

Received 8 September 2015 Accepted 17 September 2015

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: crystal structure; rhenium(III); cluster; alkylcarboxylate complex; quadruple metal–metal bond; hydrogen bonding

CCDC reference: 1425634 **Supporting information**: this article has supporting information at journals.iucr.org/e

Crystal structure of di- μ -isobutyrato- $\kappa^4 O:O'$ -bis[cisdichlorido(dimethyl sulfoxide- κS)rhenium(III)]

Alexander A. Golichenko* and Alexander V. Shtemenko

Department of Inorganic Chemistry, Ukrainian State University of Chemical Technology, Gagarin Ave. 8, Dnipropetrovsk 49005, Ukraine. *Correspondence e-mail: golichenko_alex@i.ua

The title compound, $[\text{Re}_2(\text{C}_3\text{H}_7\text{COO})_2\text{Cl}_4\{(\text{CH}_3)_2\text{SO}\}_2]$, comprises binuclear complex molecules $[\text{Re}-\text{Re} = 2.24502 \ (13) \text{ Å}]$ involving *cis*-oriented double carboxylate bridges, four equatorial chloride ions and two weakly bonded O atoms from dimethyl sulfoxide ligands in the axial positions at the Re^{III} atoms. In the crystal, molecules are linked into corrugated layers parallel to (101) by very weak C-H···Cl and C-H···O hydrogen-bonding interactions. C-H···Cl hydrogen bonding provides the links between layers to consolidate a three-dimensional framework.

1. Chemical context

Binuclear rhenium(III) clusters are classical complexes with a unique quadruple metal-metal bond (Cotton *et al.*, 2005, Golichenko & Shtemenko, 2006). In our previous work we have shown that such compounds with chloride and alkyl-carboxylate equatorial ligands exhibit antitumor, antiradical and hepato- and nephroprotective biological activity with low toxicity (Dimitrov *et al.*, 1978, Shtemenko *et al.*, 2007, 2008, 2009, 2013).

Labile axial ligands and equatorial chloride groups are the reactive centers in interactions with other chemical compounds and biological macromolecules *in vitro* and *in vivo* (Shtemenko *et al.*, 2013). In this context, we present the synthesis and the structure of the title dirhenium(III) complex with isobutyrate equatorial ligands as biologically active groups, which can exhibit antitumor activity in the tetra-carboxylate compound $\text{Re}_2(i-\text{C}_3\text{H}_7\text{COO})_4\text{Cl}_2$ (Shtemenko *et al.*, 2007).

research communications

Figure 1

The structure of cis-Re₂Cl₄{i-C₃H₇COO}₂·2(CH₃)₂SO, showing displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.

2. Structural commentary

The quadruple Re–Re bond [2.24502 (13) Å] is typical for related dicarboxylato clusters (Cotton et al., 2005, Shtemenko et al., 2009) and the coordination of each of the rhenium ions also comprises two chlorides and two oxygen atoms of carboxylate ligands (Fig. 1). The distorted octahedral coordination geometry of Re1 and Re2 is completed by weakly bonded oxygen atoms from dimethyl sulfoxide ligands [Re1-O6 = 2.3282 (15) and Re2 - O5 = 2.3938 (15) Å, in transpositions to the Re-Re bond. This may be compared with a similar weak binding of N- or O-donors, which is characteristic of dicarboxylatodirhenium compounds (Bera et al., 2003, Shtemenko et al., 2009, Golichenko et al., 2015).

Figure 2

A fragment of the structure, showing weak $C-H \cdots O$ and $C-H \cdots Cl$ hydrogen-bond interactions (dashed lines), which assemble the molecules into corrugated layers parallel to (101). [Symmetry codes: (i) $-\frac{1}{2} + x, \frac{1}{2} - y$, $\frac{1}{2} + z$; (ii) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$.]

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C11 - H11B \cdots O2^{i}$	0.98	2.40	3.324 (3)	156
C6−H6···Cl3 ⁱⁱ	1.00	2.73	3.519 (2)	136
$C12 - H12A \cdots Cl2^{iii}$	0.98	2.82	3.751 (3)	159
$C12-H12B\cdots Cl3^{i}$	0.98	2.82	3.760 (3)	161

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x - \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}.$

3. Supramolecular features

Intermolecular bonding is only very weak: it comprises distal, though relatively directional, $C-H\cdots O$ and $C-H\cdots Cl$ hydrogen-bond interactions between the methine- and methyl-H of the carboxylate and DMSO ligands (Table 1). The shortest bonds found for the chloride acceptors are C6-H6...Cl3ⁱⁱ [C6...Cl3ⁱⁱ = 3.519 (2) Å; symmetry code (ii): $\frac{1}{2} - x$, $\frac{1}{2} + y, \frac{1}{2} - z$], which unite the molecules into chains along the b axis (Fig. 2). The hydrogen bonds adopted by two methyl groups of DMSO molecules (referenced by a sulfur atoms S2) assemble these chains into corrugated layers parallel to (101). A very weak bond of this type is found also between adjacent layers: C12···Cl2ⁱⁱⁱ = 3.751 (3) Å; symmetry code (iii): $-\frac{1}{2} - x$, $\frac{1}{2} + y, \frac{1}{2} - z$ (Table 1). The latter extends the structure into a third direction and provides the formation of a hydrogenbonded framework.

Table 2 Experimental details.

Crystal data	
Chemical formula	$[\text{Re}_2(\text{C}_4\text{H}_7\text{O}_2)_2\text{Cl}_4(\text{C}_2\text{H}_6\text{OS})_2]$
M _r	844.65
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	110
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.5581 (4), 14.7406 (5),
ρ (0)	100 704 (2)
p(1)	100.794(2)
V(A)	2380.20 (13)
	4
Radiation type	Μο Κα
$\mu \text{ (mm^{-1})}$	10.78
Crystal size (mm)	$0.22 \times 0.18 \times 0.09$
Data collection	
Diffractometer	Siemens SMART CCD area- detector
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2008)
T_{\min}, T_{\max}	0.133, 0.478
No. of measured, independent and	93039, 14497, 11921
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.040
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.909
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.025, 0.049, 1.00
No. of reflections	14497
No. of parameters	243
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} ~{\rm \AA}^{-3})$	1.71, -1.14

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 (Sheldrick 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999) and WinGX (Farrugia, 2012)

4. Synthesis and crystallization

 $[NBu_4]_2[Re_2Cl_8]$ (0.2 g, 0.175 mmol) was added to isobutyric acid (10 ml). The mixture was heated for 3 h in a water bath under an inert atmosphere. DMSO (0.5 ml) was then added to the resulting blue solution at room temperature. A dark-blue crystalline product (0.12 g, yield 81%) was obtained after 12 h, was collected by filtration and dried in air.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H were refined using a ridingmodel approximation, with C-H = 0.98–1.00 Å, and with $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm C)$ or $1.5U_{eq}(\rm C)$ for methyl H atoms. A rotating model was used for the methyl groups. Six outliers (2 6 1, 3 3 3, $\overline{2}$ 4 3, 0 1 1, $\overline{4}$ 3 4, 3 3 7) were omitted in the last cycles of refinement.

Acknowledgements

This work was supported by the fund Grant for Science Research (No. 0111U000111) from the Ministry of Education and Science of Ukraine. We also thank COST Action CM 1105 for supporting this study. We thank Joseph H. Reibenspies (Texas A&M University, College Station, USA) and Professor Konstantin V. Domasevitch (National Taras Shevchenko University of Kyiv, Ukraine) for providing facilities for a portion of these studies, and helpful discussions.

References

- Bera, J. K., Vo, T.-T., Walton, R. A. & Dunbar, K. R. (2003). *Polyhedron*, **22**, 3009–3014.
- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). *Multiple Bonds between Metal Atoms*, 3rd ed., pp. 271–376. New York: Springer Science and Business Media Inc.
- Dimitrov, N. V. & Eastland, G. W. (1978). Current Chemotherapy, edited by W. Siegenthaler & R. Luthy, Vol. 2, pp. 1319–1321. Washington, DC: American Society for Microbiology Publishing.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Golichenko, A. A., Domasevitch, K. V., Kytova, D. E. & Shtemenko, A. V. (2015). *Acta Cryst.* E**71**, 45–47.
- Golichenko, A. A. & Shtemenko, A. V. (2006). *Russ. J. Coord. Chem.* **32**, 242–249.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shtemenko, N. I., Chifotides, H. T., Domasevitch, K. V., Golichenko, A. A., Babiy, S. A., Li, Z., Paramonova, K. V., Shtemenko, A. V. & Dunbar, K. R. (2013). J. Inorg. Biochem. 129, 127–134.
- Shtemenko, N., Collery, P. & Shtemenko, A. (2007). *Anticancer Res.* **27**, 2487–2492.
- Shtemenko, A. V., Collery, P., Shtemenko, N. I., Domasevitch, K. V., Zabitskaya, E. D. & Golichenko, A. A. (2009). *Dalton Trans.* pp. 5132–5136.
- Shtemenko, A., Golichenko, A., Tretyak, S., Shtemenko, N. & Randarevich, M. (2008). *Metal Ions in Biology and Medicine*, Vol. 10, pp. 229–234. Paris: John Libbey Eurotext.

supporting information

Acta Cryst. (2015). E71, 1219-1221 [doi:10.1107/S2056989015017429]

Crystal structure of di- μ -isobutyrato- $\kappa^4 O:O'$ -bis[*cis*-dichlorido(dimethyl sulfoxide- κS)rhenium(III)]

Alexander A. Golichenko and Alexander V. Shtemenko

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

$Di-\mu$ -isobutyrato- $\kappa^4 O:O'$ -bis[cis-dichlorido(dimethyl sulfoxide- κ S)rhenium(III)]

Crystal data	
$[\text{Re}_{2}(\text{C}_{4}\text{H}_{7}\text{O}_{2})_{2}\text{Cl}_{4}(\text{C}_{2}\text{H}_{6}\text{OS})_{2}]$ $M_{r} = 844.65$ Monoclinic, $P2_{1}/n$ a = 10.5581 (4) Å b = 14.7406 (5) Å c = 15.6088 (6) Å $\beta = 100.794$ (2)° V = 2386.26 (15) Å ³ Z = 4	F(000) = 1584 $D_x = 2.351 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9919 reflections $\theta = 2.4-39.0^{\circ}$ $\mu = 10.78 \text{ mm}^{-1}$ T = 110 K Plate, blue $0.22 \times 0.18 \times 0.09 \text{ mm}$
Data collection	
Siemens SMART CCD area-detector diffractometer Graphite monochromator phi and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008) $T_{min} = 0.133, T_{max} = 0.478$ 93039 measured reflections	14497 independent reflections 11921 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 40.2^\circ, \ \theta_{min} = 2.2^\circ$ $h = -19 \rightarrow 18$ $k = -25 \rightarrow 26$ $l = -28 \rightarrow 27$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.049$ S = 1.00 14497 reflections 243 parameters 0 restraints	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0183P)^2 + 1.7981P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 1.71$ e Å ⁻³ $\Delta\rho_{min} = -1.14$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Re1	-0.06723 (2)	0.17363 (2)	0.27880 (2)	0.01130 (2)
Re2	0.10986 (2)	0.16371 (2)	0.21905 (2)	0.01147 (2)
Cl1	-0.01954 (5)	0.08982 (4)	0.40554 (3)	0.02107 (9)
C12	-0.19965 (5)	0.05974 (3)	0.21084 (3)	0.01810 (8)
C13	0.06421 (5)	0.04494 (3)	0.12210 (3)	0.01726 (8)
Cl4	0.25202 (5)	0.07759 (3)	0.31739 (3)	0.02151 (9)
S1	0.41251 (5)	0.24240 (4)	0.20176 (3)	0.01935 (9)
S2	-0.23871 (5)	0.25929 (3)	0.42297 (3)	0.01756 (9)
01	-0.14493 (13)	0.26371 (9)	0.18365 (9)	0.0142 (2)
O2	0.02927 (14)	0.25241 (9)	0.12399 (9)	0.0145 (2)
O3	0.18421 (14)	0.27603 (9)	0.28722 (9)	0.0159 (3)
O4	0.01121 (14)	0.28533 (9)	0.34802 (9)	0.0158 (3)
05	0.28531 (14)	0.20575 (10)	0.14988 (10)	0.0189 (3)
O6	-0.24413 (14)	0.23612 (10)	0.32675 (9)	0.0189 (3)
C1	-0.07803 (18)	0.29012 (12)	0.12848 (12)	0.0133 (3)
C2	-0.1181 (2)	0.37225 (13)	0.07331 (14)	0.0181 (4)
H2	-0.1090	0.3585	0.0120	0.022*
C3	-0.2560 (2)	0.40050 (17)	0.07314 (17)	0.0274 (5)
H3A	-0.2788	0.4516	0.0330	0.041*
H3B	-0.2647	0.4188	0.1321	0.041*
H3C	-0.3138	0.3494	0.0542	0.041*
C4	-0.0227 (3)	0.44808 (16)	0.1087 (2)	0.0354 (6)
H4A	0.0658	0.4260	0.1125	0.053*
H4B	-0.0358	0.4662	0.1668	0.053*
H4C	-0.0371	0.5004	0.0694	0.053*
C5	0.1204 (2)	0.31512 (13)	0.33854 (12)	0.0152 (3)
C6	0.1796 (2)	0.39547 (14)	0.38935 (14)	0.0197 (4)
H6	0.2283	0.4313	0.3518	0.024*
C7	0.0785 (3)	0.4565 (2)	0.4167 (2)	0.0469 (8)
H7A	0.0176	0.4764	0.3649	0.070*
H7B	0.1206	0.5095	0.4476	0.070*
H7C	0.0321	0.4229	0.4554	0.070*
C8	0.2750 (3)	0.36103 (19)	0.46883 (17)	0.0337 (6)
H8A	0.3380	0.3207	0.4495	0.051*
H8B	0.2282	0.3276	0.5074	0.051*
H8C	0.3200	0.4127	0.5004	0.051*
C9	0.4146 (3)	0.36054 (17)	0.1775 (2)	0.0360 (6)
H9A	0.4047	0.3689	0.1143	0.054*
H9B	0.4968	0.3868	0.2065	0.054*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H9C	0.3435	0.3908	0.1984	0.054*
C10	0.5306 (2)	0.20667 (18)	0.14113 (18)	0.0291 (5)
H10A	0.5367	0.1403	0.1425	0.044*
H10B	0.6144	0.2329	0.1669	0.044*
H10C	0.5057	0.2272	0.0806	0.044*
C11	-0.3361 (3)	0.17496 (16)	0.46035 (17)	0.0286 (5)
H11A	-0.4191	0.1709	0.4200	0.043*
H11B	-0.3508	0.1913	0.5186	0.043*
H11C	-0.2922	0.1162	0.4631	0.043*
C12	-0.3441 (3)	0.35344 (17)	0.42132 (18)	0.0338 (6)
H12A	-0.3087	0.4057	0.3950	0.051*
H12B	-0.3529	0.3685	0.4811	0.051*
H12C	-0.4289	0.3381	0.3870	0.051*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Re1	0.01040 (3)	0.01222 (3)	0.01171 (3)	-0.00114 (2)	0.00320 (2)	0.00002 (2)
Re2	0.00953 (3)	0.01154 (3)	0.01360 (3)	0.00081 (2)	0.00288 (2)	0.00041 (2)
C11	0.0222 (2)	0.0241 (2)	0.0166 (2)	-0.00111 (18)	0.00305 (17)	0.00674 (16)
Cl2	0.0161 (2)	0.01640 (19)	0.0219 (2)	-0.00426 (15)	0.00380 (17)	-0.00305 (15)
C13	0.0169 (2)	0.01521 (19)	0.0201 (2)	0.00138 (15)	0.00460 (16)	-0.00402 (14)
Cl4	0.0167 (2)	0.0215 (2)	0.0244 (2)	0.00463 (17)	-0.00088 (18)	0.00541 (17)
S 1	0.0130 (2)	0.0223 (2)	0.0230 (2)	-0.00283 (17)	0.00407 (18)	-0.00136 (17)
S2	0.0194 (2)	0.0189 (2)	0.0162 (2)	-0.00284 (17)	0.00824 (17)	-0.00281 (15)
O1	0.0120 (6)	0.0153 (6)	0.0159 (6)	0.0000 (5)	0.0041 (5)	0.0022 (4)
O2	0.0133 (6)	0.0153 (6)	0.0157 (6)	0.0025 (5)	0.0048 (5)	0.0026 (4)
O3	0.0136 (6)	0.0161 (6)	0.0186 (6)	-0.0023 (5)	0.0044 (5)	-0.0023 (5)
O4	0.0156 (7)	0.0163 (6)	0.0162 (6)	-0.0038 (5)	0.0050 (5)	-0.0034 (5)
O5	0.0108 (6)	0.0225 (7)	0.0238 (7)	-0.0020 (5)	0.0040 (5)	-0.0011 (5)
O6	0.0164 (7)	0.0255 (7)	0.0167 (7)	-0.0009(5)	0.0076 (5)	-0.0038 (5)
C1	0.0134 (8)	0.0128 (7)	0.0135 (8)	0.0015 (6)	0.0022 (6)	-0.0002 (5)
C2	0.0175 (9)	0.0170 (8)	0.0199 (9)	0.0037 (7)	0.0034 (7)	0.0046 (6)
C3	0.0184 (10)	0.0275 (11)	0.0353 (13)	0.0065 (8)	0.0025 (9)	0.0084 (9)
C4	0.0254 (12)	0.0162 (10)	0.0617 (18)	-0.0007 (8)	0.0004 (12)	0.0048 (10)
C5	0.0161 (9)	0.0132 (8)	0.0155 (8)	-0.0013 (6)	0.0015 (7)	-0.0012 (6)
C6	0.0206 (10)	0.0179 (9)	0.0204 (9)	-0.0062 (7)	0.0028 (7)	-0.0044 (7)
C7	0.0375 (16)	0.0298 (14)	0.072 (2)	-0.0008 (11)	0.0079 (15)	-0.0319 (14)
C8	0.0341 (14)	0.0370 (14)	0.0254 (12)	-0.0122 (11)	-0.0065 (10)	-0.0026 (9)
C9	0.0340 (14)	0.0203 (11)	0.0549 (17)	-0.0051 (10)	0.0113 (13)	-0.0022 (10)
C10	0.0134 (9)	0.0340 (13)	0.0412 (14)	0.0010 (8)	0.0083 (9)	-0.0067 (10)
C11	0.0379 (14)	0.0239 (11)	0.0294 (12)	-0.0072 (9)	0.0206 (11)	-0.0015 (8)
C12	0.0494 (17)	0.0237 (11)	0.0322 (13)	0.0104 (11)	0.0172 (12)	-0.0002 (9)

Geometric parameters (Å, °)

Re1—O1	2.0459 (13)	С3—НЗС	0.9800
Re1—O4	2.0565 (13)	C4—H4A	0.9800

Re1—Re2	2.2450 (1)	C4—H4B	0.9800
Re1—Cl1	2.3065 (5)	C4—H4C	0.9800
Re1—Cl2	2.3115 (5)	C5—C6	1.495 (3)
Re1—O6	2.3282 (15)	C6—C7	1.517 (4)
Re2—O2	2.0401 (13)	C6—C8	1.531 (3)
Re2—O3	2.0437 (14)	С6—Н6	1.0000
Re2—C13	2.3052 (5)	C7—H7A	0.9800
Re2—Cl4	2.3147 (5)	С7—Н7В	0.9800
Re2—O5	2.3938 (15)	C7—H7C	0.9800
S1—O5	1.5310 (15)	C8—H8A	0.9800
S1—C10	1.780 (2)	C8—H8B	0.9800
S1—C9	1.783 (3)	C8—H8C	0.9800
\$2-06	1.5308 (15)	С9—Н9А	0.9800
\$2—C12	1.776 (3)	C9—H9B	0.9800
82—C11	1 780 (2)	C9—H9C	0.9800
01	1.700(2) 1.273(2)	C10—H10A	0.9800
0^2 —C1	1 276 (2)	C10—H10B	0.9800
03	1.276 (2)		0.9800
03-03	1.270 (2)		0.9800
$C_1 = C_2$	1.200 (3)	C11 H11B	0.9800
$C_1 = C_2$	1.500(3) 1.514(3)		0.9800
$C_2 = C_3$	1.514(3) 1.526(3)		0.9800
$C_2 = C_4$	1.0000	C12 H12R	0.9800
$C_2 = H_2 \Lambda$	0.0800	C12—III2B	0.9800
C2 U2D	0.9800	C12—H12C	0.9800
C3—H3B	0.9800		
O1 $Pa1$ $O4$	85.02 (6)	C2 C3 H3C	100.5
$O_1 = Re_1 = O_4$	80.58 (4)	H_{2} C_{2} H_{3} C_{3} H_{3} C_{4}	109.5
$O_1 = Re_1 = Re_2$	89.38 (4)	$H_{2}^{2} P = C_{2}^{2} H_{2}^{2} C$	109.5
O4—Re1—Re2 O1 Po1 C11	69.10(4)	$H_{3} = H_{3} = H_{4}$	109.5
O_1 Ref C_1	104.31(4)	$C_2 = C_4 = H_4 R_1$	109.5
D_4 —ReI—CII	88.03(4)		109.5
Re2—Re1—CII	104.857(14)	H4A - C4 - H4B	109.5
OI - ReI - CI2	90.71 (4)	C2—C4—H4C	109.5
U4—ReI—Cl2	1 ((1) (1)		100 5
	166.43 (4)	H4A—C4—H4C	109.5
Re2—Re1—Cl2	166.43 (4) 103.960 (13)	H4A—C4—H4C H4B—C4—H4C	109.5 109.5
Cl1—Re1—Cl2	166.43 (4) 103.960 (13) 91.189 (19)	H4A—C4—H4C H4B—C4—H4C O4—C5—O3	109.5 109.5 121.00 (17)
Cl1—Re1—Cl2 O1—Re1—Cl2 O1—Re1—O6	166.43 (4) 103.960 (13) 91.189 (19) 74.92 (5)	H4A—C4—H4C H4B—C4—H4C O4—C5—O3 O4—C5—C6	109.5 109.5 121.00 (17) 120.74 (18)
$\begin{array}{c} Re2 - Re1 - C12 \\ C11 - Re1 - C12 \\ O1 - Re1 - O6 \\ O4 - Re1 - O6 \\ O4 - Re1 - O6 \\ \end{array}$	166.43 (4) 103.960 (13) 91.189 (19) 74.92 (5) 77.45 (6)	H4A—C4—H4C H4B—C4—H4C O4—C5—O3 O4—C5—C6 O3—C5—C6	109.5 109.5 121.00 (17) 120.74 (18) 118.24 (18)
$\begin{array}{c} Re2 - Re1 - C12 \\ C11 - Re1 - C12 \\ O1 - Re1 - O6 \\ O4 - Re1 - O6 \\ Re2 - Re1 - O6 \\ \end{array}$	166.43 (4) 103.960 (13) 91.189 (19) 74.92 (5) 77.45 (6) 160.04 (4)	H4A—C4—H4C H4B—C4—H4C O4—C5—O3 O4—C5—C6 O3—C5—C6 C5—C6—C7	109.5 109.5 121.00 (17) 120.74 (18) 118.24 (18) 111.87 (19)
$\begin{array}{c} Re2 - Re1 - C12 \\ C11 - Re1 - C12 \\ O1 - Re1 - O6 \\ O4 - Re1 - O6 \\ Re2 - Re1 - O6 \\ C11 - Re1 - O6 \end{array}$	166.43 (4) 103.960 (13) 91.189 (19) 74.92 (5) 77.45 (6) 160.04 (4) 89.75 (4)	H4A—C4—H4C H4B—C4—H4C O4—C5—O3 O4—C5—C6 O3—C5—C6 C5—C6—C7 C5—C6—C8	109.5 109.5 121.00 (17) 120.74 (18) 118.24 (18) 111.87 (19) 108.26 (18)
$\begin{array}{l} Re2 - Re1 - C12 \\ C11 - Re1 - C12 \\ O1 - Re1 - O6 \\ O4 - Re1 - O6 \\ Re2 - Re1 - O6 \\ C11 - Re1 - O6 \\ C12 - Re1 - O6 \\ C12 - Re1 - O6 \end{array}$	166.43 (4) 103.960 (13) 91.189 (19) 74.92 (5) 77.45 (6) 160.04 (4) 89.75 (4) 88.98 (4)	H4A—C4—H4C H4B—C4—H4C O4—C5—O3 O4—C5—C6 O3—C5—C6 C5—C6—C7 C5—C6—C8 C7—C6—C8	109.5 109.5 121.00 (17) 120.74 (18) 118.24 (18) 111.87 (19) 108.26 (18) 111.1 (2)
$\begin{array}{l} Re2 - Re1 - C12 \\ C11 - Re1 - C12 \\ O1 - Re1 - O6 \\ O4 - Re1 - O6 \\ Re2 - Re1 - O6 \\ C11 - Re1 - O6 \\ C12 - Re1 - O6 \\ O2 - Re2 - O3 \end{array}$	166.43 (4) 103.960 (13) 91.189 (19) 74.92 (5) 77.45 (6) 160.04 (4) 89.75 (4) 88.98 (4) 85.80 (6)	H4A—C4—H4C H4B—C4—H4C O4—C5—O3 O4—C5—C6 O3—C5—C6 C5—C6—C7 C5—C6—C8 C7—C6—C8 C5—C6—H6	109.5 109.5 121.00 (17) 120.74 (18) 118.24 (18) 111.87 (19) 108.26 (18) 111.1 (2) 108.5
Re2 - Re1 - C12 $C11 - Re1 - C12$ $O1 - Re1 - O6$ $O4 - Re1 - O6$ $C11 - Re1 - O6$ $C12 - Re1 - O6$ $O2 - Re2 - O3$ $O2 - Re2 - Re1$	166.43 (4) 103.960 (13) 91.189 (19) 74.92 (5) 77.45 (6) 160.04 (4) 89.75 (4) 88.98 (4) 85.80 (6) 89.66 (4)	H4A—C4—H4C H4B—C4—H4C O4—C5—O3 O4—C5—C6 O3—C5—C6 C5—C6—C7 C5—C6—C8 C7—C6—C8 C5—C6—H6 C7—C6—H6	109.5 109.5 121.00 (17) 120.74 (18) 118.24 (18) 111.87 (19) 108.26 (18) 111.1 (2) 108.5
$\begin{array}{l} \text{Re2} &= \text{Re1} &= \text{C12} \\ \text{C11} &= \text{Re1} &= \text{C12} \\ \text{O1} &= \text{Re1} &= \text{O6} \\ \text{O4} &= \text{Re1} &= \text{O6} \\ \text{C12} &= \text{Re1} &= \text{O6} \\ \text{C12} &= \text{Re1} &= \text{O6} \\ \text{O2} &= \text{Re2} &= \text{C12} \\ \text{O3} &= \text{Re2} &= \text{Re1} \\ \end{array}$	166.43 (4) 103.960 (13) 91.189 (19) 74.92 (5) 77.45 (6) 160.04 (4) 89.75 (4) 88.98 (4) 85.80 (6) 89.66 (4) 89.97 (4)	$\begin{array}{l} H4A - C4 - H4C \\ H4B - C4 - H4C \\ O4 - C5 - O3 \\ O4 - C5 - C6 \\ O3 - C5 - C6 \\ C5 - C6 - C7 \\ C5 - C6 - C8 \\ C7 - C6 - C8 \\ C5 - C6 - H6 \\ C7 - C6 - H6 \\ C8 - C6 - H6 \end{array}$	109.5 109.5 121.00 (17) 120.74 (18) 118.24 (18) 111.87 (19) 108.26 (18) 111.1 (2) 108.5 108.5 108.5
$\begin{array}{l} \text{Re2} &= \text{Re1} &= \text{C12} \\ \text{C11} &= \text{Re1} &= \text{C12} \\ \text{O1} &= \text{Re1} &= \text{O6} \\ \text{O4} &= \text{Re1} &= \text{O6} \\ \text{C12} &= \text{Re1} &= \text{O6} \\ \text{C12} &= \text{Re1} &= \text{O6} \\ \text{O2} &= \text{Re2} &= \text{C13} \\ \end{array}$	166.43 (4) 103.960 (13) 91.189 (19) 74.92 (5) 77.45 (6) 160.04 (4) 89.75 (4) 88.98 (4) 85.80 (6) 89.66 (4) 89.97 (4) 90.11 (4)	$\begin{array}{l} H4A - C4 - H4C \\ H4B - C4 - H4C \\ O4 - C5 - O3 \\ O4 - C5 - C6 \\ O3 - C5 - C6 \\ C5 - C6 - C7 \\ C5 - C6 - C8 \\ C7 - C6 - C8 \\ C5 - C6 - H6 \\ C7 - C6 - H6 \\ C8 - C6 - H6 \\ C8 - C6 - H6 \\ C6 - C7 - H7A \end{array}$	109.5 109.5 121.00 (17) 120.74 (18) 118.24 (18) 111.87 (19) 108.26 (18) 111.1 (2) 108.5 108.5 108.5 108.5 109.5
$\begin{array}{l} Re2 &= Re1 &= C12 \\ C11 &= Re1 &= C12 \\ O1 &= Re1 &= O6 \\ O4 &= Re1 &= O6 \\ C11 &= Re1 &= O6 \\ C12 &= Re1 &= O6 \\ O2 &= Re2 &= C13 \\ O3 &= Re2 &= C13 \\ O3 &= Re2 &= C13 \\ \end{array}$	166.43 (4) 103.960 (13) 91.189 (19) 74.92 (5) 77.45 (6) 160.04 (4) 89.75 (4) 88.98 (4) 85.80 (6) 89.66 (4) 89.97 (4) 90.11 (4) 165.87 (4)	$\begin{array}{l} H4A - C4 - H4C \\ H4B - C4 - H4C \\ O4 - C5 - O3 \\ O4 - C5 - C6 \\ O3 - C5 - C6 \\ C5 - C6 - C7 \\ C5 - C6 - C8 \\ C7 - C6 - C8 \\ C5 - C6 - H6 \\ C7 - C6 - H6 \\ C8 - C6 - H6 \\ C8 - C6 - H6 \\ C6 - C7 - H7A \\ C6 - C7 - H7B \end{array}$	109.5 109.5 121.00 (17) 120.74 (18) 118.24 (18) 111.87 (19) 108.26 (18) 111.1 (2) 108.5 108.5 108.5 109.5
Re2 - Re1 - C12 $C11 - Re1 - C12$ $O1 - Re1 - O6$ $O4 - Re1 - O6$ $C12 - Re1 - O6$ $C12 - Re1 - O6$ $O2 - Re2 - O3$ $O2 - Re2 - Re1$ $O3 - Re2 - Re1$ $O3 - Re2 - C13$ $O3 - Re2 - C13$ $Re1 - Re2 - C13$	166.43 (4) 103.960 (13) 91.189 (19) 74.92 (5) 77.45 (6) 160.04 (4) 89.75 (4) 88.98 (4) 85.80 (6) 89.66 (4) 89.97 (4) 90.11 (4) 165.87 (4) 103.544 (13)	$\begin{array}{l} H4A - C4 - H4C \\ H4B - C4 - H4C \\ O4 - C5 - O3 \\ O4 - C5 - C6 \\ O3 - C5 - C6 \\ C5 - C6 - C7 \\ C5 - C6 - C8 \\ C7 - C6 - C8 \\ C5 - C6 - H6 \\ C7 - C6 - H6 \\ C8 - C6 - H6 \\ C6 - C7 - H7A \\ C6 - C7 - H7B \\ H7A - C7 - H7B \end{array}$	109.5 109.5 121.00 (17) 120.74 (18) 118.24 (18) 111.87 (19) 108.26 (18) 111.1 (2) 108.5 108.5 108.5 109.5 109.5

O3—Re2—Cl4	87.76 (4)	H7A—C7—H7C	109.5
Re1—Re2—Cl4	104.318 (15)	H7B—C7—H7C	109.5
Cl3—Re2—Cl4	92.789 (18)	C6—C8—H8A	109.5
O2—Re2—O5	76.03 (5)	C6—C8—H8B	109.5
O3—Re2—O5	76.76 (5)	H8A—C8—H8B	109.5
Re1—Re2—O5	161.00 (4)	C6—C8—H8C	109.5
Cl3—Re2—O5	89.13 (4)	H8A—C8—H8C	109.5
Cl4—Re2—O5	88.89 (4)	H8B—C8—H8C	109.5
O5—S1—C10	104.28 (10)	S1—C9—H9A	109.5
O5—S1—C9	106.08 (12)	S1—C9—H9B	109.5
C10—S1—C9	97.94 (14)	H9A—C9—H9B	109.5
O6—S2—C12	104.59 (11)	S1—C9—H9C	109.5
O6—S2—C11	104.36 (10)	H9A—C9—H9C	109.5
C12—S2—C11	98.71 (14)	H9B—C9—H9C	109.5
C1-O1-Re1	119.46 (12)	S1-C10-H10A	109.5
C1-O2-Re2	119.54 (12)	S1-C10-H10B	109.5
C5—O3—Re2	119.74 (13)	H10A—C10—H10B	109.5
C5—O4—Re1	120.10 (13)	S1-C10-H10C	109.5
S1—O5—Re2	121.94 (8)	H10A-C10-H10C	109.5
S2—O6—Re1	121.25 (8)	H10B-C10-H10C	109.5
01—C1—O2	121.00 (17)	S2—C11—H11A	109.5
O1—C1—C2	120.20 (17)	S2—C11—H11B	109.5
O2—C1—C2	118.55 (17)	H11A—C11—H11B	109.5
C1—C2—C3	112.98 (18)	S2—C11—H11C	109.5
C1—C2—C4	106.60 (17)	H11A—C11—H11C	109.5
C3—C2—C4	111.48 (19)	H11B—C11—H11C	109.5
С1—С2—Н2	108.6	S2—C12—H12A	109.5
С3—С2—Н2	108.6	S2—C12—H12B	109.5
С4—С2—Н2	108.6	H12A—C12—H12B	109.5
С2—С3—НЗА	109.5	S2—C12—H12C	109.5
С2—С3—Н3В	109.5	H12A—C12—H12C	109.5
НЗА—СЗ—НЗВ	109.5	H12B—C12—H12C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H··· A	
C11—H11 <i>B</i> ····O2 ⁱ	0.98	2.40	3.324 (3)	156	
C6—H6····Cl3 ⁱⁱ	1.00	2.73	3.519 (2)	136	
C12—H12A····Cl2 ⁱⁱⁱ	0.98	2.82	3.751 (3)	159	
C12—H12B····Cl3 ⁱ	0.98	2.82	3.760 (3)	161	

Symmetry codes: (i) x-1/2, -y+1/2, z+1/2; (ii) -x+1/2, y+1/2, -z+1/2; (iii) -x-1/2, y+1/2, -z+1/2.