

Received 22 July 2015 Accepted 14 September 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

‡ Current address: Millennium Pain Center, Basic Science, 1015 S Mercer Ave Bloomington, IL 61701 USA.

Keywords: crystal structure; *N*-halomethylated quaternary ammonium salts; cation– π interaction; halogen bond; hydrogen bonding

CCDC references: 1424320; 1424319; 1424318

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 🔂 ACCESS

Crystal structures of three new *N*-halomethylated quaternary ammonium salts

Carolina Múnera-Orozco,^a Rogelio Ocampo-Cardona,^a David L. Cedeño,^b‡ Rubén A. Toscano^c and Luz Amalia Ríos-Vásquez^a*

^aDepartamento de Química, Universidad de Caldas, Manizales, Caldas, Colombia, ^bDepartment of Chemistry, Illinois State University, Normal, Illinois, USA, and ^cInstituto de Química, UNAM, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, México, D.F., Mexico. *Correspondence e-mail: amalia.rios@ucaldas.edu.co

In the crystals of the title *N*-halomethylated quaternary ammonium salts, $C_{19}H_{23}IN^+\cdot I^-$, (I) [systematic name: *N*-(4,4-diphenylbut-3-en-1-yl)-*N*-iodomethyl-*N*,*N*-dimethylammonium iodide], $C_{20}H_{25}IN^+\cdot I^-$, (II) [systematic name: *N*-(5,5-diphenylpent-4-en-1-yl)-*N*-iodomethyl-*N*,*N*-dimethylammonium iodide], and $C_{21}H_{27}IN^+\cdot I^-$, (III) [systematic name: *N*-(6,6-diphenylhex-5-en-1-yl)-*N*-iodomethyl-*N*,*N*-dimethylammonium iodide], there are short $I \cdots I^-$ interactions of 3.564 (4), 3.506 (1) and 3.557 (1) Å for compounds (I), (II) and (III), respectively. Compound (I) crystallizes in the Sohncke group *P*2₁ as an 'enantiopure' compound and is therefore a potential material for NLO properties. In the crystal of compound (I), molecules are linked by $C-H\cdots I^-$ and $C-H\cdots\pi$ interactions which, together with the $I\cdots I^-$ interactions, lead to the formation of ribbons along [100]. In (II), there are only $C-H\cdots I^-$ interactions which, together with the $I\cdots I^-$ interactions, there are no significant intermolecular interactions present.

1. Chemical context and background to halogen bonding and cation $-\pi$ interactions

Quaternary ammonium salts have been widely studied as anticancer (Wang et al., 2012; Song et al., 2013), anti-fungal (Ng et al., 2006), anti-HIV-1 (Shiraishi et al., 2000), anti-bacterial (Calvani et al., 1998), anti-malarial (Calas et al., 1997; Calas et al., 2000) and anti-leishmanial (Mavromoustakos et al., 2001) pharmaceuticals. Our research group has been working in the past few years on the activity of quaternary N-halomethyl ammonium salts for likely pharmaceutical purposes, specifically against axenic L. (V) panamensis and L. (L) amazonensis parasites, human pathogenic species that cause cutaneous and mucocutaneous leishmaniasis. The experiments proved that these compounds are very promising anti-leishmanial molecules, and very significant changes in their activity were observed upon a slight modification of the carbon skeleton by only a single methylene unit (Ríos-Vásquez et al., 2015). A preliminary effort at understanding a structure-activity relationship with three N-iodomethyl quaternary ammonium salts (I), (II) and (III) of the form $[ICH_2N(CH_3)_3(CH_2)_nCH=$ $C(Ph)_2$ ⁺·I⁻ (with n = 2, 3 and 4, respectively) is currently being carried out. One possible approach to understand the different activities is to establish what kind of interactions are present in compounds (I)-(III), for example whether C- $I \cdots I^-$ (Desiraju et al., 2013), $C - H \cdots I^-$ (Glidewell et al., 1994), C–H··· π (Nishio *et al.*, 1998) or cation– π (Dougherty, 1996), and if so, how these interactions may affect their structure and biological properties.

As defined by International Union for Pure and Applied Chemistry (IUPAC): a halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity (Desiraju et al., 2013). Halogen bonds are characterized by $X \cdots X$ distances that are clearly shorter than the van der Waals radii sum (Formigué, 2009; Awwadi et al.; 2006); otherwise this interaction is neglected. In a similar way, the existence of $C-H \cdots X$ hydrogen bonds (X = F, Cl, Br or I) in neutral organic molecules (Aakeröy & Seddon, 1993) and even in organic salts has been recognized. On the other hand, a special kind of hydrogen bond, defined as a weak interaction between a soft acid (*i.e.* an sp^3 , sp^2 or sp C–H system) and a soft base (*i.e.* an aromatic, olefinic or acetilenic *p* system), with a significant role on diverse chemical and biological phenomena has recently been described (Nishio, 2012). In particular, this interaction exerts an observable influence on host-guest recognition and crystal packing in the solid state. A related attraction is the cation- π interaction, which is regarded as an electrostatic attraction between a positive charge and the quadrupole moment of an aromatic ring (Dougherty, 1996). A cation- π interaction between aromatic and ammonium ions is known to play an important role in many biological systems (Ma & Dougherty, 1997; Dougherty, 2013; Sussman et al., 1991; Chen et al., 2011). Part of our research interest is focused not only in understanding the reactive nature of alpha ammonium distonic radical cations which are generated from N-halomethylated quaternary ammonium salts (Ríos et al., 1996; Ríos, Bartberger et al., 1997), but also in trying to understand how these salts behave against Leishmania parasites (Ríos-Vásquez et al., 2015). The recognition of the occurrence of some supramolecular interactions in these salts may lead to a better understanding of the likely novel biological binding sites, and therefore to new suggestions about biocatalytic mechanisms.

The title *N*-iodomethyl quaternary ammonium salts, (I)–(III), were synthesized following standard procedures used for other related compounds (Newcomb *et al.*, 1993; Horner *et al.*, 1995) and suitable crystals were obtained (Múnera-Orozco, 2014). This paper reports a comparative crystal structure and supramolecular interactions analysis for the aforementioned compounds.

Figure 1 The molecular structure of compound (I), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

2. Structural commentary

Compound (I), Fig. 1, crystallizes in the non-centrosymmetric monoclinic space group $P2_1$ and is therefore, a potential material for NLO properties. The asymmetric unit consists of an ammonium cation and an iodide anion. In the geminal-substituted diphenylethene unit, the phenyl rings (C5–C10 and C11–C16) are inclined to one another by 74.6 (2)°, and are twisted from the mean plane of the central C=C bond fragment (C2–C5/C11) by 33.2 (2) and 61.4 (2)°, respectively. Coplanarity of the olefin skeleton and the peripheral phenyl rings is prevented because of steric congestion between the associated phenyl rings. The conformation of the side chain reveals an *all-trans* extended conformation with the iodomethyl moiety on one side of the backbone chain, with bond lengths and angles in the expected ranges.

In compound (II), Fig. 2, the dihedral angles between the mean planes of the C=C double-bond fragment (C3–C6/C12) and the two phenyl rings (C6–C11 and C12–C17) are 31.1 (4)

The molecular structure of compound (II), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 3

The molecular structure of compound (III), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

and 58.6 (4)°, respectively, while the phenyl rings are inclined to one another by 76.2 (4)°. The *N*-iodomethyl-*N*,*N*-dimethyl-*N*-propylammonium moiety adopts a fully extended conformation with one methyl group and the iodomethyl unit on opposite sides of the backbone of the side chain (Fig. 2). This conformation seems to be partially supported by a $C-H\cdots I^$ hydrogen bond (Table 2 and *Supramolecular features*).

In compound (III), Fig. 3, the phenyl rings are twisted out of the plane defined by the ethylene moiety (C4–C7/C13), making dihedral angles of 38.7 (4) and 78.7 (6)° for the *trans* (C7–C12) and *cis* (C13–C18) phenyl rings, respectively. The phenyl rings are inclined to one another by 78.5 (6)°. The alkylamino side chain is almost fully extended away from the geminal-substituted ethene group.

3. Supramolecular features

In the crystal of (I), ribbons are formed, by $I1\cdots I2^{i}$ contacts [3.564 (4) Å; symmetry code: (i) -x - 1, $y - \frac{1}{2}$, -z + 1] and

Figure 4

The crystal packing of compound (I), viewed along the b axis, showing the intermolecular contacts (dashed lines; see Table 1).

Table	1			
-------	---	--	--	--

Hydrogen-bond geometry (Å, $^\circ)$ for (I).

Cg is the centroid of the C11–C16 ring.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C17 - H17B \cdots I2^{i}$	0.97	3.00	3.919 (5)	159
$C7-H7\cdots Cg^{ii}$	0.93	2.84	3.030 (5)	143

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + 1$; (ii) x + 1, y, z.

Table 2

Hydrogen-bond geometry (A, $^{\circ}$) for (II).					
$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$	
$C2-H2B\cdots I2$	0.97	3.06	4.001 (7)	165	

 $C-H\cdots I^{-}$ hydrogen bonds, along the *a*-axis direction. The chains are reinforced by $C-H\cdots \pi$ interactions (Fig. 4 and Table 1).

In the crystal of (II), helical chains along the *b*-axis direction are formed by molecules linked *via* $C-H\cdots I^-$ (Table 2) and $I1\cdots I2^{ii}$ interactions [3.506 (1) Å; symmetry code: (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$]; as shown in Fig. 5. Here no $C-H\cdots\pi$ interactions are present in the crystal packing. The closest distance between the ammonium substituents and any of the phenyl rings is *ca* 7.18 Å. These features clearly rule out an intramolecular cation- π interaction for this molecule in the solid state. However, in studies of distonic radical cation (Ríos *et al.* 1996; Yates *et al.*, 1986), evidence is presented that the active conformation of the alkylamino side chain is oriented

Figure 5

The crystal packing of compound (II), viewed along the b axis, showing the intermolecular contacts (dashed lines; see Table 2).

The crystal packing of compound (III), viewed along the b axis.

toward and above the plane of the C=C double bond of the geminal-substituted ethene group. These results confirm that there is considerable freedom of rotation about the bonds separating the basic amino function and the tricyclic system, and thus numerous interconvertible side-chain conformations, differing only slightly in potential energy, may exist.

In the crystal of (III), apart from the $I1\cdots I2^{iii}$ contact of 3.557 (1) Å [symmetry code: (iii) -x, -y + 1, -z], there are no other significant intermolecular contacts present (Fig. 6). The only possible conclusion regarding the crystal structure of (III) is that the steric requirements in this molecule outweigh the additional stabilization obtained by an intramolecular cation– π interaction.

4. Synthesis and crystallization

The general procedure for the preparation of the title quaternary ammonium salts is illustrated in Fig. 7 for

Figure 7

The general procedure for the preparation of the title quaternary ammonium salts.

compounds (I)–(III). The reactions were carried out following a standard literature method (Ríos *et al.*, 1996) starting from the appropriate amine [N,N-dimethyl-4,4-diphenylbut-3-en-1amine 1(a), N,N-dimethyl-5,5-diphenylpent-4-en-1-amine 1(b) and N,N-dimethyl-6,6-diphenylhex-5-en-1-amine 1(c)]. Typically, CH₂I₂ (4 eq) and 1 eq of the starting tertiary amine [for example, compound 1(a) for the synthesis of (I); as shown in Fig. 7] were dissolved in acetonitrile. The reactions were allowed to run overnight at room temperature, and the precipitated salts were filtered off and washed several times with diethyl ether, and then recrystallized from a binary mixture water–isopropanol. The desired products were obtained as colourless crystals.

Compound (I): The product was obtained as a white solid in 74% yield; m.p. 425–427 K. ¹H NMR (DMSO, 300 MHz, δ , p.p.m.): 2.49 (*m*, 2H), 3.12 (*s*, 6H), 3.50 (*m*, 2H), 5.05 (*s*, 2H), 6.07 (*t*, *J* = 7.4 Hz, 1H), 7.15–7.58 (*m*, 10H) p.p.m. ¹³C NMR (DMSO, 75 MHz,, p.p.m.) 23.70, 31.49, 51.66, 63.58, 121.92, 127.19–129.51, 138.79, 141.62, 145.03 p.p.m. Elemental analysis calculated for C₁₉H₂₃NI₂: C, 43.95%; H, 4.46%; N, 2.70%; found, C, 43.48%; H, 4.35%; N, 2.68%. MS–ESI calculated for C₁₉H₂₃NI: 392.09, found: 391.95.

Compound (II): The product was obtained as a white solid in 77% yield; m.p. 430–437 K. ¹H NMR (DMSO, 300 MHz, δ , p.p.m.): 1.85 (*m*, 2H), 2.12 (*m*, 2H), 2.51 (*m*, 2H), 3.15 (*s*, 6H), 5.18 (*s*, 2H), 6.14 (*t*, *J* = 7.2 Hz, 1H), 7.11–7.51 (10H). ¹³C NMR (DMSO, 75 MHz, p.p.m.): 22.30, 25.91, 39.01, 51.19, 63.84, 126.84–141.68. ESI–MS *m*/*z* calculated for C₂₀H₂₅NI: 406.10, found: 406.20.

Compound (III): The product was obtained as a white solid in 72% yield; m.p. 429–431 K. ¹H NMR (DMSO, 300 MHz, δ , p.p.m.): 1.45 (*m*, 2H), 1.68 (*m*, 2H), 2.12 (*m*, 2H), 2.51 (*m*, 2H), 3.10 (*s*, 6H), 5.14 (*s*, 2H), 6.14 (*t*, *J* = 7.3 Hz, 1H), 7.06–7.51 (m, 10H) p.p.m. ¹³C NMR (DMSO, 75 MHz, p.p.m.): 25.07, 28.91, 31.91, 35.35, 54.29, 67.34, 129.89–132.50, 130.19, 142.45, 144.34, 145.02. Elemental analysis calculated for C₂₁H₂₇NI₂: C, 46.09%; H, 4.97%; N, 2.56%; found C, 45.91%; H, 4.93%; N, 2.58%. ESI–MS *m*/*z* calculated for C₂₁H₂₇NI: 420.12, found: 420.20.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. For all three compounds the Cbound H atoms were included in calculated positions and treated as riding atoms: C-H = 0.93-0.99 Å with $U_{iso}(H) =$ $1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms. Refining the structure of compound (I) in the noncentrosymmetric space group gives a value of 0.02 (3) for the Flack parameter (Flack & Bernardinelli, 1999), confirming that the direction of the polar axis has been correctly determined. The studied crystal of compound (III) was a nonmerohedral twin with a ratio of two major domains of 0.374 (2):0.626 (2). The two domains are rotated from each other by 180.0° about the reciprocal axis a^* , as determined by the *CELL NOW* program (Sheldrick, 2004). The final refinement was carried out using the twinned data set.

research communications

 Table 3

 Experimental details.

	(I)	(II)	(III)
Crystal data			
Chemical formula	$C_{10}H_{22}IN^+ \cdot I^-$	$C_{20}H_{25}IN^+ \cdot I^-$	$C_{21}H_{27}IN^+ \cdot I^-$
М.	519.18	533.21	547.23
Crystal system, space group	Monoclinic, $P2_1$	Monoclinic, $C2/c$	Monoclinic, $P2_1/c$
Temperature (K)	298	298	298
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.9254 (2), 13.6161 (3), 9.4632 (2)	37.778 (7), 6.6323 (12), 17.021 (3)	8.9423 (12), 24.058 (3), 10.3749 (13)
β (°)	103.320(1)	100.567 (4)	103.656 (3)
$V(Å^3)$	993.73 (4)	4192.3 (13)	2168.9 (5)
Z	2	8	4
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	3.16	3.00	2.90
Crystal size (mm)	$0.23 \times 0.19 \times 0.12$	$0.21 \times 0.20 \times 0.08$	$0.32 \times 0.22 \times 0.04$
Data collection			
Diffractometer	Bruker SMART APEX CCD	Bruker SMART APEX CCD	Bruker SMART APEX CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2012)	Multi-scan (<i>SADABS</i> ; Bruker, 2012)	Multi-scan (<i>TWINABS</i> ; Bruker, 2012)
T_{\min}, T_{\max}	0.624, 0.745	0.349, 0.745	0.273, 0.429
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	5791, 3085, 3013	16925, 3808, 3114	3961, 3961, 2941
R _{int}	0.016	0.079	0.079
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.602	0.602	0.603
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.017, 0.038, 1.08	0.052, 0.145, 1.05	0.060, 0.138, 1.05
No. of reflections	3085	3808	3961
No. of parameters	202	210	220
No. of restraints	1	0	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.27, -0.46	1.90, -1.98	0.82, -0.80
Absolute structure	Refined as an inversion twin	_	_
Absolute structure parameter	0.02 (3)	_	-

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Acknowledgements

Special thanks are extended to Dr Guillermo Delgado Lamas (Universidad Nacional Autónoma de México) and Dr Eunice Ríos Vásquez [Universidad Nacional Autónoma de México and Universidad del Quindío (Colombia)] for assistance with the structural analyses. The authors also acknowledge financial support from the Universidad de Caldas, Colombia, and Illinois State University, USA.

References

- Aakeröy, C. B. & Seddon, K. R. (1993). Z. Naturforsch Teil B, 48, 1023–1025.
- Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). *Chem. Eur. J.* 12, 8952–8960.
- Bruker (2012). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Calas, M., Ancelin, M. L., Cordina, G., Portefaix, P., Piquet, G., Vidal-Sailhan, V. & Vial, H. (2000). J. Med. Chem. 43, 505–516.
- Calas, M., Cordina, G., Bompart, J., Ben Bari, M., Jei, T., Ancelin, M. L. & Vial, H. (1997). J. Med. Chem. 40, 3557–3566.
- Calvani, M., Critelli, L., Gallo, G., Giorgi, F., Gramiccioli, G., Santaniello, M., Scafetta, N., Tinti, M. O. & De Angelis, F. (1998). J. Med. Chem. **41**, 2227–2233.

- Chen, C. C., Hsu, W., Hwang, K. C., Hwu, J. R., Lin, C. C. & Horng, J. (2011). Arch. Biochem. Biophys. 508, 46–53.
- Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711–1713.
- Dougherty, D. A. (1996). Science, 271, 163-168.
- Dougherty, D. A. (2013). Acc. Chem. Res. 46, 885-893.
- Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908-915.
- Formigué, M. (2009). Curr. Opin. Solid State Mater. Sci. 13, 36-45.
- Glidewell, C., Zakaria, C. M., Ferguson, G. & Gallagher, J. F. (1994). *Acta Cryst.* C**50**, 233–238.
- Horner, J. H., Martínez, F. N., Musa, O. M., Newcomb, M. & Shahin, H. E. (1995). J. Am. Chem. Soc. 117, 11124–11133.
- Ma, J. C. & Dougherty, D. A. (1997). Chem. Rev. 97, 1303-1324.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mavromoustakos, T., Calogeropoulou, T., Koufaki, M., Kolocouris, A., Daliani, I., Demetzos, D., Meng, Z., Makriyannis, A., Balzarini, J. & De Clercq, E. (2001). J. Med. Chem. 44, 1702–1709.
- Múnera-Orozco, C. (2014). MSc thesis, Universidad de Caldas, Manizales, Colombia.
- Newcomb, M., Horner, J. H. & Shahin, H. (1993). *Tetrahedron Lett.* **34**, 5523–5526.

Ng, K. L. C., Obando, D., Widmer, F., Wright, L. C., Sorrell, T. C. & Jolliffe, K. A. (2006). J. Med. Chem. 49, 811–816.Nishio, M. (2012). J. Mol. Struct. 1018, 2–7.

- Nishio, M., Hirota, M. & Umezawa, Y. (1998). In *The* $C-H\cdots p$ *Interaction. Evidence, Nature, and Consequences.* New York: Wiley–VCH.
- Ríos, L. A., Bartberger, M. D., Dolbier, W. R. & Paredes, R. (1997). *Tetrahedron Lett.* 38, 7041–7044.
- Ríos, L. A., Dolbier, W. R., Paredes, R., Lusztyk, J., Ingold, K. U. & Jonsson, M. (1996). J. Am. Chem. Soc. 118, 11313–11314.
- Ríos-Vásquez, L. A., Ocampo-Cardona, R., Duque-Benítez, S. M., Cedeño, D. L., Jones, M., Robledo-Restrepo, S. M. & Vélez-Bernal, I. D. (2015). US Patent No. 9,145,352 (September 29, 2015).
- Sheldrick, G. M. (2004). CELL NOW. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

- Shiraishi, M., Aramaki, Y., Seto, M., Imoto, H., Nishikawa, Y., Kanzaki, N., Okamoto, M., Sawada, H., Nishimura, O., Baba, M. & Fujino, M. (2000). J. Med. Chem. 43, 2049–2063.
- Song, D., Yang, J. S., Oh, C., Cui, S., Kim, B. K., Won, M., Lee, J. I., Kim, H. M. & Han, G. (2013). *Eur. J. Med. Chem.* 69, 670–677.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sussman, J. L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L. & Silman, I. (1991). *Science*, **253**, 872–879.
- Wang, W., Bai, Z., Zhang, F., Wang, C., Yuan, Y. & Shao, J. (2012). *Eur. J. Med. Chem.* 56, 320–331.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yates, B. F., Bouma, W. J. & Radom, L. (1986). *Tetrahedron*, **42**, 6225–6234.

supporting information

Acta Cryst. (2015). E71, 1230-1235 [doi:10.1107/S2056989015017181]

Crystal structures of three new N-halomethylated quaternary ammonium salts

Carolina Múnera-Orozco, Rogelio Ocampo-Cardona, David L. Cedeño, Rubén A. Toscano and Luz Amalia Ríos-Vásquez

Computing details

For all compounds, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(I) N-(4,4-Diphenylbut-3-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide

Crystal data	
$C_{19}H_{23}IN^{+}\cdot I^{-}$ $M_{r} = 519.18$ Monoclinic, P2 ₁ $a = 7.9254 (2) \text{ Å}$ $b = 13.6161 (3) \text{ Å}$ $c = 9.4632 (2) \text{ Å}$ $\beta = 103.320 (1)^{\circ}$ $V = 993.73 (4) \text{ Å}^{3}$ $Z = 2$ $F(000) = 500$	$D_x = 1.735 \text{ Mg m}^{-3}$ Melting point = 425–427 K Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4987 reflections $\theta = 2.2-25.3^{\circ}$ $\mu = 3.16 \text{ mm}^{-1}$ T = 298 K Prism, colourless $0.23 \times 0.19 \times 0.12 \text{ mm}$
Data collection	
Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.333 pixels mm ⁻¹ ω -scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2012) $T_{\min} = 0.624, T_{\max} = 0.745$	5791 measured reflections 3085 independent reflections 3013 reflections with $I > 2\sigma(I)$ $R_{int} = 0.016$ $\theta_{max} = 25.3^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -9 \rightarrow 9$ $k = -16 \rightarrow 16$ $l = -11 \rightarrow 11$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.017$ $wR(F^2) = 0.038$ S = 1.08 3085 reflections 202 parameters 1 restraint	Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fouri map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0138P)^2 + 0.0203P]$ where $P = (F_o^2 + 2F_c^2)/3$

Fourier

$(\Delta/\sigma)_{\rm max} = 0.001$	Absolute structure: Refined as an inversion twin
$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$	Absolute structure parameter: 0.02 (3)
$\Delta \rho_{\rm min} = -0.46 \ {\rm e} \ {\rm \AA}^{-3}$	

0.40 0 11

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refined as a 2-component inversion twin.

 $U_{\rm iso}*/U_{\rm ea}$ х v Ζ I1 0.13054 (3) 0.04839 (9) -0.65685(3)0.06224(2)I2 0.06519(4) 0.44189(2)0.91487(3)0.04368(9)N1 0.2023(3)0.0555 (4) -0.3770(4)0.0376 (8) C1 -0.1849(5)0.2322(4)0.0948(5)0.0402(10)-0.11440.1733 0.1019 0.048* H1A H₁B -0.16090.2719 0.0166 0.048* C2 -0.1311(5)0.2891 (3) 0.2358(5)0.0409 (11) 0.049* H2A -0.18880.3524 0.2249 H₂B 0.2536 0.3124 0.049* -0.1676C3 0.0613 (6) 0.3044(3)0.2779(5)0.0382(10)H3 0.1101 0.3408 0.046* 0.2143 0.0329 (9) C4 0.3970 (4) 0.1686(5)0.2711(3)C5 0.3545 (5) 0.3021 (3) 0.4380(4)0.0349(9)C6 0.4815 (6) 0.2388(4)0.5116 (5) 0.0457 (11) H6 0.4514 0.1752 0.5318 0.055* C7 0.6528 (6) 0.2687(4)0.5557(5)0.0546(13) H7 0.7362 0.2248 0.6040 0.065* C8 0.7001 (6) 0.3612(5)0.5292 (6) 0.0598 (15) 0.5610 H8 0.8148 0.3812 0.072* C9 0.5768 (7) 0.4253 (4) 0.4549(7) 0.0661 (16) 0.079* H9 0.6087 0.4887 0.4357 C10 0.4056 (6) 0.3959 (4) 0.4085 (6) 0.0532 (13) H10 0.3239 0.4395 0.3569 0.064* C11 0.1128 (5) 0.2030(3)0.5013 (4) 0.0326 (9) 0.0439 (6) C12 0.1106(3)0.4575 (5) 0.0422(10)0.0314 0.0909 0.3616 0.051* H12 C13 -0.0060(6)0.0480(3)0.5561 (5) 0.0500(12) H13 -0.0522-0.01340.5258 0.060* C14 0.0124(6)0.0761(4)0.6978(5)0.0523 (13) H14 -0.01980.0334 0.7637 0.063* 0.0784 (6) 0.1674 (4) C15 0.7431(5)0.0467 (12) H15 0.0883 0.1871 0.8388 0.056* C16 0.1298 (5) 0.2295 (4) 0.6457 (5) 0.0403(10)0.048* H16 0.1768 0.2905 0.6774 -0.4036(5)0.1302(3)0.1685 (5) 0.0411 (10) C17

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H17A	-0.3821	0.1637	0.2614	0.049*	
H17B	-0.3174	0.0787	0.1761	0.049*	
C18	-0.4928 (7)	0.2892 (4)	0.0510(7)	0.0633 (15)	
H18A	-0.6106	0.2703	0.0100	0.095*	
H18B	-0.4590	0.3397	-0.0076	0.095*	
H18C	-0.4832	0.3135	0.1478	0.095*	
C19	-0.4089 (7)	0.1546 (5)	-0.0910 (5)	0.0596 (14)	
H19A	-0.5290	0.1369	-0.1218	0.089*	
H19B	-0.3385	0.0967	-0.0855	0.089*	
H19C	-0.3796	0.1997	-0.1596	0.089*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.03965 (16)	0.05161 (19)	0.05521 (18)	-0.00709 (15)	0.01359 (13)	-0.00180 (15)
I2	0.04705 (17)	0.03979 (15)	0.04515 (16)	0.00372 (15)	0.01257 (12)	0.00767 (14)
N1	0.0317 (17)	0.043 (2)	0.0351 (19)	-0.0020 (17)	0.0010 (15)	0.0047 (16)
C1	0.029 (2)	0.051 (3)	0.039 (2)	-0.005 (2)	0.0042 (18)	0.006 (2)
C2	0.035 (2)	0.043 (3)	0.042 (3)	0.001 (2)	0.004 (2)	-0.001 (2)
C3	0.038 (2)	0.037 (2)	0.038 (2)	-0.004 (2)	0.0058 (19)	0.003 (2)
C4	0.034 (2)	0.031 (2)	0.033 (2)	-0.0022 (18)	0.0073 (18)	-0.0027 (18)
C5	0.033 (2)	0.037 (2)	0.035 (2)	-0.002 (2)	0.0087 (18)	-0.0047 (19)
C6	0.037 (3)	0.055 (3)	0.046 (3)	0.003 (2)	0.012 (2)	0.011 (2)
C7	0.033 (2)	0.083 (4)	0.049 (3)	0.007 (3)	0.010 (2)	0.009 (3)
C8	0.034 (3)	0.080 (4)	0.065 (4)	-0.009 (3)	0.011 (3)	-0.014 (3)
C9	0.049 (3)	0.048 (4)	0.103 (4)	-0.019 (3)	0.021 (3)	-0.017 (3)
C10	0.040 (3)	0.037 (2)	0.082 (4)	-0.003 (2)	0.012 (3)	0.003 (3)
C11	0.0266 (19)	0.035 (2)	0.035 (2)	0.0031 (18)	0.0054 (17)	0.0010 (18)
C12	0.043 (2)	0.040 (2)	0.045 (2)	-0.002 (2)	0.013 (2)	-0.004 (2)
C13	0.054 (3)	0.032 (3)	0.068 (3)	-0.001 (2)	0.022 (2)	0.004 (2)
C14	0.046 (3)	0.054 (3)	0.061 (3)	0.009 (3)	0.019 (2)	0.023 (3)
C15	0.043 (3)	0.065 (3)	0.031 (2)	0.007 (3)	0.008 (2)	0.007 (2)
C16	0.031 (2)	0.048 (3)	0.040 (2)	-0.004(2)	0.0043 (19)	-0.004 (2)
C17	0.035 (2)	0.049 (3)	0.037 (2)	-0.005 (2)	0.0035 (18)	0.005 (2)
C18	0.041 (3)	0.049 (3)	0.091 (4)	0.009 (3)	-0.002 (3)	0.013 (3)
C19	0.055 (3)	0.084 (4)	0.036 (3)	-0.014 (3)	0.003 (2)	0.001 (3)

Geometric parameters (Å, °)

I1—C17	2.164 (4)	C8—H8	0.9300	
$I1 - I2^i$	3.5640 (4)	C9—C10	1.386 (7)	
N1-C18	1.492 (6)	С9—Н9	0.9300	
N1-C19	1.499 (6)	C10—H10	0.9300	
N1-C17	1.502 (5)	C11—C16	1.390 (6)	
N1-C1	1.536 (5)	C11—C12	1.396 (6)	
C1—C2	1.517 (6)	C12—C13	1.387 (6)	
C1—H1A	0.9700	C12—H12	0.9300	
C1—H1B	0.9700	C13—C14	1.370 (7)	

C2—C3	1.499 (6)	С13—Н13	0.9300
C2—H2A	0.9700	C14—C15	1.379 (7)
C2—H2B	0.9700	C14—H14	0.9300
C3—C4	1.326 (6)	C15—C16	1.379 (6)
С3—Н3	0.9300	С15—Н15	0.9300
C4—C11	1.493 (6)	C16—H16	0.9300
C4—C5	1.495 (6)	С17—Н17А	0.9700
C5—C6	1.385 (6)	С17—Н17В	0.9700
C_{5} — C_{10}	1 388 (6)	C18—H18A	0.9600
C6 C7	1.387(7)	C18 H18B	0.9600
	0.0200		0.9600
$C_0 = 10$	1 252 (9)		0.9000
C7—C8	1.555 (8)	С19—П19А	0.9600
C/—H/	0.9300	С19—Н19В	0.9600
C8—C9	1.376 (8)	С19—Н19С	0.9600
C17—I1—I2 ⁱ	176.81 (12)	C9—C10—C5	120.8 (5)
C18—N1—C19	110.2 (4)	С9—С10—Н10	119.6
C18 - N1 - C17	110 7 (4)	C5-C10-H10	119.6
C19 - N1 - C17	110.7(4)	C_{16} C_{11} C_{12}	119.0 118.0(4)
C18 N1 $C1$	110.7(4) 111.4(4)	C_{16} C_{11} C_{4}	120.8(4)
$C_{10} = N_1 = C_1$	111.4(4) 106.6(3)	$C_{10} = C_{11} = C_{4}$	120.0(4)
C17 = N1 = C1	100.0(3) 107.1(2)	$C_{12} = C_{11} = C_{4}$	121.2(4)
C1/-N1-C1	107.1(3) 114.2(2)	C12 - C12 - C11	120.3 (4)
C2—CI—NI	114.2 (3)	C13—C12—H12	119.8
C2—C1—HIA	108.7	СП—СІ2—НІ2	119.8
N1—C1—H1A	108.7	C14—C13—C12	120.3 (5)
C2—C1—H1B	108.7	C14—C13—H13	119.9
N1—C1—H1B	108.7	C12—C13—H13	119.9
H1A—C1—H1B	107.6	C13—C14—C15	120.2 (4)
C3—C2—C1	111.6 (4)	C13—C14—H14	119.9
C3—C2—H2A	109.3	C15—C14—H14	119.9
C1—C2—H2A	109.3	C14—C15—C16	119.7 (4)
C3—C2—H2B	109.3	C14—C15—H15	120.2
C1—C2—H2B	109.3	С16—С15—Н15	120.2
H2A—C2—H2B	108.0	C15—C16—C11	121.4 (4)
C4—C3—C2	126.3 (4)	С15—С16—Н16	119.3
C4—C3—H3	116.8	$C_{11} - C_{16} - H_{16}$	119.3
C2_C3_H3	116.8	N1_C17_I1	115.5 116.0(3)
$C_2 = C_3 = H_3$	123.0(4)	N1 = C17 = H17A	108.3
$C_3 = C_4 = C_1$	123.0(4)	$\mathbf{N} = \mathbf{C} \mathbf{I} \mathbf{I} = \mathbf{M} \mathbf{I} \mathbf{I} \mathbf{I}$	108.3
$C_{3} - C_{4} - C_{5}$	121.0(4) 115.2(2)	$\frac{11-17}{11}$	108.5
	115.5 (5)	NI = CI / = HI / D	108.5
	117.5 (4)		108.3
C6—C5—C4	120.9 (4)	H1/A - C1/-H1/B	107.4
C10—C5—C4	121.6 (4)	N1—C18—H18A	109.5
C5—C6—C7	121.1 (5)	N1—C18—H18B	109.5
С5—С6—Н6	119.4	H18A—C18—H18B	109.5
С7—С6—Н6	119.4	N1—C18—H18C	109.5
C8—C7—C6	120.7 (5)	H18A—C18—H18C	109.5
С8—С7—Н7	119.6	H18B—C18—H18C	109.5

119.6 119.4 (5) 120.3 120.5 (5) 119.8	N1—C19—H19A N1—C19—H19B H19A—C19—H19B N1—C19—H19C H19A—C19—H19C H19B—C19—H19C	109.5 109.5 109.5 109.5 109.5 109.5
119.8		
55.2 (5) $175.5 (4)$ $-65.9 (5)$ $172.5 (4)$ $-117.9 (5)$ $6.6 (7)$ $-171.6 (4)$ $-148.1 (5)$ $33.5 (5)$ $34.0 (6)$ $-144.3 (4)$ $0.9 (7)$ $-177.0 (4)$ $0.7 (7)$ $-1.4 (8)$ $0.5 (9)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.8 (8) 176.1 (5) -120.5 (5) 57.8 (5) 60.2 (6) -121.5 (4) 0.2 (6) 179.5 (4) -0.3 (7) 0.9 (7) -1.5 (7) 1.5 (7) -0.8 (6) 179.9 (4) 64.6 (4) -57.9 (4)
1.1 (9)	C1—N1—C17—I1	-173.8 (3)
	119.6 $119.4 (5)$ 120.3 120.3 $120.5 (5)$ 119.8 119.8 $55.2 (5)$ $175.5 (4)$ $-65.9 (5)$ $172.5 (4)$ $-117.9 (5)$ $6.6 (7)$ $-171.6 (4)$ $-148.1 (5)$ $33.5 (5)$ $34.0 (6)$ $-144.3 (4)$ $0.9 (7)$ $-177.0 (4)$ $0.7 (7)$ $-1.4 (8)$ $0.5 (9)$ $1.1 (9)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Symmetry code: (i) -x-1, y-1/2, -z+1.

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
С17—Н17В…І2 ^{ії}	0.97	3.00	3.919 (5)	159
C7—H7····Cg ⁱⁱⁱ	0.93	2.84	3.030 (5)	143

Symmetry codes: (ii) -x, y-1/2, -z+1; (iii) x+1, y, z.

(II) N-(5,5-Diphenylpent-4-en-1-yl)-N-iodomethyl-N,N-dimethylammonium iodide

Crystal data
$C_{20}H_{25}IN^{+}\cdot I^{-}$
$M_r = 533.21$
Monoclinic, C2/c
<i>a</i> = 37.778 (7) Å
b = 6.6323 (12) Å
c = 17.021 (3) Å
$\beta = 100.567 \ (4)^{\circ}$
$V = 4192.3 (13) Å^3$
Z = 8
F(000) = 2064

 $D_x = 1.690 \text{ Mg m}^{-3}$ Melting point = 430–431 K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4726 reflections $\theta = 2.2-25.3^{\circ}$ $\mu = 3.00 \text{ mm}^{-1}$ T = 298 KPlaty-prism, colourless $0.21 \times 0.20 \times 0.08 \text{ mm}$ Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω -scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2012) $T_{min} = 0.349, T_{max} = 0.745$ <i>Refinement</i>	16925 measured reflections 3808 independent reflections 3114 reflections with $I > 2\sigma(I)$ $R_{int} = 0.079$ $\theta_{max} = 25.4^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -45 \rightarrow 45$ $k = -7 \rightarrow 7$ $l = -20 \rightarrow 20$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from
$wR(F^2) = 0.145$	neighbouring sites
S = 1.05	H-atom parameters constrained
3808 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0918P)^2]$
210 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.90 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.98 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.25244 (2)	-0.01229 (6)	0.13640 (2)	0.04488 (19)	
I2	0.30512 (2)	0.07869 (7)	0.42246 (3)	0.04999 (19)	
N1	0.31227 (12)	0.3200 (8)	0.1496 (2)	0.0383 (11)	
C1	0.32956 (18)	0.4989 (9)	0.1981 (4)	0.0446 (15)	
H1A	0.3463	0.5629	0.1690	0.053*	
H1B	0.3109	0.5965	0.2029	0.053*	
C2	0.34941 (19)	0.4459 (10)	0.2810 (4)	0.0503 (16)	
H2A	0.3713	0.3736	0.2770	0.060*	
H2B	0.3345	0.3583	0.3069	0.060*	
C3	0.35877 (18)	0.6363 (11)	0.3312 (4)	0.0498 (15)	
H3A	0.3769	0.7134	0.3107	0.060*	
H3B	0.3375	0.7199	0.3284	0.060*	
C4	0.37268 (18)	0.5764 (12)	0.4160 (4)	0.0536 (17)	
H4	0.3577	0.4935	0.4394	0.064*	
C5	0.40427 (16)	0.6276 (11)	0.4628 (3)	0.0476 (15)	
C6	0.41456 (18)	0.5452 (12)	0.5446 (4)	0.0537 (18)	
C7	0.4042 (2)	0.3523 (14)	0.5653 (4)	0.066 (2)	
H7	0.3905	0.2719	0.5265	0.080*	
C8	0.4140 (2)	0.2791 (17)	0.6421 (5)	0.083 (3)	
H8	0.4068	0.1506	0.6544	0.099*	

C9	0.4346 (2)	0.396 (2)	0.7012 (5)	0.095 (4)
H9	0.4411	0.3468	0.7530	0.114*
C10	0.4453 (2)	0.586 (2)	0.6822 (5)	0.098 (4)
H10	0.4592	0.6652	0.7213	0.117*
C11	0.43528 (19)	0.6603 (16)	0.6054 (4)	0.073 (2)
H11	0.4425	0.7893	0.5937	0.088*
C12	0.42943 (16)	0.7710 (12)	0.4341 (3)	0.0494 (16)
C13	0.4190 (2)	0.9644 (13)	0.4097 (5)	0.067 (2)
H13	0.3957	1.0067	0.4121	0.080*
C14	0.4417 (3)	1.0942 (16)	0.3824 (6)	0.087 (3)
H14	0.4339	1.2226	0.3655	0.104*
C15	0.4761 (3)	1.036 (2)	0.3796 (7)	0.097 (4)
H15	0.4914	1.1257	0.3604	0.117*
C16	0.4882 (2)	0.849 (2)	0.4045 (5)	0.091 (3)
H16	0.5118	0.8115	0.4026	0.109*
C17	0.46478 (18)	0.7137 (15)	0.4330 (4)	0.067 (2)
H17	0.4729	0.5865	0.4509	0.080*
C18	0.28176 (16)	0.2484 (10)	0.1869 (3)	0.0425 (14)
H18A	0.2648	0.3587	0.1853	0.051*
H18B	0.2911	0.2201	0.2428	0.051*
C19	0.33945 (17)	0.1549 (11)	0.1464 (4)	0.0509 (16)
H19A	0.3288	0.0516	0.1101	0.076*
H19B	0.3468	0.0982	0.1988	0.076*
H19C	0.3601	0.2098	0.1283	0.076*
C20	0.29821 (18)	0.3908 (10)	0.0658 (3)	0.0495 (16)
H20A	0.2870	0.2801	0.0343	0.074*
H20B	0.3178	0.4416	0.0427	0.074*
H20C	0.2808	0.4959	0.0668	0.074*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0501 (3)	0.0520 (3)	0.0289 (3)	-0.01023 (17)	-0.00240 (18)	0.00087 (16)
I2	0.0512 (3)	0.0512 (3)	0.0461 (3)	0.00415 (19)	0.0052 (2)	0.01397 (19)
N1	0.041 (3)	0.050 (3)	0.021 (2)	-0.003 (2)	-0.0006 (19)	-0.002 (2)
C1	0.052 (4)	0.047 (4)	0.033 (3)	-0.013 (3)	0.001 (3)	-0.003 (3)
C2	0.052 (4)	0.062 (4)	0.031 (3)	-0.008 (3)	-0.009 (3)	-0.005 (3)
C3	0.044 (3)	0.062 (4)	0.039 (3)	-0.010 (3)	-0.003 (3)	-0.011 (3)
C4	0.047 (4)	0.082 (5)	0.028 (3)	-0.012 (3)	-0.001 (3)	-0.011 (3)
C5	0.042 (3)	0.067 (4)	0.031 (3)	-0.009 (3)	0.000 (2)	-0.019 (3)
C6	0.035 (3)	0.089 (5)	0.036 (3)	0.001 (3)	0.004 (3)	-0.008 (3)
C7	0.064 (5)	0.088 (6)	0.046 (4)	0.000 (4)	0.008 (3)	-0.002 (4)
C8	0.066 (5)	0.126 (8)	0.058 (5)	0.013 (5)	0.018 (4)	0.021 (5)
C9	0.051 (5)	0.188 (12)	0.044 (5)	0.007 (6)	0.002 (4)	0.014 (6)
C10	0.059 (5)	0.190 (12)	0.039 (4)	-0.033 (7)	-0.004 (4)	-0.024 (6)
C11	0.057 (4)	0.118 (7)	0.042 (4)	-0.023 (5)	0.001 (3)	-0.021 (4)
C12	0.040 (3)	0.075 (5)	0.029 (3)	-0.008 (3)	-0.003 (2)	-0.016 (3)
C13	0.057 (5)	0.075 (5)	0.061 (5)	-0.012 (4)	-0.007 (4)	-0.020 (4)

supporting information

C14	0.079 (6)	0.092 (7)	0.079 (6)	-0.027 (5)	-0.014 (5)	0.009 (5)
C15	0.073 (7)	0.136 (10)	0.076 (6)	-0.044 (6)	-0.004 (5)	0.025 (7)
C16	0.047 (4)	0.167 (11)	0.056 (5)	-0.019 (6)	0.004 (4)	-0.005 (6)
C17	0.043 (4)	0.111 (7)	0.042 (4)	-0.004 (4)	-0.002 (3)	-0.004 (4)
C18	0.044 (3)	0.058 (4)	0.025 (3)	-0.009 (3)	0.003 (2)	-0.004 (3)
C19	0.048 (4)	0.058 (4)	0.044 (3)	0.005 (3)	0.002 (3)	-0.011 (3)
C20	0.057 (4)	0.061 (4)	0.028 (3)	-0.004 (3)	0.000 (3)	0.006 (3)

Geometric parameters (Å, °)

I1—C18	2.146 (6)	C9—C10	1.381 (16)
I1—I2 ⁱ	3.5058 (7)	С9—Н9	0.9300
N1—C18	1.492 (7)	C10-C11	1.382 (12)
N1	1.504 (7)	C10—H10	0.9300
N1—C19	1.509 (8)	C11—H11	0.9300
N1—C1	1.522 (8)	C12—C13	1.383 (11)
C1—C2	1.513 (9)	C12—C17	1.392 (9)
C1—H1A	0.9700	C13—C14	1.357 (12)
C1—H1B	0.9700	C13—H13	0.9300
C2—C3	1.530 (9)	C14—C15	1.361 (14)
C2—H2A	0.9700	C14—H14	0.9300
C2—H2B	0.9700	C15—C16	1.363 (16)
C3—C4	1.496 (9)	С15—Н15	0.9300
С3—НЗА	0.9700	C16—C17	1.410 (13)
С3—Н3В	0.9700	C16—H16	0.9300
C4—C5	1.351 (9)	C17—H17	0.9300
C4—H4	0.9300	C18—H18A	0.9700
C5—C6	1.480 (10)	C18—H18B	0.9700
C5—C12	1.489 (9)	C19—H19A	0.9600
C6—C7	1.402 (12)	C19—H19B	0.9600
C6—C11	1.404 (10)	C19—H19C	0.9600
C7—C8	1.379 (11)	C20—H20A	0.9600
С7—Н7	0.9300	С20—Н20В	0.9600
С8—С9	1.390 (14)	С20—Н20С	0.9600
C8—H8	0.9300		
C18—I1—I2 ⁱ	170.16 (15)	C9—C10—C11	120.3 (9)
C18—N1—C20	109.7 (4)	C9—C10—H10	119.9
C18—N1—C19	111.6 (5)	C11—C10—H10	119.9
C20—N1—C19	108.5 (5)	C10—C11—C6	121.6 (9)
C18—N1—C1	107.8 (4)	C10-C11-H11	119.2
C20—N1—C1	108.2 (5)	C6—C11—H11	119.2
C19—N1—C1	111.0 (5)	C13—C12—C17	118.1 (7)
C2—C1—N1	114.4 (5)	C13—C12—C5	121.8 (6)
C2—C1—H1A	108.6	C17—C12—C5	120.1 (7)
N1—C1—H1A	108.6	C14—C13—C12	121.8 (8)
C2—C1—H1B	108.6	C14—C13—H13	119.1
N1—C1—H1B	108.6	C12—C13—H13	119.1

H1A—C1—H1B	107.6	C13—C14—C15	120.0 (10)
C1—C2—C3	110.7 (6)	C13—C14—H14	120.0
C1—C2—H2A	109.5	C15—C14—H14	120.0
C3—C2—H2A	109.5	C14—C15—C16	121.0 (9)
C1—C2—H2B	109.5	C14—C15—H15	119.5
С3—С2—Н2В	109.5	C16—C15—H15	119.5
H2A—C2—H2B	108.1	C15—C16—C17	119.3 (9)
C4—C3—C2	108.9 (6)	C15—C16—H16	120.3
С4—С3—НЗА	109.9	C17—C16—H16	120.3
С2—С3—НЗА	109.9	C12—C17—C16	119.7 (9)
C4—C3—H3B	109.9	C12—C17—H17	120.1
С2—С3—НЗВ	109.9	C16—C17—H17	120.1
НЗА—СЗ—НЗВ	108.3	N1—C18—I1	117.9 (4)
C5—C4—C3	128.2 (7)	N1—C18—H18A	107.8
C5—C4—H4	115.9	I1—C18—H18A	107.8
C3—C4—H4	115.9	N1-C18-H18B	107.8
C4—C5—C6	120.9 (6)	I1—C18—H18B	107.8
C4—C5—C12	121.0 (6)	H18A—C18—H18B	107.2
C6—C5—C12	118.1 (5)	N1—C19—H19A	109.5
C7—C6—C11	117.0 (7)	N1—C19—H19B	109.5
C7—C6—C5	122.5 (6)	H19A—C19—H19B	109.5
C11—C6—C5	120.5 (7)	N1—C19—H19C	109.5
C8—C7—C6	121.4 (8)	H19A—C19—H19C	109.5
С8—С7—Н7	119.3	H19B—C19—H19C	109.5
С6—С7—Н7	119.3	N1—C20—H20A	109.5
C7—C8—C9	120.4 (10)	N1-C20-H20B	109.5
С7—С8—Н8	119.8	H20A—C20—H20B	109.5
С9—С8—Н8	119.8	N1—C20—H20C	109.5
С10—С9—С8	119.3 (8)	H20A—C20—H20C	109.5
С10—С9—Н9	120.3	H20B—C20—H20C	109.5
С8—С9—Н9	120.3		
C18—N1—C1—C2	69.2 (7)	C7—C6—C11—C10	0.4 (12)
C20—N1—C1—C2	-172.2 (5)	C5-C6-C11-C10	-179.9 (8)
C19—N1—C1—C2	-53.3 (7)	C4—C5—C12—C13	57.8 (9)
N1—C1—C2—C3	-167.8 (5)	C6—C5—C12—C13	-121.2 (7)
C1—C2—C3—C4	170.6 (6)	C4—C5—C12—C17	-123.6 (8)
C2—C3—C4—C5	124.9 (8)	C6—C5—C12—C17	57.4 (8)
C3—C4—C5—C6	-176.7 (7)	C17—C12—C13—C14	2.5 (11)
C3—C4—C5—C12	4.3 (12)	C5-C12-C13-C14	-179.0(7)
C4—C5—C6—C7	32.1 (11)	C12—C13—C14—C15	-1.0 (14)
C12—C5—C6—C7	-148.9 (7)	C13—C14—C15—C16	-0.4 (16)
C4—C5—C6—C11	-147.5 (7)	C14—C15—C16—C17	0.4 (16)
C12—C5—C6—C11	31.5 (10)	C13—C12—C17—C16	-2.5 (10)
C11—C6—C7—C8	0.0 (11)	C5—C12—C17—C16	179.0 (6)
C5—C6—C7—C8	-179.7 (7)	C15—C16—C17—C12	1.1 (13)
C6—C7—C8—C9	0.0 (12)	C20—N1—C18—I1	64.9 (6)
C7—C8—C9—C10	-0.2 (14)	C19—N1—C18—I1	-55.4 (5)

supporting information

C8—C9—C10—C11 C9—C10—C11—C6	0.6 (15) -0.7 (14)		C1—N1—C18—I1		-177.5 (4)
Symmetry code: (i) $-x+1/2$, $y-1/2$, $-z+$	1/2.				
Hydrogen-bond geometry (Å, °,)				
D—H···A		D—H	H···A	$D \cdots A$	D—H···A
C2—H2 <i>B</i> …I2		0.97	3.06	4.001 (7)	165
(III) N-(6,6-Diphenylhex-5-e	n-1-yl)- <i>N</i> -iodom	ethyl- <i>N,N</i>	/-dimethylammonium	iodide	

Crystal data

$C_{21}H_{27}IN^+ \cdot I^-$	$D_{\rm x} = 1.676 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 547.23$	Melting point = $429-431$ K
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.9423 (12) Å	Cell parameters from 3046 reflections
b = 24.058 (3) Å	$\theta = 2.3 - 24.4^{\circ}$
c = 10.3749(13) Å	$\mu = 2.90 \text{ mm}^{-1}$
$\beta = 103.656 \ (3)^{\circ}$	T = 298 K
$V = 2168.9 (5) \text{ Å}^3$	Prism, colourless
Z = 4	$0.32 \times 0.22 \times 0.04 \text{ mm}$
F(000) = 1064	
Data collection	
Bruker SMART APEX CCD	3961 measured reflections
diffractometer	3961 independent reflections
Radiation source: fine-focus sealed tube	2941 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.079$
Detector resolution: 8.333 pixels mm ⁻¹	$\theta_{\rm max} = 25.4^\circ, \ \theta_{\rm min} = 1.7^\circ$
ω–scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan	$k = 0 \rightarrow 28$
(TWINABS; Bruker, 2012)	$l = 0 \rightarrow 12$
$T_{\min} = 0.273, \ T_{\max} = 0.429$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.060$	Hydrogen site location: inferred from
$wR(F^2) = 0.138$	neighbouring sites
S = 1.05	H-atom parameters constrained
3961 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0515P)^2 + 2.9321P]$
220 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.82 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.80 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin. The studied crystal was a nonmerohedral twin with a ratio of two major domains of 0.374 (2):0.626 (2). The two domains were rotated from each other by 180.0° about the recipocal axis (1 0 0), which was determined by the CELL NOW program (Sheldrick, 2004). The final refinement was carried out using twinned data set.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	-0.29957 (8)	0.44339 (3)	0.01740 (6)	0.0597 (2)	
I2	0.17494 (8)	0.51476 (3)	0.26901 (6)	0.0598 (2)	
N1	-0.3411 (8)	0.4415 (4)	0.3070 (7)	0.056 (2)	
C1	-0.1733 (11)	0.4319 (4)	0.3631 (10)	0.063 (3)	
H1A	-0.1159	0.4525	0.3103	0.076*	
H1B	-0.1459	0.4469	0.4524	0.076*	
C2	-0.1252 (12)	0.3731 (4)	0.3678 (12)	0.072 (3)	
H2A	-0.1407	0.3584	0.2786	0.087*	
H2B	-0.1860	0.3512	0.4153	0.087*	
C3	0.0467 (11)	0.3699 (4)	0.4394 (11)	0.068 (3)	
H3A	0.1029	0.3971	0.4001	0.082*	
H3B	0.0578	0.3800	0.5317	0.082*	
C4	0.1182 (12)	0.3134 (4)	0.4333 (15)	0.091 (4)	
H4A	0.1013	0.3019	0.3413	0.109*	
H4B	0.0681	0.2866	0.4789	0.109*	
C5	0.2892 (10)	0.3135 (4)	0.4957 (12)	0.068 (3)	
Н5	0.3381	0.3478	0.5120	0.082*	
C6	0.3743 (10)	0.2685 (3)	0.5287 (10)	0.055 (2)	
C7	0.5451 (11)	0.2703 (3)	0.5813 (9)	0.052 (2)	
C8	0.6398 (11)	0.2322 (4)	0.5435 (11)	0.066 (3)	
H8	0.5966	0.2031	0.4881	0.080*	
C9	0.8003 (12)	0.2359 (5)	0.5862 (14)	0.091 (4)	
H9	0.8636	0.2109	0.5560	0.109*	
C10	0.8623 (15)	0.2778 (5)	0.6747 (14)	0.097 (5)	
H10	0.9683	0.2798	0.7079	0.116*	
C11	0.7701 (16)	0.3158 (5)	0.7133 (14)	0.094 (4)	
H11	0.8128	0.3446	0.7699	0.113*	
C12	0.6122 (14)	0.3116 (5)	0.6681 (11)	0.079 (3)	
H12	0.5495	0.3373	0.6969	0.094*	
C13	0.3026 (11)	0.2115 (3)	0.5086 (10)	0.055 (2)	
C14	0.2723 (13)	0.1847 (4)	0.6156 (12)	0.074 (3)	
H14	0.2993	0.2012	0.6990	0.089*	
C15	0.2004 (14)	0.1323 (4)	0.6000 (16)	0.088 (4)	
H15	0.1840	0.1135	0.6738	0.105*	
C16	0.1551 (14)	0.1091 (5)	0.4782 (18)	0.095 (4)	
H16	0.1010	0.0757	0.4681	0.114*	
C17	0.1888 (18)	0.1347 (6)	0.3678 (16)	0.116 (6)	
H17	0.1614	0.1184	0.2842	0.139*	
C18	0.2659 (17)	0.1861 (5)	0.3880 (12)	0.091 (4)	
H18	0.2926	0.2034	0.3164	0.109*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C19	-0.4077 (11)	0.4192 (4)	0.1718 (10)	0.065 (3)
H19A	-0.5148	0.4304	0.1460	0.078*
H19B	-0.4058	0.3789	0.1771	0.078*
C20	-0.3648 (13)	0.5048 (4)	0.3059 (11)	0.074 (3)
H20A	-0.4723	0.5131	0.2740	0.111*
H20B	-0.3078	0.5218	0.2488	0.111*
H20C	-0.3294	0.5191	0.3943	0.111*
C21	-0.4312 (12)	0.4165 (5)	0.3995 (10)	0.071 (3)
H21A	-0.5382	0.4256	0.3684	0.107*
H21B	-0.3936	0.4313	0.4872	0.107*
H21C	-0.4189	0.3769	0.4015	0.107*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0559 (4)	0.0659 (4)	0.0605 (4)	0.0039 (3)	0.0202 (3)	0.0118 (3)
I2	0.0586 (4)	0.0618 (4)	0.0632 (4)	0.0015 (3)	0.0228 (3)	0.0043 (3)
N1	0.041 (4)	0.081 (6)	0.046 (4)	0.002 (4)	0.012 (4)	0.020 (4)
C1	0.045 (5)	0.078 (7)	0.069 (6)	-0.006(5)	0.015 (5)	0.014 (5)
C2	0.058 (6)	0.056 (6)	0.106 (9)	0.003 (5)	0.024 (6)	-0.001 (6)
C3	0.057 (6)	0.069 (6)	0.075 (7)	0.012 (5)	0.007 (6)	0.017 (6)
C4	0.054 (7)	0.065 (7)	0.158 (12)	0.006 (5)	0.036 (8)	0.023 (8)
C5	0.040 (5)	0.043 (5)	0.123 (9)	0.002 (4)	0.022 (6)	0.012 (6)
C6	0.047 (5)	0.038 (5)	0.082 (7)	0.005 (4)	0.019 (5)	0.010 (5)
C7	0.052 (6)	0.038 (5)	0.069 (6)	-0.002(4)	0.019 (5)	0.010 (4)
C8	0.051 (6)	0.055 (6)	0.090 (7)	0.004 (5)	0.009 (6)	-0.006 (5)
C9	0.051 (7)	0.083 (8)	0.140 (11)	0.017 (6)	0.026 (8)	0.022 (8)
C10	0.066 (8)	0.077 (8)	0.129 (11)	-0.028 (7)	-0.014 (8)	0.022 (8)
C11	0.100 (10)	0.054 (7)	0.116 (11)	-0.008 (7)	-0.001 (9)	-0.007 (7)
C12	0.075 (8)	0.074 (7)	0.087 (8)	-0.007 (6)	0.019 (7)	-0.002 (7)
C13	0.056 (6)	0.040 (5)	0.067 (6)	0.012 (4)	0.011 (5)	0.014 (5)
C14	0.079 (8)	0.053 (6)	0.101 (9)	-0.004 (6)	0.043 (7)	-0.012 (6)
C15	0.085 (9)	0.041 (6)	0.152 (13)	-0.009 (6)	0.058 (9)	0.011 (7)
C16	0.053 (7)	0.063 (7)	0.155 (14)	-0.001 (6)	-0.004 (9)	-0.005 (10)
C17	0.135 (14)	0.072 (9)	0.108 (11)	0.001 (9)	-0.038 (10)	-0.002 (8)
C18	0.116 (11)	0.069 (8)	0.075 (8)	-0.001 (8)	-0.002 (7)	0.001 (7)
C19	0.049 (6)	0.080 (7)	0.073 (7)	-0.005 (5)	0.029 (5)	0.024 (6)
C20	0.066 (7)	0.071 (7)	0.089 (8)	0.009 (6)	0.027 (6)	0.008 (6)
C21	0.056 (6)	0.091 (8)	0.072 (7)	-0.006 (6)	0.025 (6)	0.032 (6)

Geometric parameters (Å, °)

I1—C19	2.138 (9)	C9—C10	1.388 (17)	
I1—I2 ⁱ	3.5565 (9)	С9—Н9	0.9300	
N1-C19	1.489 (12)	C10—C11	1.353 (18)	
N1—C1	1.494 (12)	C10—H10	0.9300	
N1-C21	1.515 (11)	C11—C12	1.383 (16)	
N1-C20	1.537 (12)	C11—H11	0.9300	

C1—C2	1.477 (13)	C12—H12	0.9300
C1—H1A	0.9700	C13—C18	1.360 (14)
C1—H1B	0.9700	C13—C14	1.365 (14)
C2—C3	1.543 (13)	C14—C15	1.407 (14)
C2—H2A	0.9700	C14—H14	0.9300
C2—H2B	0.9700	C15—C16	1.353 (18)
C3—C4	1.510 (14)	C15—H15	0.9300
C3—H3A	0.9700	C16—C17	1 39 (2)
C3—H3B	0 9700	C16—H16	0.9300
C4-C5	1 514 (14)	C17 - C18	1409(17)
C4 - H4A	0.9700	C17—H17	0.9300
C4—H4B	0.9700	C18—H18	0.9300
C5	1,323,(12)	C10 H10	0.9700
C5_H5	0.9300	C10 H10R	0.9700
C6_C7	1.407(12)		0.9700
$C_0 = C_1^2$	1.497(12) 1.507(12)	C20—H20R	0.9000
$C_0 = C_{13}$	1.307(12) 1.266(12)	C20—H20B	0.9000
$C_{1} = C_{0}$	1.300(12)		0.9600
C/-C12	1.379 (14)	C21—H2IA	0.9600
	1.401 (14)	C21—H21B	0.9600
С8—Н8	0.9300	C21—H21C	0.9600
$C19 - I1 - I2^{i}$	171 6 (3)	C11—C10—C9	1206(11)
C19 - N1 - C1	116.9 (8)	$C_{11} - C_{10} - H_{10}$	119 7
C19 N1 C21	107.4(7)	C9-C10-H10	119.7
C1 $N1$ $C21$	107.4(7) 109.1(7)	C_{10} C_{11} C_{12}	119.7 119.7(12)
C19 - N1 - C20	109.1(7)	C10-C11-H11	120.1
C1 N1 $C20$	105.1(7) 106.3(7)	C_{12} C_{11} H_{11}	120.1
$C_1 = N_1 = C_2 0$	107.8 (8)	C_{12} C_{12} C_{11}	120.1 121.7(12)
$C_2 C_1 N_1$	11/ 8 (8)	C7 C12 H12	121.7 (12)
$C_2 = C_1 = H_1 \Lambda$	108.6	$C_1 = C_1 $	119.1
	108.6	C18 C13 C14	119.1
$N_{1} = C_{1} = M_{1}$	108.0	$C_{10} = C_{13} = C_{14}$	119.1(9) 122.5(0)
$C_2 - C_1 - H_1 B$	108.0	$C_{18} - C_{13} - C_{0}$	122.3(9)
	107.5	$C_{14} = C_{13} = C_{0}$	110.4(9)
$\Pi A - C I - \Pi I B$	107.5	$C_{13} = C_{14} = C_{13}$	120.1 (12)
C1 = C2 = C3	108.2 (8)	C15_C14_H14	119.9
$C_1 = C_2 = H_2 A$	110.1	C15—C14—H14	119.9
$C_3 = C_2 = H_2 A$	110.1	C16 - C15 - C14	120.4 (12)
C1 - C2 - H2B	110.1	C16—C15—H15	119.8
$C_3 - C_2 - H_2 B$	110.1	C14—C15—H15	119.8
$H_2A - C_2 - H_2B$	108.4		120.6 (11)
C4 - C3 - C2	114.0 (9)	C15—C16—H16	119.7
C4—C3—H3A	108.7	C1/C16H16	119.7
C2-C3-H3A	108.7	C16 - C17 - C18	117.3 (13)
C4—C3—H3B	108.7	C16—C17—H17	121.3
C2—C3—H3B	108.7	C18—C17—H17	121.3
нза—Сз—НЗВ	107.6	C13—C18—C17	122.2 (13)
C3—C4—C5	112.1 (9)	C13—C18—H18	118.9
C3—C4—H4A	109.2	C17—C18—H18	118.9

C5—C4—H4A	109.2	N1—C19—I1	117.2 (6)
C3—C4—H4B	109.2	N1—C19—H19A	108.0
C5—C4—H4B	109.2	I1—C19—H19A	108.0
H4A—C4—H4B	107.9	N1—C19—H19B	108.0
C6—C5—C4	124.8 (9)	I1—C19—H19B	108.0
С6—С5—Н5	117.6	H19A—C19—H19B	107.2
C4—C5—H5	117.6	N1-C20-H20A	109.5
C5—C6—C7	123.1 (8)	N1—C20—H20B	109.5
C5—C6—C13	120.7 (8)	H20A—C20—H20B	109.5
C7—C6—C13	116.2 (7)	N1—C20—H20C	109.5
C8—C7—C12	117.9 (10)	H20A—C20—H20C	109.5
C8—C7—C6	121.6 (9)	H20B-C20-H20C	109.5
С12—С7—С6	120.5 (9)	N1—C21—H21A	109.5
С7—С8—С9	121.6 (10)	N1—C21—H21B	109.5
С7—С8—Н8	119.2	H21A-C21-H21B	109.5
С9—С8—Н8	119.2	N1—C21—H21C	109.5
С10—С9—С8	118.4 (11)	H21A—C21—H21C	109.5
С10—С9—Н9	120.8	H21B—C21—H21C	109.5
С8—С9—Н9	120.8		
C19—N1—C1—C2	-55.7 (12)	C8—C7—C12—C11	1.8 (16)
C21—N1—C1—C2	66.3 (12)	C6—C7—C12—C11	-176.9 (10)
C20—N1—C1—C2	-177.7 (9)	C10—C11—C12—C7	-2 (2)
N1—C1—C2—C3	-174.9 (8)	C5—C6—C13—C18	78.5 (15)
C1—C2—C3—C4	-171.1 (10)	C7—C6—C13—C18	-98.8 (13)
C2—C3—C4—C5	175.7 (10)	C5—C6—C13—C14	-100.9 (13)
C3—C4—C5—C6	165.3 (12)	C7—C6—C13—C14	81.9 (12)
C4—C5—C6—C7	175.5 (11)	C18—C13—C14—C15	-1.6 (16)
C4—C5—C6—C13	-1.5 (18)	C6—C13—C14—C15	177.7 (9)
C5—C6—C7—C8	-140.0 (11)	C13—C14—C15—C16	-2.7 (18)
C13—C6—C7—C8	37.2 (13)	C14—C15—C16—C17	4.7 (19)
C5—C6—C7—C12	38.6 (15)	C15—C16—C17—C18	-2 (2)
C13—C6—C7—C12	-144.2 (10)	C14—C13—C18—C17	4.0 (19)
C12—C7—C8—C9	-2.7 (16)	C6—C13—C18—C17	-175.3 (11)
C6—C7—C8—C9	175.9 (10)	C16—C17—C18—C13	-2 (2)
C7—C8—C9—C10	3.5 (18)	C1—N1—C19—I1	-54.3 (10)
C8—C9—C10—C11	0 4 (10)	CO1 N1 C10 11	1770(7)
	-3.4 (19)	C21—N1—C19—II	-1//.2(/)

Symmetry code: (i) -x, -y+1, -z.