

Received 10 September 2015 Accepted 19 September 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; 3-aminomethyl diacetone-D-allose; imino sugar precursor; sugar amino acid precursor; hydrogen bonding.

CCDC reference: 1425954 **Supporting information**: this article has supporting information at journals.iucr.org/e

Crystal structure of 3-*C*-(*N*-benzyloxycarbonyl)aminomethyl-3-deoxy-1,2:5,6-di-*O*-isopropylidene-*α*-D-allofuranose

Vitalijs Rjabovs,^a Dmitrijs Stepanovs^{b,a}* and Maris Turks^a*

^aInstitute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena 3/7, Riga, LV-1048, Latvia, and ^bLatvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia. *Correspondence e-mail: d_stepanovs@osi.lv, maris_turks@ktf.rtu.lv

The title compound, $C_{21}H_{29}NO_7$ (1) [systematic name: benzyl ({(3aR,5S,6R,6aR)-5-[(R)-2,2-dimethyl-1,3-dioxolan-4-yl]-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl}methyl)carbamate], consists of a substituted 2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxolane skeleton. The furanose ring adopts an envelope conformation close to C_3 -exo, where the C atom substituted by the benzyl carbamate group is the flap. The fused dioxolane ring also adopts an envelope conformation, as does the terminal dioxolane ring, with in each case an O atom as the flap. In the crystal, molecules are linked by N-H···O and C-H···O hydrogen bonds, forming chains propagating along the *b*-axis direction.

1. Chemical context

The title compound, 3-*C*-(*N*-benzyloxycarbonyl)aminomethyl-3-deoxy-1,2:5,6-di-*O*-isopropylidene- α -D-allofuranose (1), was obtained as an intermediate in the syntheses of carbohydrate-based non-natural amino acids, so called sugar amino acids (Rjabovs *et al.*, 2015), by hydrogenation and carbamate protection of either nitro (Lugiņina *et al.*, 2013) or azido (Filichev & Pedersen, 2001; Rjabova *et al.*, 2012) precursors (Fig. 1).

The synthesis of sugar amino acids and their properties and applications have been reported on by Rjabovs *et al.* (2015), and reviewed by Rjabovs & Turks (2013) and Risseeuw *et al.* (2013). The title compound can be used as a precursor for the syntheses of imino sugars and 10-aza-*C*-nucleosides (Filichev & Pedersen, 2001). The syntheses and biological properties of imino sugars have been reviewed by López *et al.* (2012), while the syntheses and biological properties of aza-nucleosides have been reported on by Romeo *et al.* (2010) and Merino (2006).

(3)

Figure 1 Synthesis of the title compound.

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$	
N4'-H4'···O6' ⁱ C6-H6 B ···O9 ⁱⁱ	0.80(3) 0.97	2.51 (3) 2 32	3.295 (3) 3 184 (3)	167 (2) 141	

Symmetry codes: (i) x, y + 1, z; (ii) x, y - 1, z.

2. Structural commentary

The title compound, Fig. 2, consists of a tetrahydrofuran core fused with a dioxolane ring and substituted with dioxolane and (*N*-benzyloxycarbonyl)aminomethyl moieties. The furanose ring adopts a conformation close to C_3 -exo. On the other hand, the furanose ring may be viewed as an envelope, where atom C3 deviates from the mean plane through atoms O1/C1/C2/C4 by 0.567 (2) Å. The fused dioxolane ring also adopts an envelope conformation, where O14 deviates from the mean plane through the four near planar atoms (O12/C1/C2/C13) by 0.422 (2) Å. The dihedral angle between the planar fragments of these rings is 67.1 (1)°. The five-membered ring of the 2,2-dimethyl-1,3-dioxolan-4-yl group also adopts an envelope conformation, with atom O7 deviating from the mean plane through the four planar atoms (O9/C5/C6/C8) by 0.519 (1) Å.

Figure 2

The molecular structure of compound (1), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supramolecular features

In the crystal, molecules are linked by $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds, forming chains propagating along the *b*-axis direction (Fig. 3 and Table 1).

4. Database survey

A search of the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014) for substituted 3a,5,6,6a-tetrahydro-furo[2,3-*d*][1,3]dioxoles gave 485 hits (excluding metal-organics). However, only two structures are 3a,5,6,6a-tetrahydro-furo[2,3-*d*][1,3]dioxol-6-ylmethylcarbamic acid derivatives, *viz.* (3*R*)-3'-ethyl-1,2:5,6-di-*O*-isopropylidene-spiro(3-deoxy-*a*-D-allofuranose-3,5'-oxazolidin)-2'-one (CIDVES; Turks *et al.*, 2013), and (3*R*)-3'-phenylacetyl-1,2:5,6-di-*O*-isopropyl-idenespiro(3-deoxy-*a*-D-allofuranose-3,5'-oxazolidin)-2'-one (YIMBED; Turks *et al.*, 2013).

Figure 3

The crystal packing of compound (1), viewed along the *a* axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details). For clarity only H atoms involved in these interactions have been included.

research communications

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{21}H_{29}NO_7$
$M_{ m r}$	407.45
Crystal system, space group	Monoclinic, P2 ₁
Temperature (K)	173
a, b, c (Å)	9.3235 (3), 5.4118 (1), 20.4381 (7)
β (°)	96.748 (1)
$V(Å^3)$	1024.10 (5)
Z	2
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.10
Crystal size (mm)	$0.32 \times 0.31 \times 0.20$
Data collection	
Diffractometer	Nonius KappaCCD
No. of measured, independent and	5535, 3279, 2597
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.034
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.705
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.045, 0.100, 1.03
No. of reflections	3279
No. of parameters	270
No. of restraints	1
H-atom treatment	H atoms treated by a mixture of
	independent and constrained
_	refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.23, -0.21

Computer programs: KappaCCD Server Software (Nonius, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2011 (Burla et al., 2012), Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

5. Synthesis and crystallization

The two methods for the synthesis of compound (1) are illustrated in Fig. 1.

From compound (2): A mixture of nitromethyl compound (2) (5.00 g, 16.5 mmol, 1 equiv.) and 10% Pd/C (1.00 g) in MeOH (200 ml) was hydrogenated under 40 atm pressure at 313 K overnight (TLC control). The resulting reaction mixture was filtered through celite and the filtrate was evaporated under reduced pressure. The residue was dissolved in THF (60 ml) and a solution of K_2CO_3 (2.50 g, 18.1 mmol, 1.1 equiv.) in water (35 ml) was added. The resulting mixture was cooled to 273 K and N-(benzyloxycarbonyloxy)succinimide (4.50 g, 18.1 mmol, 1.1 equiv) was added portion-wise. The reaction mixture was stirred at 273 K for 4 h (TLC control). Solid K_2CO_3 (1 g) was added and the formed layers were separated. The organic phase was washed with saturated aqueous solution of NaHSO₄ (50 ml) while the aqueous phase was extracted with a mixture of hexanes and CH_2Cl_2 (3 × 100 ml, 8:2 v/v). The combined organic phase was washed with brine (2 \times 100 ml), dried over Na₂SO₄, filtered and evaporated under reduced pressure. Crude product (1) was obtained as a yellow oil (6.60 g, 98% crude) and used further without additional purification.

From compound (3): Through a mixture of azide (3) (14.86 g, 49.7 mmol, 1.0 equiv) and 10% Pd/C (1.45 g) in MeOH (150 ml) hydrogen flow was passed at ambient temperature and pressure for 1 h (TLC control). The reaction

mixture was filtered through a celite pad and the filtrate was evaporated under reduced pressure. The residue was dissolved in anhydrous CH₂Cl₂ (200 ml) and triethylamine (8.5 ml, 61.0 mmol, 1.0 equiv) was added. The resulting solution was cooled to 273 K and benzyl chloroformate (7.0 ml, 60.5 mmol, 1.2 equiv) was added portion-wise. The reaction mixture was stirred under an argon atmosphere at ambient temperature overnight. The solvent was evaporated under reduced pressure and the residue was dissolved in EtOAc (100 ml). The resulting solution was washed with a saturated aqueous solution of NaHCO₃ (3×20 ml) and brine (3×30 ml), dried over Na₂SO₄, filtered and evaporated. Column chromatography (hexanes/EtOAc 4:1 to 2:1 v/v) yielded product (1) (15.22 g, 75%) as a colourless oil that solidifies at low temperatures. $R_{\rm f} = 0.6$ (hexanes/EtOAc 1:1). ¹H NMR (CDCl₃, 300 MHz): 1.30, 1.34, 1.41, 1.50 (4s, 12H, 2 (H₃C)₂C), 2.13 [dq, J = 9.6,4.9 Hz, 1H, H-C(3)], 3.52 [m, 2H, H₂C(3')], 3.77 [m, 1H, H-C(5)], 3.95 [m, 2H, H₂C(6)], 4.11 [m, 1H, H-C(4]), 4.68 [t, J = 4.3 Hz, 1H, H-C(2)], 5.11 (s, AB syst., 2H, H₂C-Ph), 5.67 (t, J =6.0 Hz, 1H, HN), 5.75 [*d*, *J* = 3.8 Hz, 1H, H-C(1)], 7.35 (*m*, 5H, Ph). ¹³C NMR (CDCl₃, 75 MHz): 25.2, 26.3, 26.5, 26.7, 38.0, 48.6, 66.5, 67.8, 77.3, 81.4, 82.0, 104.8, 109.8, 112.2, 128.0, 128.0, 128.5, 136.8, 156.4. HRMS: Calculated for C₂₁H₂₉NO₇Na, [M + Na]⁺ 430.1842. Found: 430.1795.

X-ray quality single crystals were obtained by spontaneous crystallization of the title compound from the neat oily material at 277 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atom on the amino group was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and refined as riding on their parent atoms: C-H = 0.93-0.98Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms. Reflections (1,0,0) and (0,0,2), whose intensities were affected by the beam-stop, were removed from the final refinement.

Acknowledgements

JSC 'Olainfarm' is acknowledged for the donation of diacetone-glucose. JSC 'Grindeks' is acknowledged for the donation of organic solvents.

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.
- Filichev, V. V. & Pedersen, E. B. (2001). Tetrahedron, 57, 9163-9168.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- López, O., Merino-Montiel, P., Martos, S. & González-Benjumea, A. (2012). Carbohydrate Chemistry, Vol. 38, Chemical and Biological Approaches, edited by A. P. Rauter & T. K. Lindhorst, pp. 215–262. Cambridge: The Royal Society of Chemistry.
- Lugiņina, J., Rjabovs, V., Belyakov, S. & Turks, M. (2013). *Tetrahedron Lett.* **54**, 5328–5331.

- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Merino, P. (2006). Curr. Med. Chem. 13, 539-545.
- Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Risseeuw, M., Overhand, M., Fleet, G. W. & Simone, M. I. (2013). Amino Acids, 45, 613–689.

- Rjabova, J., Rjabovs, V., Moreno Vargas, A. J., Clavijo, E. M. & Turks, M. (2012). *Cent. Eur. J. Chem.* **10**, 386–394.
- Rjabovs, V., Ostrovskis, P., Posevins, D., Kiselovs, G., Kumpiņš, V., Mishnev, A. & Turks, M. (2015). Eur. J. Org. Chem. pp. 5572–5584.
- Rjabovs, V. & Turks, M. (2013). Tetrahedron, 69, 10693-10710.
- Romeo, G., Chiacchio, U., Corsaro, A. & Merino, P. (2010). *Chem. Rev.* **110**, 3337–3370.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Turks, M., Rodins, V., Rolava, E., Ostrovskis, P. & Belyakov, S. (2013). Carbohydr. Res. 375, 5–15.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2015). E71, 1212-1215 [doi:10.1107/S2056989015017582]

Crystal structure of 3-C-(*N*-benzyloxycarbonyl)aminomethyl-3-deoxy-1,2:5,6di-*O*-isopropylidene-*α*-D-allofuranose

Vitalijs Rjabovs, Dmitrijs Stepanovs and Maris Turks

Computing details

Data collection: *KappaCCD Server Software* (Nonius, 1997); cell refinement: *HKL SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *HKL DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR2011* (Burla *et al.*, 2012); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

3-C-(*N*-Benzyloxycarbonyl)aminomethyl-3-deoxy-1,2:5,6-di-\ O-isopropylidene- α -D-allofuranose

Crystal d	lata
-----------	------

C₂₁H₂₉NO₇ $M_r = 407.45$ Monoclinic, P2₁ Hall symbol: P 2yb a = 9.3235 (3) Å b = 5.4118 (1) Å c = 20.4381 (7) Å $\beta = 96.748$ (1)° V = 1024.10 (5) Å³ Z = 2

Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator CCD scans 5535 measured reflections 3279 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.100$ S = 1.033279 reflections 270 parameters 1 restraint F(000) = 436 $D_x = 1.321 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 11906 reflections $\theta = 1.0-30.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 173 KBlock, colourless $0.32 \times 0.31 \times 0.20 \text{ mm}$

2597 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 30.1^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -13 \rightarrow 13$ $k = -7 \rightarrow 6$ $l = -28 \rightarrow 28$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.044P)^{2} + 0.1203P] \qquad \Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.21 \text{ e} \text{ Å}^{-3}$ $(\Delta/\sigma)_{max} < 0.001$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates	and isotropic of	or equivalent isotro	pic displacement	parameters	$(Å^2)$	ļ
-------------------------------	------------------	----------------------	------------------	------------	---------	---

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.34514 (16)	0.3163 (3)	0.37758 (7)	0.0315 (4)	
C1	0.2837 (2)	0.3609 (4)	0.31216 (10)	0.0257 (4)	
H1	0.2922	0.5356	0.3006	0.031*	
C2	0.3645 (2)	0.1973 (4)	0.26790 (10)	0.0236 (4)	
H2	0.3840	0.2807	0.2273	0.028*	
C3	0.5014 (2)	0.1255 (4)	0.31153 (9)	0.0216 (4)	
Н3	0.5695	0.2635	0.3118	0.026*	
C4	0.4468 (2)	0.1149 (4)	0.37946 (9)	0.0219 (4)	
H4	0.3965	-0.0419	0.3842	0.026*	
C5	0.5571 (2)	0.1572 (4)	0.43934 (10)	0.0221 (4)	
Н5	0.5063	0.1803	0.4782	0.027*	
C6	0.6694 (2)	-0.0473 (4)	0.45328 (10)	0.0239 (4)	
H6A	0.6898	-0.0777	0.5002	0.029*	
H6B	0.6366	-0.1997	0.4314	0.029*	
O7	0.79329 (15)	0.0472 (3)	0.42712 (7)	0.0251 (3)	
C8	0.7920 (2)	0.3060 (4)	0.43977 (10)	0.0234 (4)	
09	0.64107 (15)	0.3721 (3)	0.43018 (7)	0.0251 (3)	
C10	0.8696 (3)	0.4342 (4)	0.38914 (12)	0.0326 (5)	
H10A	0.8217	0.3997	0.3459	0.049*	
H10B	0.9674	0.3758	0.3923	0.049*	
H10C	0.8695	0.6092	0.3968	0.049*	
C11	0.8532 (2)	0.3653 (4)	0.51018 (11)	0.0313 (5)	
H11A	0.9549	0.3308	0.5161	0.047*	
H11B	0.8057	0.2657	0.5400	0.047*	
H11C	0.8376	0.5369	0.5190	0.047*	
012	0.13924 (16)	0.2825 (3)	0.30147 (9)	0.0356 (4)	
C13	0.1257 (2)	0.0752 (4)	0.25826 (11)	0.0277 (5)	
O14	0.27047 (15)	-0.0114 (3)	0.25586 (7)	0.0282 (3)	
C15	0.0589 (3)	0.1589 (6)	0.19055 (13)	0.0490 (7)	
H15A	0.1160	0.2897	0.1752	0.074*	
H15B	-0.0375	0.2176	0.1932	0.074*	
H15C	0.0558	0.0225	0.1604	0.074*	

C16	0.0396 (3)	-0.1209 (5)	0.28758 (14)	0.0411 (6)
H16A	-0.0564	-0.0612	0.2904	0.062*
H16B	0.0849	-0.1617	0.3309	0.062*
H16C	0.0352	-0.2656	0.2602	0.062*
C3′	0.5763 (2)	-0.1049 (4)	0.29004 (10)	0.0240 (4)
H3′1	0.6569	-0.1470	0.3226	0.029*
H3′2	0.5093	-0.2427	0.2863	0.029*
N4′	0.6281 (2)	-0.0585 (4)	0.22661 (9)	0.0279 (4)
C5′	0.6706 (2)	-0.2436 (4)	0.18935 (10)	0.0279 (5)
O6′	0.66529 (19)	-0.4616 (3)	0.20170 (8)	0.0363 (4)
07′	0.71820 (19)	-0.1464 (3)	0.13471 (8)	0.0403 (4)
C8′	0.7650 (3)	-0.3172 (5)	0.08682 (11)	0.0418 (6)
H8′1	0.7087	-0.4682	0.0856	0.050*
H8′2	0.8662	-0.3584	0.0979	0.050*
C1″	0.7418 (3)	-0.1870 (5)	0.02154 (11)	0.0355 (5)
C2''	0.8230 (3)	0.0185 (6)	0.00934 (12)	0.0444 (6)
H2″	0.8968	0.0708	0.0409	0.053*
C3″	0.7954 (3)	0.1460 (6)	-0.04903 (14)	0.0525 (7)
H3″	0.8502	0.2845	-0.0565	0.063*
C4″	0.6868 (3)	0.0694 (6)	-0.09655 (13)	0.0520 (8)
H4″	0.6679	0.1563	-0.1359	0.062*
C5″	0.6074 (3)	-0.1351 (7)	-0.08519 (13)	0.0523 (8)
H5″	0.5349	-0.1882	-0.1173	0.063*
C6″	0.6334 (3)	-0.2644 (6)	-0.02641 (13)	0.0454 (7)
H6″	0.5783	-0.4028	-0.0191	0.055*
H4′	0.647 (3)	0.080 (5)	0.2161 (12)	0.028 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0247 (8)	0.0388 (9)	0.0308 (8)	0.0114 (7)	0.0028 (6)	-0.0044 (7)
C1	0.0195 (10)	0.0230 (9)	0.0345 (11)	0.0010 (8)	0.0020 (8)	0.0002 (9)
C2	0.0211 (10)	0.0238 (10)	0.0262 (10)	-0.0003 (8)	0.0038 (8)	0.0025 (8)
C3	0.0170 (9)	0.0232 (9)	0.0249 (10)	-0.0002 (8)	0.0032 (7)	-0.0002 (8)
C4	0.0189 (9)	0.0221 (10)	0.0255 (10)	0.0005 (7)	0.0065 (8)	-0.0007 (8)
C5	0.0225 (10)	0.0197 (9)	0.0250 (10)	-0.0009 (9)	0.0062 (8)	-0.0007 (8)
C6	0.0250 (11)	0.0190 (9)	0.0272 (10)	-0.0019 (8)	0.0016 (8)	0.0025 (8)
O7	0.0232 (7)	0.0175 (6)	0.0356 (8)	0.0016 (6)	0.0072 (6)	0.0001 (6)
C8	0.0191 (10)	0.0202 (9)	0.0309 (11)	-0.0007 (8)	0.0035 (8)	-0.0022 (8)
09	0.0209 (7)	0.0162 (6)	0.0373 (8)	0.0016 (6)	-0.0002 (6)	-0.0009 (6)
C10	0.0311 (12)	0.0280 (11)	0.0403 (13)	-0.0024 (10)	0.0107 (9)	-0.0010 (10)
C11	0.0267 (11)	0.0284 (10)	0.0373 (12)	0.0007 (9)	-0.0031 (9)	-0.0035 (10)
O12	0.0190 (7)	0.0322 (9)	0.0553 (10)	0.0009 (7)	0.0031 (7)	-0.0107 (8)
C13	0.0202 (10)	0.0256 (10)	0.0361 (12)	0.0009 (8)	-0.0015 (8)	-0.0003 (9)
O14	0.0206 (7)	0.0272 (8)	0.0361 (8)	0.0014 (6)	0.0002 (6)	-0.0051 (6)
C15	0.0341 (13)	0.0673 (18)	0.0430 (15)	0.0070 (15)	-0.0067 (11)	0.0092 (14)
C16	0.0270 (12)	0.0316 (12)	0.0651 (17)	0.0012 (10)	0.0069 (11)	0.0080 (12)
C3′	0.0235 (10)	0.0266 (10)	0.0226 (10)	0.0031 (8)	0.0053 (8)	-0.0002 (8)

N4′	0.0324 (10)	0.0264 (9)	0.0262 (9)	-0.0010 (8)	0.0086 (7)	-0.0008(8)
C5′	0.0249 (11)	0.0371 (12)	0.0215 (10)	0.0018 (9)	0.0015 (8)	-0.0028 (9)
O6′	0.0486 (11)	0.0295 (8)	0.0319 (9)	0.0045 (8)	0.0087 (7)	-0.0024 (7)
O7′	0.0574 (11)	0.0382 (9)	0.0287 (8)	0.0009 (9)	0.0195 (7)	-0.0046 (7)
C8′	0.0536 (15)	0.0439 (14)	0.0300 (12)	0.0132 (13)	0.0142 (11)	-0.0045 (11)
C1″	0.0417 (13)	0.0390 (13)	0.0274 (11)	0.0092 (11)	0.0106 (9)	-0.0045 (10)
C2″	0.0479 (15)	0.0494 (15)	0.0354 (14)	0.0047 (13)	0.0027 (11)	-0.0031 (12)
C3″	0.0637 (18)	0.0468 (15)	0.0491 (17)	0.0009 (16)	0.0156 (14)	0.0045 (14)
C4″	0.0669 (19)	0.0580 (19)	0.0323 (14)	0.0206 (16)	0.0110 (13)	0.0033 (13)
C5″	0.0498 (16)	0.075 (2)	0.0310 (13)	0.0108 (17)	0.0005 (11)	-0.0100 (14)
C6″	0.0480 (15)	0.0546 (16)	0.0352 (13)	0.0027 (13)	0.0111 (11)	-0.0086 (12)

Geometric parameters (Å, °)

01—C1	1.412 (2)	C13—C16	1.498 (3)
O1—C4	1.442 (2)	C13—C15	1.519 (3)
C1-012	1.404 (2)	C15—H15A	0.9600
C1—C2	1.526 (3)	C15—H15B	0.9600
C1—H1	0.9800	C15—H15C	0.9600
C2—O14	1.433 (2)	C16—H16A	0.9600
C2—C3	1.519 (3)	C16—H16B	0.9600
С2—Н2	0.9800	C16—H16C	0.9600
C3—C3′	1.519 (3)	C3'—N4'	1.457 (3)
C3—C4	1.535 (3)	C3′—H3′1	0.9700
С3—Н3	0.9800	C3′—H3′2	0.9700
C4—C5	1.520 (3)	N4′—C5′	1.346 (3)
C4—H4	0.9800	N4′—H4′	0.80 (3)
C5—O9	1.427 (2)	C5′—O6′	1.209 (3)
C5—C6	1.527 (3)	C5′—O7′	1.355 (3)
С5—Н5	0.9800	O7′—C8′	1.450 (3)
C6—O7	1.424 (3)	C8′—C1″	1.502 (3)
С6—Н6А	0.9700	C8′—H8′1	0.9700
C6—H6B	0.9700	C8′—H8′2	0.9700
O7—C8	1.424 (2)	C1″—C2″	1.384 (4)
C8—O9	1.443 (2)	C1″—C6″	1.387 (4)
C8—C10	1.501 (3)	C2''—C3''	1.376 (4)
C8—C11	1.519 (3)	C2''—H2''	0.9300
C10—H10A	0.9600	C3''—C4''	1.382 (4)
C10—H10B	0.9600	С3''—Н3''	0.9300
C10—H10C	0.9600	C4''—C5''	1.367 (5)
C11—H11A	0.9600	C4''—H4''	0.9300
C11—H11B	0.9600	C5''—C6''	1.387 (4)
C11—H11C	0.9600	С5''—Н5''	0.9300
O12—C13	1.424 (3)	С6''—Н6''	0.9300
C13—O14	1.435 (3)		
C1—O1—C4	110.30 (15)	C1—O12—C13	110.36 (16)
012—C1—O1	111.76 (17)	O12—C13—O14	105.28 (15)

O12—C1—C2	105.29 (17)	O12—C13—C16	108.82 (19)
O1—C1—C2	106.75 (16)	O14—C13—C16	109.43 (18)
O12—C1—H1	110.9	O12—C13—C15	109.1 (2)
O1—C1—H1	110.9	O14—C13—C15	110.69 (19)
C2—C1—H1	110.9	C16—C13—C15	113.2 (2)
014 - C2 - C3	110.74 (16)	C2-014-C13	107.18 (15)
014-C2-C1	102.96 (16)	C13—C15—H15A	109.5
$C_{3}-C_{2}-C_{1}$	103.87 (16)	C13—C15—H15B	109.5
$014-C^2-H^2$	112.8	H15A—C15—H15B	109.5
C_{3} C_{2} H_{2}	112.8	C13—C15—H15C	109.5
C1 - C2 - H2	112.8	H15A_C15_H15C	109.5
$C_{2}^{-}C_{3}^{-}C_{3}^{-}$	112.0 115.04(17)	H15B-C15-H15C	109.5
$C_2 = C_3 = C_4$	101 20 (16)	$C_{13} = C_{15} = H_{16A}$	109.5
$C_2 - C_3 - C_4$	101.29(10) 116.30(17)	C13 - C16 - H16R	109.5
$C_3 = C_3 = C_4$	107.0	U16A C16 H16P	109.5
$C_2 - C_3 - H_3$	107.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_3 = C_3 = H_3$	107.9		109.5
C4—C3—H3	107.9	H16A - C16 - H16C	109.5
01	106./3 (15)	H16B - C16 - H16C	109.5
01	103.54 (15)	N4' - C3' - C3	109.09 (17)
C5—C4—C3	117.26 (16)	N4'-C3'-H3'1	109.9
01—C4—H4	109.7	C3—C3′—H3′1	109.9
С5—С4—Н4	109.7	N4'—C3'—H3'2	109.9
C3—C4—H4	109.7	C3—C3′—H3′2	109.9
O9—C5—C4	110.29 (16)	H3'1—C3'—H3'2	108.3
O9—C5—C6	103.92 (14)	C5'—N4'—C3'	121.7 (2)
C4—C5—C6	115.15 (17)	C5'—N4'—H4'	116.9 (18)
O9—C5—H5	109.1	C3'—N4'—H4'	120.3 (18)
С4—С5—Н5	109.1	O6'—C5'—N4'	125.9 (2)
С6—С5—Н5	109.1	O6'—C5'—O7'	125.2 (2)
O7—C6—C5	103.79 (16)	N4′—C5′—O7′	108.9 (2)
O7—C6—H6A	111.0	C5'—O7'—C8'	117.5 (2)
С5—С6—Н6А	111.0	O7'—C8'—C1''	106.1 (2)
O7—C6—H6B	111.0	O7'—C8'—H8'1	110.5
С5—С6—Н6В	111.0	C1''—C8'—H8'1	110.5
H6A—C6—H6B	109.0	O7'—C8'—H8'2	110.5
C6—O7—C8	105.08 (16)	C1''—C8'—H8'2	110.5
07	104.38 (16)	H8'1—C8'—H8'2	108.7
07-C8-C10	108 31 (18)	C2''C1''C6''	1189(2)
09-C8-C10	109.48 (17)	C2''-C1''-C8'	120.8(2)
07 - C8 - C11	111 69 (17)	C6"-C1"-C8'	120.0(2) 120.2(3)
09-08-011	109.16(17)	C3''-C2''-C1''	120.2(3) 120.6(3)
C_{10} C_{8} C_{11}	109.10(17) 113.42(18)	C3"-C2"-H2"	119.7
$C_{5} 0_{9} C_{8}$	108 74 (14)	C1"-C2"-H2"	110.7
C8_C10_H10A	100.74 (14)	$C_1 = C_2 = 112$ $C_2'' = C_3'' = C_4''$	119.7
	109.5	$C_2 = C_3 = C_4$	120.7 (3)
	109.5	$C_2 = C_3 = \Pi_3$ $C_4'' = C_2'' = \Pi_2''$	117.0
	109.5	$C_{+} = C_{3} = C_{3}$	117.0
	109.5	$C_{5} = C_{4} = C_{5}$	119.4 (3)
$\Pi UA - U U - \Pi UU$	107.3	UJ —U4 —H4	120.3

H10B—C10—H10C	109.5	C3''—C4''—H4''	120.3
C8—C11—H11A	109.5	C4''—C5''—C6''	120.8 (3)
C8—C11—H11B	109.5	C4''—C5''—H5''	119.6
H11A—C11—H11B	109.5	С6′′—С5′′—Н5′′	119.6
C8—C11—H11C	109.5	C5''—C6''—C1''	119.9 (3)
H11A—C11—H11C	109.5	С5′′—С6′′—Н6′′	120.1
H11B—C11—H11C	109.5	С1″—С6″—Н6″	120.1
C4-01-C1-012	107.54 (18)	C11—C8—O9—C5	-95.99 (19)
C4—O1—C1—C2	-7.1 (2)	O1-C1-O12-C13	-111.56 (19)
O12—C1—C2—O14	-20.6 (2)	C2-C1-O12-C13	4.0 (2)
O1—C1—C2—O14	98.33 (18)	C1-012-C13-014	14.4 (2)
O12—C1—C2—C3	-136.12 (17)	C1—O12—C13—C16	131.58 (19)
O1—C1—C2—C3	-17.2 (2)	C1—O12—C13—C15	-104.5 (2)
O14—C2—C3—C3′	49.2 (2)	C3—C2—O14—C13	140.31 (17)
C1—C2—C3—C3′	159.10 (16)	C1—C2—O14—C13	29.82 (19)
O14—C2—C3—C4	-77.1 (2)	O12—C13—O14—C2	-28.1 (2)
C1—C2—C3—C4	32.8 (2)	C16—C13—O14—C2	-144.9 (2)
C1—O1—C4—C5	152.58 (16)	C15—C13—O14—C2	89.6 (2)
C1—O1—C4—C3	28.2 (2)	C2—C3—C3′—N4′	65.0 (2)
C2-C3-C4-01	-37.23 (19)	C4—C3—C3′—N4′	-176.82 (16)
C3′—C3—C4—O1	-162.69 (16)	C3—C3′—N4′—C5′	-165.57 (19)
C2—C3—C4—C5	-154.43 (17)	C3'—N4'—C5'—O6'	3.5 (4)
C3′—C3—C4—C5	80.1 (2)	C3'—N4'—C5'—O7'	-177.68 (18)
O1—C4—C5—O9	-67.04 (19)	O6'—C5'—O7'—C8'	0.7 (3)
C3—C4—C5—O9	48.4 (2)	N4'—C5'—O7'—C8'	-178.11 (19)
O1—C4—C5—C6	175.77 (16)	C5'	153.0 (2)
C3—C4—C5—C6	-68.8 (2)	O7'—C8'—C1''—C2''	67.3 (3)
O9—C5—C6—O7	-20.8 (2)	O7'—C8'—C1''—C6''	-109.6 (3)
C4—C5—C6—O7	99.97 (19)	C6''-C1''-C2''-C3''	0.9 (4)
C5—C6—O7—C8	35.75 (19)	C8'—C1''—C2''—C3''	-176.1 (2)
C6—O7—C8—O9	-37.11 (19)	C1''-C2''-C3''-C4''	-0.5 (4)
C6—O7—C8—C10	-153.69 (17)	C2''-C3''-C4''-C5''	-0.3 (4)
C6—O7—C8—C11	80.7 (2)	C3''-C4''-C5''-C6''	0.7 (4)
C4—C5—O9—C8	-125.60 (16)	C4"—C5"—C6"—C1"	-0.3 (4)
C6—C5—O9—C8	-1.7 (2)	C2''-C1''-C6''-C5''	-0.5 (4)
O7—C8—O9—C5	23.5 (2)	C8'—C1''—C6''—C5''	176.5 (2)
C10—C8—O9—C5	139.31 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N4'—H4'…O6' ⁱ	0.80 (3)	2.51 (3)	3.295 (3)	167 (2)
C6—H6 <i>B</i> ···O9 ⁱⁱ	0.97	2.32	3.184 (3)	141

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*, *y*-1, *z*.