
Ni1	0.02819 (18)	0.03022 (17)	0.02059 (16)	0.01484 (14)	0.00288 (13)	0.00459 (13)
Ni2	0.0361 (2)	0.0351 (2)	0.02166 (16)	0.01905 (16)	-0.00561 (13)	-0.01041 (14)
01	0.0299 (10)	0.0360 (11)	0.0344 (11)	0.0120 (9)	0.0075 (8)	-0.0004 (9)
O2	0.0441 (15)	0.0612 (17)	0.0574 (17)	0.0173 (13)	0.0195 (13)	0.0173 (14)
O3	0.106 (3)	0.106 (3)	0.027 (2)	0.0530 (14)	0.000	0.000
05	0.0432 (12)	0.0381 (11)	0.0496 (13)	0.0192 (10)	0.0168 (10)	0.0074 (10)
O6	0.0564 (15)	0.0383 (12)	0.0498 (14)	0.0231 (12)	0.0179 (12)	0.0144 (11)
011	0.0291 (9)	0.0269 (9)	0.0205 (9)	0.0147 (8)	-0.0004 (7)	-0.0026 (7)
O12	0.0302 (10)	0.0337 (10)	0.0165 (8)	0.0160 (9)	0.0014 (7)	0.0002 (7)
O13	0.0325 (10)	0.0319 (10)	0.0203 (9)	0.0179 (8)	-0.0003 (7)	0.0001 (7)
O14	0.0341 (10)	0.0383 (11)	0.0199 (9)	0.0201 (9)	-0.0066 (8)	-0.0077 (8)
O15	0.0399 (13)	0.0391 (13)	0.0344 (12)	0.0144 (10)	-0.0044 (10)	-0.0138 (10)
O16	0.0693 (17)	0.0407 (13)	0.0265 (10)	0.0297 (13)	0.0145 (11)	0.0006 (9)
O17	0.0254 (9)	0.0325 (10)	0.0255 (9)	0.0127 (8)	0.0000 (8)	0.0033 (8)
O18	0.0357 (11)	0.0485 (13)	0.0271 (10)	0.0231 (10)	0.0071 (9)	0.0162 (9)
N1	0.0426 (14)	0.0381 (14)	0.0331 (13)	0.0139 (12)	0.0149 (11)	0.0092 (10)
N11	0.067 (2)	0.0319 (15)	0.059 (2)	0.0219 (15)	0.0316 (17)	0.0141 (14)
N12	0.0294 (12)	0.0392 (13)	0.0273 (12)	0.0154 (11)	0.0064 (9)	0.0074 (10)
N13	0.0585 (18)	0.0634 (19)	0.0288 (13)	0.0398 (16)	-0.0168 (12)	-0.0241 (13)
N14	0.0449 (15)	0.0342 (13)	0.0348 (13)	0.0209 (12)	-0.0044 (11)	-0.0103 (11)
C1	0.0288 (13)	0.0352 (14)	0.0177 (11)	0.0121 (11)	0.0011 (9)	-0.0003 (10)
C2	0.055 (2)	0.060 (2)	0.037 (2)	0.0111 (19)	0.0209 (17)	-0.0129 (17)
C3	0.0332 (14)	0.0494 (18)	0.0184 (12)	0.0131 (13)	0.0031 (10)	-0.0014 (12)
C4	0.044 (4)	0.029 (3)	0.126 (8)	0.010 (3)	0.020 (4)	-0.002 (4)
C6	0.034 (3)	0.015 (4)	0.040 (4)	0.011 (3)	-0.003 (3)	-0.006 (3)
C41	0.051 (6)	0.040 (5)	0.071 (8)	0.024 (5)	0.016 (5)	0.018 (5)
C61	0.032 (5)	0.017 (7)	0.047 (6)	0.007 (4)	0.001 (4)	0.005 (5)
C5	0.0357 (15)	0.0308 (14)	0.0352 (15)	0.0167 (12)	-0.0037 (12)	-0.0101 (12)
C7	0.0240 (12)	0.0240 (12)	0.0252 (12)	0.0094 (10)	0.0020 (9)	-0.0014 (10)
C8	0.0288 (14)	0.0334 (14)	0.0324 (14)	0.0129 (12)	-0.0075 (11)	-0.0071 (12)
C9	0.060 (2)	0.0285 (15)	0.053 (2)	0.0138 (15)	-0.0117 (17)	0.0019 (14)
C10	0.077 (3)	0.0445 (18)	0.0289 (15)	0.0355 (19)	0.0287 (16)	0.0066 (13)
C11	0.034 (2)	0.051 (3)	0.028 (2)	0.021 (2)	-0.0061 (17)	-0.019 (2)
C12	0.069 (4)	0.080 (4)	0.040 (3)	0.055 (4)	-0.032 (3)	-0.032 (3)
C21	0.061 (7)	0.045 (6)	0.034 (5)	0.040 (6)	-0.016 (5)	-0.013 (4)
C22	0.088 (9)	0.046 (6)	0.025 (5)	0.027 (6)	-0.013 (5)	-0.004 (4)

Geometric parameters (Å, °)

Ce1—O3	2.455 (5)	N12—C3	1.472 (4)
Ce1—O1 ⁱ	2.513 (2)	N12—H12E	0.9200
Ce1—O1 ⁱⁱ	2.513 (2)	N12—H12D	0.9200
Cel—O1	2.513 (2)	N13—C11	1.457 (6)
Ce1—O5 ⁱⁱ	2.552 (2)	N13—C21	1.689 (11)
Cel—O5	2.552 (2)	N13—H13A	0.9200
Ce1—O5 ⁱ	2.552 (2)	N13—H13B	0.9200
Ce1—O6 ⁱⁱ	2.675 (3)	N14—C5	1.474 (4)
Ce1—O6 ⁱ	2.675 (3)	N14—H14A	0.9200
Cel—O6	2.675 (3)	N14—H14B	0.9200
Ce2—O14 ⁱⁱⁱ	2.6808 (19)	C1—O18 ⁱⁱⁱ	1.246 (4)
Ce2—O14 ^{iv}	2.6808 (19)	C1—C3	1.532 (4)
Ce2—O14	2.6809 (19)	C2—C3	1.510 (5)
Ce2—O12	2.700 (2)	C2—H2A	0.9800
Ce2—O12 ⁱⁱⁱ	2.700 (2)	C2—H2B	0.9800
Ce2—O12 ^{iv}	2.700 (2)	C2—H2C	0.9800
Ce2—011 ⁱⁱⁱ	2.7202 (19)	С3—НЗА	1.0000
Ce2—O11	2.720 (2)	C4—C6	1.525 (11)
Ce2—O11 ^{iv}	2.720 (2)	C4—H4A	0.9800
Ce2—O13 ⁱⁱⁱ	2.741 (2)	C4—H4B	0.9800
Ce2—O13	2.741 (2)	C4—H4C	0.9800
Ce2—O13 ^{iv}	2.741 (2)	C6—C8	1.478 (12)
Ni1—013	2.038 (2)	С6—Н6А	1.0000
Ni1—012	2.039 (2)	C41—C61	1.476 (17)
Ni1—N11	2.044 (3)	C41—H41A	0.9800
Ni1—N12	2.045 (3)	C41—H41B	0.9800
Ni1—O18	2.051 (2)	C41—H41C	0.9800
Ni1—017	2.079 (2)	C61—C8	1.638 (17)
Ni2—014	2.039 (2)	C61—H61A	1.0000
Ni2—011	2.048 (2)	С5—С9	1.523 (5)
Ni2—O16	2.053 (3)	С5—С7	1.537 (4)
Ni2—015	2.054 (3)	С5—Н5А	1.0000
Ni2—N13	2.062 (3)	C7—O17 ^{iv}	1.256 (4)
Ni2—N14	2.066 (3)	С9—Н9А	0.9800
O1—H1	0.8512	С9—Н9В	0.9800
O2—N1	1.214 (4)	С9—Н9С	0.9800
O3—H3	0.8501	C10—O14 ^{iv}	1.267 (4)
O3—H2	0.8501	C10-C21 ^{iv}	1.528 (11)
O5—N1	1.278 (4)	C10-C11 ^{iv}	1.612 (6)
O6—N1	1.262 (4)	C11—C12	1.511 (7)
O11—C7	1.267 (3)	C11—C10 ⁱⁱⁱ	1.612 (6)
O12—C1	1.282 (3)	C11—H11A	1.0000
O13—C8	1.259 (4)	C12—H12A	0.9800
O14—C10 ⁱⁱⁱ	1.266 (4)	C12—H12B	0.9800
O15—C8	1.259 (4)	C12—H12C	0.9800
O16—C10	1.251 (5)	C21—C22	1.493 (18)

O17—C7 ⁱⁱⁱ	1.256 (4)	C21—C10 ⁱⁱⁱⁱ	1.528 (10)
O18—C1 ^{iv}	1.247 (4)	C21—H21A	1.0000
N11—C6	1.427 (12)	C22—H22A	0.9800
N11—C61	1.53 (2)	C22—H22B	0.9800
N11—H11B	0.9200	C22—H22C	0.9800
N11—H11C	0.9200		
O3—Ce1—O1 ⁱ	135.41 (5)	H3—O3—H2	120.0
O3—Ce1—O1 ⁱⁱ	135.41 (6)	N1	99.56 (19)
O1 ⁱ —Ce1—O1 ⁱⁱ	74.89 (8)	N1	94.10 (17)
O3—Ce1—O1	135.41 (5)	C7—O11—Ni2	114.71 (17)
Ol ⁱ —Cel—Ol	74.89 (8)	C7—O11—Ce2	144.52 (17)
O1 ⁱⁱ —Ce1—O1	74.89 (8)	Ni2—O11—Ce2	100.73 (8)
O3—Ce1—O5 ⁱⁱ	79.70 (6)	C1—O12—Ni1	114.16 (18)
O1 ⁱ —Ce1—O5 ⁱⁱ	82.30 (8)	C1—O12—Ce2	143.31 (18)
O1 ⁱⁱ —Ce1—O5 ⁱⁱ	144.27 (8)	Ni1—O12—Ce2	101.76 (8)
O1—Ce1—O5 ⁱⁱ	72.80 (8)	C8—O13—Ni1	114.99 (19)
O3—Ce1—O5	79.70 (6)	C8—O13—Ce2	144.54 (19)
Ol ⁱ —Cel—O5	72.80 (8)	Ni1—O13—Ce2	100.46 (8)
O1 ⁱⁱ —Ce1—O5	82.30 (8)	C10 ⁱⁱⁱ —O14—Ni2	113.9 (2)
O1—Ce1—O5	144.27 (8)	C10 ⁱⁱⁱ —O14—Ce2	143.8 (2)
O5 ⁱⁱ —Ce1—O5	116.87 (4)	Ni2—O14—Ce2	102.27 (8)
$O3$ — $Ce1$ — $O5^i$	79.70 (6)	C8—O15—Ni2	123.2 (2)
$O1^{i}$ —Ce1—O5 ⁱ	144.27 (8)	C10-016-Ni2	123.8 (2)
$O1^{ii}$ —Ce1—O5 ⁱ	72.80 (8)	C7 ⁱⁱⁱ —O17—Ni1	122.13 (18)
O1—Ce1—O5 ⁱ	82.30 (8)	C1 ^{iv} —O18—Ni1	123.56 (18)
O5 ⁱⁱ —Ce1—O5 ⁱ	116.87 (4)	O2—N1—O6	121.5 (3)
O5—Ce1—O5 ⁱ	116.88 (4)	O2—N1—O5	121.5 (3)
O3—Ce1—O6 ⁱⁱ	70.88 (6)	O6—N1—O5	117.0 (3)
$O1^{i}$ —Ce1—O6 ⁱⁱ	66.55 (8)	C6—N11—C61	17.5 (5)
O1 ⁱⁱ —Ce1—O6 ⁱⁱ	136.51 (8)	C6—N11—Ni1	108.1 (5)
O1—Ce1—O6 ⁱⁱ	111.86 (8)	C61—N11—Ni1	117.3 (7)
O5 ⁱⁱ —Ce1—O6 ⁱⁱ	48.87 (8)	C6—N11—H11B	110.1
O5—Ce1—O6 ⁱⁱ	68.01 (8)	C61—N11—H11B	116.5
$O5^{i}$ —Ce1—O6 ⁱⁱ	148.93 (9)	Ni1—N11—H11B	110.1
$O3$ — $Ce1$ — $O6^i$	70.88 (6)	C6—N11—H11C	110.1
$O1^{i}$ —Ce1—O6 ⁱ	136.51 (8)	C61—N11—H11C	92.7
O1 ⁱⁱ —Ce1—O6 ⁱ	111.86 (8)	Ni1—N11—H11C	110.1
O1—Ce1—O6 ⁱ	66.55 (8)	H11B—N11—H11C	108.4
O5 ⁱⁱ —Ce1—O6 ⁱ	68.01 (8)	C3—N12—Ni1	108.54 (18)
O5—Ce1—O6 ⁱ	148.93 (9)	C3—N12—H12E	110.0
$O5^{i}$ —Ce1—O6 ⁱ	48.87 (8)	Ni1—N12—H12E	110.0
O6 ⁱⁱ —Ce1—O6 ⁱ	109.82 (6)	C3—N12—H12D	110.0
O3—Ce1—O6	70.88 (6)	Ni1—N12—H12D	110.0
Ol ⁱ —Cel—O6	111.86 (8)	H12E—N12—H12D	108.4
O1 ⁱⁱ —Ce1—O6	66.55 (8)	C11—N13—C21	43.3 (5)
O1—Ce1—O6	136.51 (8)	C11—N13—Ni2	107.3 (2)
O5 ⁱⁱ —Ce1—O6	148.93 (9)	C21—N13—Ni2	105.0 (4)

O5—Ce1—O6	48.87 (8)	C11—N13—H13A	110.3
O5 ⁱ —Ce1—O6	68.01 (8)	C21—N13—H13A	141.9
O6 ⁱⁱ —Ce1—O6	109.82 (6)	Ni2—N13—H13A	110.3
O6 ⁱ —Ce1—O6	109.82 (6)	C11—N13—H13B	110.3
$O14^{iii}$ —Ce2—O14 ^{iv}	63.82 (8)	C21—N13—H13B	71.1
O14 ⁱⁱⁱ —Ce2—O14	63.82 (8)	Ni2—N13—H13B	110.3
O14 ^{iv} —Ce2—O14	63.82 (8)	H13A—N13—H13B	108.5
O14 ⁱⁱⁱ —Ce2—O12	116.32 (6)	C5—N14—Ni2	109.29 (19)
O14 ^{iv} —Ce2—O12	179.85 (7)	C5—N14—H14A	109.8
O14—Ce2—O12	116.23 (6)	Ni2—N14—H14A	109.8
O14 ⁱⁱⁱ —Ce2—O12 ⁱⁱⁱ	116.23 (6)	C5—N14—H14B	109.8
014^{iv} —Ce2— 012^{iii}	116.32 (6)	Ni2—N14—H14B	109.8
014 —Ce2— 012^{iii}	179.85 (9)	H14A—N14—H14B	108.3
$012 - Ce^2 - 012^{iii}$	63.62 (7)	$O18^{iii}$ — $C1$ — $O12$	125.0 (3)
0.14^{iii} —Ce2— 0.12^{iv}	179.85 (7)	$O18^{iii}$ — $C1$ — $C3$	117.4 (3)
014^{iv} —Ce2—012 ^{iv}	116.23 (6)	012 - C1 - C3	117.5 (3)
O14—Ce2—O12 ^{iv}	116.33 (6)	C3 - C2 - H2A	109.5
$012 - Ce^2 - 012^{iv}$	63 62 (7)	C3 - C2 - H2B	109.5
012^{iii} Ce2 012^{iv}	63.62(7)	$H^2A - C^2 - H^2B$	109.5
012^{iii} Ce2 012^{iii}	65 59 (6)	$C_3 - C_2 - H_2C$	109.5
014^{iv} —Ce2—011 ⁱⁱⁱ	117 85 (6)	$H^2A - C^2 - H^2C$	109.5
014 —Ce2— 011^{iii}	62,89 (6)	H2B-C2-H2C	109.5
$012 - Ce^2 - 011^{iii}$	62.27 (6)	N12 - C3 - C2	113.6 (3)
012^{iii} Ce2 011^{iii}	116 99 (6)	N12 - C3 - C1	110.5(2)
012^{iv} Ce2 011	114 45 (6)	$C^{2} - C^{3} - C^{1}$	110.3(2) 111.8(3)
012^{iii} Ce2 011	117.85 (6)	N12-C3-H3A	106.9
014^{iv} —Ce2—011	62,89 (6)	$C^2 - C^3 - H^3A$	106.9
014—Ce2—O11	65 59 (6)	C1 - C3 - H3A	106.9
$012 - Ce^2 - 011$	116 99 (6)	C6-C4-H4A	109.5
012^{iii} —Ce2—011	114 44 (6)	C6-C4-H4B	109.5
012^{iv} Ce2 011	62 27 (6)	H4A - C4 - H4B	109.5
011^{iii} —Ce2—011	117.20(2)	C6-C4-H4C	109.5
014^{iii} Ce2 011	62 89 (6)	H4A - C4 - H4C	109.5
014^{iv} Ce2 011	65 59 (6)	H4B - C4 - H4C	109.5
014 —Ce2— 011^{iv}	117 85 (6)	N11-C6-C8	105.3 115.2(7)
$012-Ce^2-011^{iv}$	114 45 (6)	N11-C6-C4	113.2(7) 114 2(8)
012^{iii} Ce2 011^{iv}	62 27 (6)	C8 - C6 - C4	110.6(7)
012^{iv} Ce2 011	116.99 (6)	N11-C6-H6A	105.3
011^{iii} Ce2 011^{iv}	117 20 (2)	C8-C6-H6A	105.3
$011 - Ce^2 - 011^{iv}$	117.20(2) 117.20(2)	C4-C6-H6A	105.3
014^{iii} Ce2 011	62 38 (6)	C61-C41-H41A	109.5
014^{iv} Ce2 013^{iii}	117 36 (6)	C61-C41-H41B	109.5
$014 - Ce^2 - 013^{iii}$	114 53 (6)	H41A - C41 - H41B	109.5
$012 - Ce^2 - 013^{iii}$	62 76 (6)	C61-C41-H41C	109.5
012^{iii} Ce2 013^{iii}	65 43 (6)	H41A - C41 - H41C	109.5
012^{iv} Ce2 013	117 50 (6)	H41B-C41-H41C	109.5
011^{iii} —Ce2—013 ⁱⁱⁱ	62 76 (6)	C41-C61-N11	102.8(12)
$011 - Ce^2 - 013^{iii}$	179 74 (7)	C41 - C61 - C8	102.0(12) 1144(12)
011 002 013	1/20/7 (/)		117.7 (14)

O11 ^{iv} —Ce2—O13 ⁱⁱⁱ	62.97 (6)	N11—C61—C8	101.6 (9)
O14 ⁱⁱⁱ —Ce2—O13	117.36 (6)	C41—C61—H61A	112.4
O14 ^{iv} —Ce2—O13	114.53 (6)	N11—C61—H61A	112.4
O14—Ce2—O13	62.38 (6)	C8—C61—H61A	112.4
O12—Ce2—O13	65.43 (6)	N14—C5—C9	110.7 (3)
O12 ⁱⁱⁱ —Ce2—O13	117.50 (6)	N14—C5—C7	110.7 (3)
O12 ^{iv} —Ce2—O13	62.76 (6)	C9—C5—C7	108.8 (3)
O11 ⁱⁱⁱ —Ce2—O13	62.97 (6)	N14—C5—H5A	108.9
O11—Ce2—O13	62.76 (6)	С9—С5—Н5А	108.9
O11 ^{iv} —Ce2—O13	179.74 (7)	С7—С5—Н5А	108.9
O13 ⁱⁱⁱ —Ce2—O13	117.07 (2)	O17 ^{iv} —C7—O11	125.7 (3)
O14 ⁱⁱⁱ —Ce2—O13 ^{iv}	114.53 (6)	O17 ^{iv} —C7—C5	115.7 (2)
O14 ^{iv} —Ce2—O13 ^{iv}	62.38 (6)	O11—C7—C5	118.6 (2)
O14—Ce2—O13 ^{iv}	117.36 (6)	O13—C8—O15	124.8 (3)
O12—Ce2—O13 ^{iv}	117.50 (6)	O13—C8—C6	116.3 (5)
O12 ⁱⁱⁱ —Ce2—O13 ^{iv}	62.76 (6)	O15—C8—C6	118.4 (5)
O12 ^{iv} —Ce2—O13 ^{iv}	65.43 (6)	O13—C8—C61	123.2 (7)
O11 ⁱⁱⁱ —Ce2—O13 ^{iv}	179.74 (7)	O15—C8—C61	111.6 (7)
O11—Ce2—O13 ^{iv}	62.97 (6)	C6—C8—C61	15.9 (6)
O11 ^{iv} —Ce2—O13 ^{iv}	62.76 (6)	С5—С9—Н9А	109.5
O13 ⁱⁱⁱ —Ce2—O13 ^{iv}	117.07 (2)	С5—С9—Н9В	109.5
O13—Ce2—O13 ^{iv}	117.07 (2)	H9A—C9—H9B	109.5
O13—Ni1—O12	92.34 (8)	С5—С9—Н9С	109.5
O13—Ni1—N11	82.07 (11)	Н9А—С9—Н9С	109.5
O12—Ni1—N11	174.40 (11)	H9B—C9—H9C	109.5
O13—Ni1—N12	175.09 (10)	O16-C10-O14 ^{iv}	125.5 (3)
O12—Ni1—N12	82.76 (10)	O16-C10-C21 ^{iv}	107.9 (4)
N11—Ni1—N12	102.83 (12)	O14 ^{iv} —C10—C21 ^{iv}	117.7 (5)
O13—Ni1—O18	91.03 (9)	O16-C10-C11 ^{iv}	117.9 (3)
O12-Ni1-O18	89.15 (9)	$O14^{iv}$ — $C10$ — $C11^{iv}$	115.5 (4)
N11—Ni1—O18	90.61 (15)	$C21^{iv}$ — $C10$ — $C11^{iv}$	44.1 (5)
N12—Ni1—O18	89.03 (10)	N13—C11—C12	111.0 (4)
O13—Ni1—O17	89.77 (8)	N13—C11—C10 ⁱⁱⁱ	107.6 (3)
O12—Ni1—O17	90.01 (8)	C12-C11-C10 ⁱⁱⁱ	109.7 (5)
N11—Ni1—O17	90.31 (14)	N13—C11—H11A	109.5
N12—Ni1—O17	90.11 (10)	C12—C11—H11A	109.5
O18—Ni1—O17	178.87 (10)	C10 ⁱⁱⁱ —C11—H11A	109.5
O14—Ni2—O11	91.41 (8)	C11—C12—H12A	109.5
O14—Ni2—O16	90.15 (10)	C11—C12—H12B	109.5
O11—Ni2—O16	88.63 (10)	H12A—C12—H12B	109.5
O14—Ni2—O15	89.88 (10)	C11—C12—H12C	109.5
O11—Ni2—O15	90.69 (9)	H12A—C12—H12C	109.5
O16—Ni2—O15	179.32 (11)	H12B—C12—H12C	109.5
O14—Ni2—N13	83.28 (10)	C22—C21—C10 ⁱⁱⁱ	122.7 (9)
O11—Ni2—N13	174.65 (11)	C22—C21—N13	118.9 (9)
O16—Ni2—N13	90.76 (13)	C10 ⁱⁱⁱ —C21—N13	100.7 (6)
O15—Ni2—N13	89.92 (12)	C22—C21—H21A	104.2
O14—Ni2—N14	172.61 (10)	C10 ⁱⁱⁱ —C21—H21A	104.2

O11—Ni2—N1482.40 (10)N13—C21—H21A104.2O16—Ni2—N1485.68 (12)C21—C22—H22A109.5O15—Ni2—N1494.21 (12)C21—C22—H22B109.5N13—Ni2—N14102.85 (12)H22A—C22—H22B109.5					
O16—Ni2—N1485.68 (12)C21—C22—H22A109.5O15—Ni2—N1494.21 (12)C21—C22—H22B109.5N13—Ni2—N14102.85 (12)H22A—C22—H22B109.5	—Ni2—N14	82.40 (10)	N13—C21—H21A	104.2	
O15—Ni2—N1494.21 (12)C21—C22—H22B109.5N13—Ni2—N14102.85 (12)H22A—C22—H22B109.5	—Ni2—N14	85.68 (12)	C21—C22—H22A	109.5	
N13—Ni2—N14 102.85 (12) H22A—C22—H22B 109.5	—Ni2—N14	94.21 (12)	C21—C22—H22B	109.5	
	—Ni2—N14	102.85 (12)	H22A—C22—H22B	109.5	
Ce1—O1—H1 117.0 C21—C22—H22C 109.5		117.0	C21—C22—H22C	109.5	
Ce1—O3—H3 120.0 H22A—C22—H22C 109.5	—О3—Н3	120.0	H22A—C22—H22C	109.5	
Ce1—O3—H2 120.0 H22B—C22—H22C 109.5	—О3—Н2	120.0	H22B—C22—H22C	109.5	

Symmetry codes: (i) -y+3, x-y+4, z; (ii) -x+y-1, -x+3, z; (iii) -x+y, -x+3, z; (iv) -y+3, x-y+3, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
01—H1…O17 ^v	0.85	1.93	2.758 (3)	165
N11—H11 <i>B</i> ···O6 ^{vi}	0.92	2.38	3.158 (5)	143
N12—H12D····O5 ⁱⁱⁱ	0.92	2.17	3.086 (4)	174
N13—H13 <i>B</i> ···O2 ^{vii}	0.92	2.66	3.284 (4)	126

Symmetry codes: (iii) -*x*+*y*, -*x*+3, *z*; (v) *x*-1, *y*, *z*; (vi) -*y*+4, *x*-*y*+4, *z*; (vii) -*x*+*y*-1/3, -*x*+10/3, *z*+1/3.