

open 👌 access

Crystal structure of dichlorido[2-(diphenylphosphanyl)-3,4,5,6-tetrafluorobenzene-1-thiolato- $\kappa^2 P$,S]gold(III)

Peter W. R. Corfield^a* and Mary Bailey^b

^aDepartment of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA, and ^bDepartment of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA. *Correspondence e-mail: pcorfield@fordham.edu

Received 25 August 2015; accepted 7 September 2015

Edited by M. Weil, Vienna University of Technology, Austria

The title compound, $[Au(C_{18}H_{10}F_4PS)Cl_2]$, crystallizes as neutral molecules, with the Au^{III} atom coordinated by two Cl atoms and by the P and S atoms of the bidentate phosphanyl thiolate ligand, in a slightly distorted squareplanar environment. The molecules are linked into centrosymmetric dimers via long axial Au-Cl bonds of 3.393 (4) Å. This axial Au-Cl distance is longer than is usually seen, although one other example has been given. Dimer formation may explain the unexpectedly low solubility of the compound in common polar solvents. There is also a separate intermolecular Au-F contact of 3.561 (6) Å, but this distance seems too long to be regarded as a bond. Two putative C-H...F hydrogen bonds appear to link the dimers into sheets parallel to (110). There is a short intermolecular $F \cdots F$ contact of 2.695 (10) Å between two dimers related by the twofold axis.

Keywords: crystal structure; mixed ligand; gold complex.

CCDC reference: 1422931

1. Related literature

For synthetic details, see: Eller (1971); Eller & Meek (1970). Hollis & Lippard (1983) describe a similarly long axial Au-Cl bond in a mixed-valence gold compound, although other axial Au-Cl bonds in the literature are in the 3.0–3.1 Å range, as in Elder & Watkins (1986).

2.1. Crystal data

[Au($C_{18}H_{10}F_4PS$)Cl₂] $M_r = 633.16$ Monoclinic, C2/c a = 18.90 (2) Å b = 8.388 (12) Å c = 24.15 (3) Å $\beta = 100.75$ (3)°

2.2. Data collection

Picker 4-circle diffractometer Absorption correction: gaussian (Busing & Levy, 1957) $T_{min} = 0.384, T_{max} = 0.442$ 4262 measured reflections 4142 independent reflections

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.032$

 $wR(F^2) = 0.086$

4142 reflections

S = 1.03

220 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 1.00 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.87 \ {\rm e} \ {\rm \AA}^{-3}$

V = 3761 (8) Å³

Mo $K\alpha$ radiation

 $0.22 \times 0.16 \times 0.13 \text{ mm}$

3209 reflections with $I > 2\sigma(I)$

intensity decay: -1.0(3)

18 standard reflections every 500

 $\mu = 8.15 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int}=0.025$

reflections

Z = 8

Table 1Selected geometric parameters (Å, °).

Au-S	2.273 (3)	Au-Cl2	2.337 (3)
Au-P	2.258 (3)	Au-Cl1	2.305 (3)
S-Au-P	90.22 (10)	Cl2-Au-Cl1	93.88 (11)
S-Au-Cl2	87.51 (10)	S-Au-Cl2 ⁱ	88.12 (7)
P-Au-Cl2	177.69 (6)	P-Au-Cl2 ⁱ	90.45 (9)
S-Au-Cl1	176.59 (7)	Cl2-Au-Cl2 ⁱ	89.91 (9)
P-Au-Cl1	88.36 (10)	Cl1-Au-Cl2 ⁱ	94.99 (7)

Symmetry code: (i) -x, -y, -z.

data reports

Table 2	
Hydrogen-bond geometry (Å, $^{\circ}$).	

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C12-H12\cdots F3^{ii}$	0.93	2.60	3.444 (7)	151
$C18{-}H18{\cdot}{\cdot}{\cdot}F4^{iii}$	0.93	2.50	3.082 (7)	121
Summatry and as (ii)		1 1		

Symmetry codes: (ii) x, y - 1, z; (iii) $x + \frac{1}{2}, y - \frac{1}{2}, z$.

Data collection: Corfield (1972); cell refinement: Corfield (1972); data reduction: Corfield *et al.* (1973); program(s) used to solve structure: Corfield (1972); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996); software used to prepare material for publication: *SHELXL2014*.

Acknowledgements

We are grateful for the provision of a crystalline sample by Gary P. Eller and Devon W. Meek, as well as support from the National Science Foundation through equipment grant GP8534 awarded to the Ohio State University where the experimental work was carried out.

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5209).

References

Burnett, M. N. & Johnson, C. K. (1996). *ORTEPIII*. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Busing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 180-182.

- Corfield, P. W. R. (1972). Local versions of standard programs, written at Ohio State University.
- Corfield, P. W. R., Dabrowiak, J. C. & Gore, E. S. (1973). *Inorg. Chem.* 12, 1734–1740.
- Elder, R. G. & Watkins, J. W. II (1986). Inorg. Chem. 25, 223-226.
- Eller, P. G. (1971). PhD thesis, The Ohio State University, Columbus, Ohio.
- Eller, P. G. & Meek, D. W. (1970). J. Organomet. Chem. 22, 631-636.
- Hollis, L. S. & Lippard, S. J. (1983). J. Am. Chem. Soc. 105, 4293-4299.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

supporting information

Acta Cryst. (2015). E71, m181-m182 [doi:10.1107/S2056989015016758]

Crystal structure of dichlorido[2-(diphenylphosphanyl)-3,4,5,6-tetrafluorobenzene-1-thiolato- $\kappa^2 P,S$]gold(III)

Peter W. R. Corfield and Mary Bailey

S1. Synthesis and crystallization

The preparation of the compound is described by Eller (1971), and synthesis of the then novel ligand is given in Eller & Meek (1970).

S2. Refinement

To reduce the number of parameters varied, the phenyl groups C16—C21 and C22—C27 were constrained as rigid hexagons, with C—C distances of 1.385 Å. Aromatic H atoms were placed geometrically, with their U_{eq} values set 1.2 times the U_{iso} of their bonded C atoms.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Figure 2

Packing of the title complex, viewed along a direction near to the *a* axis. The centrosymmetric dimers are shown, as well as the proximity of F3(1,y - 1,z) to a sixth coordination site for the gold atom. Long Au—Cl bonds are gived as dashed lines.

Dichlorido[2-(diphenylphosphanyl)-3,4,5,6-tetrafluorobenzene-1-thiolato- $\kappa^2 P$,S]gold(III)

Crystal data	
$\begin{bmatrix} Au(C_{18}H_{10}F_4PS)Cl_2 \end{bmatrix} \\ M_r = 633.16 \\ Monoclinic, C2/c \\ a = 18.90 (2) Å \\ b = 8.388 (12) Å \\ c = 24.15 (3) Å \\ \beta = 100.75 (3)^{\circ} \\ V = 3761 (8) Å^3 \\ Z = 8 \\ F(000) = 2384 \\ \end{bmatrix}$	$\begin{split} D_{\rm x} &= 2.236 \ {\rm Mg} \ {\rm m}^{-3} \\ D_{\rm m} &= 2.181 \ (3) \ {\rm Mg} \ {\rm m}^{-3} \\ D_{\rm m} \ {\rm measured} \ {\rm by} \ {\rm flotation} \ {\rm in} \ {\rm carbon} \\ {\rm tetrachloride/bromoforom} \ {\rm mixture.} \ {\rm Discrepancy} \\ {\rm may} \ {\rm be} \ {\rm due} \ {\rm to} \ {\rm an} \ {\rm uncalibrated} \ {\rm pycnometer.} \\ {\rm Mo} \ {\it Ka} \ {\rm radiation}, \ {\it \lambda} &= 0.7107 \ {\rm \AA} \\ {\rm Cell} \ {\rm parameters} \ {\rm from} \ 24 \ {\rm reflections} \\ {\it \theta} &= 4.2 - 25.1^{\circ} \\ {\it \mu} &= 8.15 \ {\rm mm}^{-1} \\ T &= 298 \ {\rm K} \\ {\rm Irregular, \ red} \\ 0.22 \times 0.16 \times 0.13 \ {\rm mm} \end{split}$
Data collection	
Picker 4-circle diffractometer Radiation source: sealed X-ray tube Oriented graphite 200 reflection monochromator $\theta/2\theta$ scans Absorption correction: gaussian (Busing & Levy, 1957) $T_{min} = 0.384, T_{max} = 0.442$ 4262 measured reflections	4142 independent reflections 3209 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.5^{\circ}$ $h = 0 \rightarrow 24$ $k = 0 \rightarrow 9$ $l = -31 \rightarrow 30$ 18 standard reflections every 500 reflections intensity decay: -1.0 (3)
4262 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.086$	neighbouring sites
S = 1.02	H-atom parameters constrained
4142 reflections	$w = 1/[\sigma^2(F_o^2)]$
220 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: heavy-atom method	$\Delta \rho_{\rm max} = 1.00 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.87 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. Data reduction followed procedures in Corfield *et al.* (1973), with programs written by Corfield and by Graeme Gainsford.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. To reduce the number of parameters varied, the phenyl groups C16—C21 and C22—C27 were constrained as rigid hexagons, with C—C distances of 1.385 Å. U_{eq} values for the aromatic H atoms were set 1.2 times the U_{iso} of their bonded C atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Au	0.03240 (2)	0.02779 (3)	0.08580 (2)	0.03238 (9)	
Cl1	0.14260 (10)	-0.0955 (2)	0.09200 (9)	0.0544 (5)	
Cl2	-0.03221 (10)	-0.1909 (2)	0.04280 (8)	0.0503 (4)	
S	-0.07524 (9)	0.1492 (2)	0.08537 (8)	0.0438 (4)	
Р	0.09063 (8)	0.2433 (2)	0.12802 (7)	0.0309 (3)	
F2	0.1031 (2)	0.5694 (5)	0.1812 (2)	0.0572 (12)	
F3	-0.0040 (3)	0.7682 (6)	0.1937 (2)	0.0681 (13)	
F4	-0.1413 (3)	0.6750 (6)	0.1616 (2)	0.0757 (15)	
F5	-0.1734 (2)	0.3959 (6)	0.1090 (2)	0.0622 (12)	
C1	0.0205 (3)	0.3780 (8)	0.1371 (3)	0.0343 (14)	
C2	0.0351 (4)	0.5243 (9)	0.1633 (3)	0.0431 (16)	
C3	-0.0190 (4)	0.6241 (9)	0.1708 (3)	0.0479 (18)	
C4	-0.0886 (4)	0.5795 (9)	0.1527 (3)	0.0488 (18)	
C5	-0.1042 (3)	0.4341 (10)	0.1269 (3)	0.0461 (18)	
C6	-0.0507 (3)	0.3312 (8)	0.1186 (3)	0.0363 (14)	
C7	0.1393 (2)	0.1964 (5)	0.19702 (13)	0.0336 (14)	
C8	0.2018 (2)	0.2774 (5)	0.21989 (18)	0.0490 (18)	
H8	0.2215	0.3507	0.1981	0.059*	
C9	0.2350 (2)	0.2494 (6)	0.27517 (19)	0.058 (2)	
H9	0.2769	0.3038	0.2905	0.070*	
C10	0.2057 (3)	0.1403 (6)	0.30757 (14)	0.055 (2)	
H10	0.2279	0.1215	0.3447	0.066*	
C11	0.1432 (3)	0.0592 (6)	0.28470 (17)	0.060 (2)	
H11	0.1235	-0.0140	0.3065	0.072*	

C12	0.1100 (2)	0.0873 (5)	0.22942 (18)	0.0462 (17)
H12	0.0681	0.0329	0.2141	0.055*
C13	0.1473 (2)	0.3410 (5)	0.08744 (17)	0.0352 (14)
C14	0.12320 (19)	0.4760 (5)	0.05659 (18)	0.0400 (15)
H14	0.0771	0.5146	0.0566	0.048*
C15	0.1678 (3)	0.5534 (4)	0.02581 (18)	0.0487 (18)
H15	0.1516	0.6441	0.0051	0.058*
C16	0.2365 (2)	0.4959 (6)	0.0259 (2)	0.051 (2)
H16	0.2664	0.5480	0.0052	0.062*
C17	0.26061 (18)	0.3610 (6)	0.0567 (2)	0.0527 (19)
H17	0.3068	0.3224	0.0568	0.063*
C18	0.2160 (2)	0.2835 (5)	0.08750 (19)	0.0433 (16)
H18	0.2323	0.1929	0.1082	0.052*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au	0.03286 (13)	0.03025 (15)	0.03249 (12)	-0.00327 (11)	0.00210 (8)	-0.00023 (11)
C11	0.0446 (10)	0.0441 (11)	0.0717 (13)	0.0115 (8)	0.0038 (9)	-0.0094 (9)
Cl2	0.0572 (11)	0.0408 (10)	0.0499 (10)	-0.0166 (8)	0.0022 (8)	-0.0058 (8)
S	0.0279 (8)	0.0472 (11)	0.0541 (10)	-0.0065 (7)	0.0017 (7)	-0.0028 (8)
Р	0.0258 (7)	0.0295 (9)	0.0361 (8)	-0.0005 (6)	0.0022 (6)	0.0001 (6)
F2	0.048 (2)	0.046 (3)	0.074 (3)	-0.006 (2)	0.000 (2)	-0.019 (2)
F3	0.082 (3)	0.051 (3)	0.071 (3)	0.010 (3)	0.012 (3)	-0.023 (2)
F4	0.066 (3)	0.073 (4)	0.088 (4)	0.037 (3)	0.015 (3)	-0.013 (3)
F5	0.034 (2)	0.072 (3)	0.080 (3)	0.009 (2)	0.008 (2)	0.005 (3)
C1	0.030 (3)	0.031 (4)	0.041 (3)	0.004 (3)	0.005 (3)	0.001 (3)
C2	0.047 (4)	0.038 (4)	0.043 (4)	0.005 (3)	0.004 (3)	-0.008(3)
C3	0.060 (5)	0.034 (4)	0.049 (4)	0.013 (3)	0.007 (4)	-0.003 (3)
C4	0.051 (4)	0.045 (5)	0.052 (4)	0.021 (4)	0.015 (3)	0.002 (3)
C5	0.025 (3)	0.065 (5)	0.048 (4)	0.010 (3)	0.005 (3)	0.013 (4)
C6	0.036 (3)	0.041 (4)	0.032 (3)	0.003 (3)	0.005 (3)	0.007 (3)
C7	0.037 (3)	0.031 (4)	0.031 (3)	0.004 (3)	0.001 (3)	0.001 (3)
C8	0.047 (4)	0.048 (5)	0.046 (4)	-0.011 (3)	-0.006 (3)	0.006 (3)
C9	0.050 (4)	0.065 (6)	0.051 (4)	-0.001 (4)	-0.012 (4)	-0.011 (4)
C10	0.068 (5)	0.054 (5)	0.040 (4)	0.016 (4)	0.001 (4)	-0.002 (4)
C11	0.089 (6)	0.053 (5)	0.039 (4)	-0.003 (5)	0.014 (4)	0.012 (3)
C12	0.054 (4)	0.040 (4)	0.044 (4)	-0.008 (3)	0.008 (3)	0.000 (3)
C13	0.031 (3)	0.036 (4)	0.038 (3)	0.000 (3)	0.003 (3)	0.000 (3)
C14	0.042 (4)	0.039 (4)	0.040 (3)	-0.001 (3)	0.009 (3)	0.002 (3)
C15	0.070 (5)	0.031 (4)	0.047 (4)	-0.007 (4)	0.017 (4)	0.004 (3)
C16	0.059 (5)	0.051 (5)	0.047 (4)	-0.017 (4)	0.017 (4)	-0.003 (3)
C17	0.041 (4)	0.062 (5)	0.057 (5)	-0.006 (4)	0.016 (3)	-0.002 (4)
C18	0.034 (3)	0.045 (4)	0.051 (4)	0.001 (3)	0.006 (3)	-0.001 (3)

Geometric parameters (Å, °)

Au—S	2.273 (3)	C7—C12	1.3850
Au—P	2.258 (3)	C8—C9	1.3850
Au—Cl2	2.337 (3)	C8—H8	0.9300
Au—Cl1	2.305 (3)	C9—C10	1.3850
Au—Cl2 ⁱ	3.393 (4)	С9—Н9	0.9300
Au—F3 ⁱⁱ	3.560 (6)	C10—C11	1.3850
S—C6	1.747 (7)	C10—H10	0.9300
P—C1	1.787 (6)	C11—C12	1.3850
Р—С7	1.791 (4)	C11—H11	0.9300
P—C13	1.781 (4)	C12—H12	0.9300
F2—C2	1.331 (8)	C13—C14	1.3850
F3—C3	1.337 (9)	C13—C18	1.3850
F4—C4	1.328 (8)	C14—C15	1.3850
F5—C5	1.338 (8)	C14—H14	0.9300
C1—C6	1.393 (8)	C15—C16	1.3850
C1—C2	1.385 (10)	C15—H15	0.9300
C2—C3	1.360 (10)	C16—C17	1.3850
C3—C4	1.358 (10)	C16—H16	0.9300
C4—C5	1.375 (11)	C17—C18	1.3850
C5—C6	1.372 (9)	C17—H17	0.9300
C7—C8	1.3850	C18—H18	0.9300
S—Au—P	90.22 (10)	C5—C6—S	118.5 (5)
S—Au—Cl2	87.51 (10)	C1—C6—S	123.4 (5)
P—Au—Cl2	177.69 (6)	C8—C7—C12	120.0
S—Au—Cl1	176.59 (7)	C8—C7—P	121.0 (3)
P—Au—Cl1	88.36 (10)	С12—С7—Р	118.7 (3)
Cl2—Au—Cl1	93.88 (11)	C7—C8—C9	120.0
S—Au—Cl2 ⁱ	88.12 (7)	С7—С8—Н8	120.0
P—Au—Cl2 ⁱ	90.45 (9)	С9—С8—Н8	120.0
Cl2—Au—Cl2 ⁱ	89.91 (9)	C10—C9—C8	120.0
Cl1—Au—Cl2 ⁱ	94.99 (7)	С10—С9—Н9	120.0
S—Au—F3 ⁱⁱ	88.98 (11)	С8—С9—Н9	120.0
P—Au—F3 ⁱⁱ	107.67 (12)	C11—C10—C9	120.0
Cl2—Au—F3 ⁱⁱ	71.87 (12)	C11-C10-H10	120.0
Cl1—Au—F3 ⁱⁱ	88.50 (11)	C9—C10—H10	120.0
Cl2 ⁱ —Au—F3 ⁱⁱ	161.66 (8)	C10-C11-C12	120.0
C6—S—Au	103.2 (2)	C10-C11-H11	120.0
C1—P—C7	106.8 (3)	C12—C11—H11	120.0
C1—P—C13	108.2 (3)	C11—C12—C7	120.0
C7—P—C13	110.8 (2)	C11—C12—H12	120.0
C1—P—Au	104.6 (2)	C7—C12—H12	120.0
C7—P—Au	111.53 (17)	C14—C13—C18	120.0
C13—P—Au	114.36 (18)	C14—C13—P	120.0 (2)
C6—C1—C2	119.7 (6)	C18—C13—P	120.0 (2)
C6—C1—P	118.5 (5)	C15—C14—C13	120.0

C2—C1—P	121.8 (5)	C15—C14—H14	120.0
F2—C2—C3	119.1 (6)	C13—C14—H14	120.0
F2—C2—C1	119.9 (6)	C16—C15—C14	120.0
C3—C2—C1	121.0 (7)	C16—C15—H15	120.0
C4—C3—C2	119.7 (7)	C14—C15—H15	120.0
C4—C3—F3	120.0 (7)	C17—C16—C15	120.0
C2—C3—F3	120.3 (7)	C17—C16—H16	120.0
F4—C4—C3	119.5 (7)	C15—C16—H16	120.0
F4—C4—C5	120.2 (7)	C16—C17—C18	120.0
C3—C4—C5	120.2 (6)	С16—С17—Н17	120.0
C6—C5—F5	120.3 (7)	C18—C17—H17	120.0
C6—C5—C4	121.4 (6)	C17—C18—C13	120.0
F5—C5—C4	118.3 (6)	C17—C18—H18	120.0
C5—C6—C1	118.0 (6)	C13—C18—H18	120.0

Symmetry codes: (i) -x, -y, -z; (ii) x, y-1, z.

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C12—H12…F3 ⁱⁱ	0.93	2.60	3.444 (7)	151
C18—H18…F4 ⁱⁱⁱ	0.93	2.50	3.082 (7)	121

Symmetry codes: (ii) *x*, *y*–1, *z*; (iii) *x*+1/2, *y*–1/2, *z*.