

Received 1 July 2015 Accepted 17 August 2015

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: bis-tertiary ammonium analog; biphenyl ring; piperidine ring; crystal structure

CCDC references: 1419252; 1419251 Supporting information: this article has supporting information at journals.iucr.org/e Comparison of the crystal structures of 4,4'-bis[3-(4-methylpiperidin-1-yl)prop-1-yn-1-yl]-1,1'biphenyl and 4,4'-bis[3-(2,2,6,6-tetramethylpiperidin-1-yl)prop-1-yn-1-yl]-1,1'-biphenyl

Anqi Wan,^a Narsimha Reddy Penthala,^a E. Kim Fifer,^a Sean Parkin^b and Peter A. Crooks^a*

^aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, and ^bDepartment of Chemistry, University of Kentucky, Lexington KY 40506, USA. *Correspondence e-mail: pacrooks@uams.edu

As part of a comprehensive program to discover $\alpha 9\alpha 10$ nicotinic acetylcholine receptor antagonists, the title compounds C₃₀H₃₆N₂, (I), and C₃₆H₄₈N₂, (II), were synthesized by coupling 4,4'-bis(3-bromoprop-1-yn-1-yl)-1,1'-biphenyl with 4-methylpiperidine and 2,2,6,6-tetramethylpiperidine, respectively, in acetonitrile at room temperature. In compound (I), the biphenyl system has a twisted conformation with a dihedral angle of 26.57 (6)° between the two phenyl rings of the biphenyl moiety, while in compound (II), the biphenyl moiety sits on a crystallographic inversion centre so the two phenyl rings are exactly coplanar. The terminal piperidine rings in both compound (I) and compound (II) are in the chair conformation. In compound (I), the dihedral angles about the ethynyl groups between the planes of the phenyl rings and the piperidine ring N atoms are 37.16 (16) and 14.20 (17)°. In compound (II), the corresponding dihedral angles are both 61.48 (17)°. There are no noteworthy intermolecular interactions in (I), but in (II) there is a small π -overlap between inversion-related molecules (1 - x, 1 - y, 1 - z), with an interplanar spacing of 3.553 (3) Å and centroid-tocentroid separation of 3.859 (4) Å.

1. Chemical context

Previous studies have shown that the bis-quaternary ammonium compound 1'-[(1,1'-biphenyl)-4,4'-diylbis(prop-2-yne-3,1-diyl)]bis(3,4-dimethylpyridin-1-ium) bromide (ZZ161C) is a potent and selective $\alpha 9\alpha 10$ nicotinic acetylcholine receptor antagonist (Zheng *et al.*, 2011). ZZ161C has been reported to have analgesic effects in various animal pain models (Wala *et al.*, 2012). In order to improve the pharmacological and pharmacokinetic profile of ZZ161C, we have replaced the terminal azaaromatic rings with fully reduced piperidine rings to obtain the title compounds (I) and (II). Single-crystal X-ray structure determinations were carried out to determine the conformations of these compounds.

2. Structural commentary

The title compounds, $C_{30}H_{36}N_2$ (I) and $C_{36}H_{48}N_2$ (II) are shown in Figs. 1 and 2, respectively. The present X-ray crystallographic study was carried out in order to ascertain the geometry of the piperidine rings and the biphenyl ring systems, as well as to obtain more detailed information about the conformation of the title compounds. Crystals of both (I) and (II) are monoclinic, space group $P2_1/c$, with Z' = 1 and 0.5,

OPEN 👌 ACCESS

respectively. In each compound, individual bond lengths and angles are unremarkable.

The piperidine rings in both of the title molecules are in the chair conformation. In (I), the biphenyl rings (C20-C21-C22-C23-C30-C29) and (C16-C17-C18-C19-C28-C27) are non-coplanar, with a dihedral angle of 26.57 (6)°. For compound (II), however, the biphenyl group is strictly coplanar because the molecule sits on a crystallographic inversion centre. In compound (I), the dihedral angles about the ethynyl groups between the planes of the phenyl rings and the piperidine ring N atoms are 37.16 (16) and 14.20 (17)°. In compound (II), the corresponding dihedral angles are both 61.48 (17)°.

3. Supramolecular features

Other than weak van der Waals interactions, there are no noteworthy intermolecular contacts in (I). In (II) there is a small π -overlap between inversion-related molecules $(1 - x, \pi)$

1 - y, 1 - z), giving an interplanar spacing of 3.553 (3) Å and centroid-to-centroid separation of 3.859 (4) Å.

4. Database survey

A search of the November 2014 release of the Cambridge Structure Database (Groom & Allen, 2014), with updates through May 2015, using the program *Mogul* (Bruno *et al.*, 2004) for 4,4' substituted biphenyl fragments was conducted. The search was restricted to non-organometallic, solvent-free structures with R < 5% and Cl as the heaviest element. There were over 1000 hits, which gave a bimodal distribution of biphenyl dihedral angles with a tight peak at 0° and a broader peak centred at 30°. The biphenyl dihedral angles in (I) and (II) are thus not unusual.

5. Synthesis and crystallization

In the synthesis of compound (I), 3,3'-[(1,1'-biphenyl)-4,4'-diyl]-bis(prop-2-yn-1-ol) was synthesized by coupling 1,2,4,5-tetraiodobenzene with 4-pentyn-1-ol. Bis-(triphenylphosphine)palladium(II) dichloride and copper(I) iodide were used as catalysts. The mixture was stirred at room temperature for 24 h under argon. The obtained 3,3'-[(1,1'-biphenyl)-4,4'-diyl]-bis(prop-2-yn-1-ol) was converted to 4,4'-bis-(3-bromoprop-1-yn-1-yl)-1,1'-biphenyl using bromomethane and triphenylphosphine in anhydrous methylene chloride at room temperature. To a suspension of the 4,4'-bis(3-bromoprop-1-yn-1-yl)-1,1'-biphenyl (100.0 mg, 0.26 mmol) in acetonitrile (7 mL) was added 4-methylpiperidine (77.2 mg, 0.78 mmol) and the reaction mixture stirred for two hours at room

Figure 1

The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.

Figure 2

The molecular structure of (II), with displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are generated by the symmetry operator (1 - x, 2 - y, 1 - z).

research communications

Table 1 Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$C_{30}H_{36}N_2$	$C_{36}H_{48}N_2$
M_r	424.61	508.76
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$
Temperature (K)	90	90
a, b, c (Å)	21.9870 (6), 7.0390 (3), 15.7840 (11)	16.0591 (3), 6.2267 (1), 15.5921 (3)
β (°)	99.0310 (19)	100.895 (1)
$V(\dot{A}^3)$	2412.6 (2)	1531.03 (5)
Z	4	2
Radiation type	Μο Κα	Cu Ka
$\mu (\text{mm}^{-1})$	0.07	0.47
Crystal size (mm)	$0.32 \times 0.30 \times 0.03$	$0.22 \times 0.04 \times 0.03$
Data collection		
Diffractometer	Nonius KappaCCD	Bruker X8 Proteum
Absorption correction	Multi-scan (SADABS; Sheldrick, 2008a)	Multi-scan (SADABS; Bruker, 2006)
T_{\min}, T_{\max}	0.764, 0.958	0.767, 0.929
No. of measured, independent and observed	54455, 5546, 3347	19631, 2797, 2405
$[I > 2\sigma(I)]$ reflections		
R _{int}	0.066	0.053
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.650	0.602
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.049, 0.144, 1.02	0.050, 0.137, 1.05
No. of reflections	5546	2797
No. of parameters	291	176
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.22, -0.22	0.24, -0.24

Computer programs: COLLECT (Nonius, 1998), APEX2 and SAINT (Bruker, 2006), SCALEPACK and DENZO-SMN (Otwinowski & Minor, 2006), SHELXS97, SHELXTL and XP in SHELXTL (Sheldrick, 2008b), SHELXL2014 (Sheldrick, 2015) and CIFFIX (Parkin, 2013).

temperature to obtain compound (I). Acetonitrile was removed from the reaction mixture under reduced pressure and the resulting residue was partitioned between water and dichloromethane. The organic layers were collected and combined. The extract (organic layer) was dried over anhydrous sodium sulfate, filtered, and the filtrate concentrated under reduced pressure. The resulting crude sample of compound (I) was purified by column chromatography (dichloromethane/methanol, 100:2 ν/ν). Yield: 80%.

A crude sample of compound (II) was prepared using the same experimental conditions for the preparation of compound (I) but utilizing 2,2,6,6-tetramethylpiperidine (110.0 mg, 0.78 mmol) instead of 4-methylpiperidine. Column chromatography (dichlormethane/methanol 100:2 v/v) was then used for purification of (II). Yield: 80%.

Compound (I) and (II) were each dissolved separately in a mixture of dichloromethane/methanol (2:1 ν/ν). Yellow crystals of both compounds were obtained by slow evaporation of the solution at room temperature over 24 h.

Compound (I) ¹H-NMR (400 Mz, CDCl₃): δ 7.49 (*q*, 8H), 3.52 (*s*, 4H), 2.97 (*d*, 4H), 2.26 (*t*, 4H) p.p.m.; ¹³C-NMR (100 Mz, CDCl₃): δ 132.92, 132.19, 126.76, 122.36, 85.13, 52.83, 48.09, 34.02, 30.20, 21.74 p.p.m.

Compound (II) ¹H-NMR (400 Mz, CDCl₃): δ 7.50 (q, 8H), 3.62 (s, 4H), 1.61–1.60 (m, 8H), 1.52–1.51 (m, 4H), 1.22 (s, 24H) p.p.m. ¹³C-NMR (100 Mz, CDCl₃): δ 139.47, 131.88, 126.61, 123.42, 94.00, 80.78, 55.00, 41.16, 33.87, 27.49, 17.81 p.p.m.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were found in difference Fourier maps, but subsequently included in the refinement using riding models, with constrained distances set to 0.95 Å (Csp^2H) , 0.98 Å (*R*CH₃), 0.99 Å (R_2 CH₂) and 1.00 Å (R_3 CH). U_{iso} (H) parameters were set to values of either 1.2 U_{eq} (C) or 1.5 U_{eq} (C) (*R*CH₃ only) of the attached atom. The final models were checked using an *R*-tensor (Parkin, 2000) and by *PLATON* (Spek, 2009).

Acknowledgements

This investigation was supported by ARA (Arkansas Research Alliance).

References

- Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). *J. Chem. Inf. Model.* 44, 2133–2144.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Nonius (1998). Collect Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (2006). *International Tables for Crystallography*, Vol. F, ch. 11.4, 226–235. Dordrecht: Kluwer Academic Publishers.
- Parkin, S. (2000). Acta Cryst. A56, 157-162.

- Parkin, S. (2013). *CIFFIX*. http://xray.uky.edu/people/parkin/ programs/ciffix
- Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wala, E. P., Crooks, P. A., McIntosh, J. M. & Holtman, J. R. Jr (2012). Anesth. Analg. 115, 713–720.
- Zheng, G., Zhang, Z., Dowell, C., Wala, E., Dwoskin, L. P., Holtman, J. R., McIntosh, J. M. & Crooks, P. A. (2011). *Bioorg. Med. Chem. Lett.* 21, 2476–2479.

supporting information

Acta Cryst. (2015). E71, 1132-1135 [doi:10.1107/S2056989015015352]

Comparison of the crystal structures of 4,4'-bis[3-(4-methylpiperidin-1yl)prop-1-yn-1-yl]-1,1'-biphenyl and 4,4'-bis[3-(2,2,6,6-tetramethylpiperidin-1yl)prop-1-yn-1-yl]-1,1'-biphenyl

Anqi Wan, Narsimha Reddy Penthala, E. Kim Fifer, Sean Parkin and Peter A. Crooks

Computing details

Data collection: *COLLECT* (Nonius, 1998) for (I); *APEX2* (Bruker, 2006) for (II). Cell refinement: *SCALEPACK* (Otwinowski & Minor, 2006) for (I); *SAINT* (Bruker, 2006) for (II). Data reduction: *DENZO-SMN* (Otwinowski & Minor, 2006) for (I); *SAINT* (Bruker, 2006) for (II). For both compounds, program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008b); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *XP in SHELXTL* (Sheldrick, 2008b); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008b) and *CIFFIX* (Parkin, 2013).

(I) 4,4'-Bis[3-(4-methylpiperidin-1-yl)prop-1-yn-1-yl]-1,1'-biphenyl

Crystal data $C_{30}H_{36}N_2$ $M_r = 424.61$ Monoclinic, $P2_1/c$ a = 21.9870 (6) Å b = 7.0390 (3) Å c = 15.7840 (11) Å $\beta = 99.0310$ (19)° V = 2412.6 (2) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed-tube Detector resolution: 9.1 pixels mm⁻¹ φ and ω scans at fixed $\chi = 55^{\circ}$ Absorption correction: multi-scan (*SADABS*; Sheldrick, 2008a) $T_{\min} = 0.764, T_{\max} = 0.958$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.144$ S = 1.02 F(000) = 920 $D_x = 1.169 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5987 reflections $\theta = 1.0-27.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 90 KPlate, colourless $0.32 \times 0.30 \times 0.03 \text{ mm}$

54455 measured reflections 5546 independent reflections 3347 reflections with $I > 2\sigma(I)$ $R_{int} = 0.066$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -28 \rightarrow 28$ $k = -9 \rightarrow 9$ $l = -20 \rightarrow 20$

5546 reflections291 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0706P)^2 + 0.3882P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: difference Fourier map	$(\Delta/\sigma)_{\rm max} < 0.001$
H-atom parameters constrained	$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
-	$\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. The crystal was mounted with polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid nitrogen based cryostat, according to published methods (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90 K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement progress was checked using *PLATON* (Spek, 2009) and by an *R*-tensor (Parkin, 2000). The final model was further checked with the IUCr utility *checkCIF*.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.20730 (5)	0.24205 (18)	0.41351 (8)	0.0245 (3)	
N2	0.79153 (5)	0.22850 (18)	-0.16448 (8)	0.0234 (3)	
C1	0.19401 (7)	0.4165 (2)	0.36333 (10)	0.0255 (4)	
H1A	0.2171	0.4153	0.3143	0.031*	
H1B	0.2080	0.5277	0.3996	0.031*	
C2	0.12538 (7)	0.4349 (2)	0.33012 (10)	0.0268 (4)	
H2A	0.1179	0.5510	0.2946	0.032*	
H2B	0.1027	0.4478	0.3793	0.032*	
C3	0.10128 (7)	0.2625 (2)	0.27674 (10)	0.0246 (4)	
H3A	0.1231	0.2569	0.2258	0.030*	
C4	0.11755 (6)	0.0832 (2)	0.32978 (10)	0.0259 (4)	
H4A	0.0947	0.0822	0.3791	0.031*	
H4B	0.1049	-0.0300	0.2941	0.031*	
C5	0.18653 (6)	0.0736 (2)	0.36255 (10)	0.0250 (4)	
H5A	0.1957	-0.0416	0.3982	0.030*	
H5B	0.2092	0.0644	0.3132	0.030*	
C6	0.03225 (7)	0.2769 (2)	0.24399 (10)	0.0304 (4)	
H6A	0.0188	0.1650	0.2091	0.046*	
H6B	0.0239	0.3918	0.2090	0.046*	
H6C	0.0098	0.2833	0.2929	0.046*	
C7	0.80978 (7)	0.0602 (2)	-0.11219 (10)	0.0251 (4)	
H7A	0.7993	-0.0555	-0.1470	0.030*	
H7B	0.7867	0.0566	-0.0631	0.030*	
C8	0.87867 (7)	0.0625 (2)	-0.07886 (10)	0.0263 (4)	
H8A	0.9017	0.0561	-0.1279	0.032*	
H8B	0.8897	-0.0505	-0.0424	0.032*	
C9	0.89727 (7)	0.2419 (2)	-0.02685 (10)	0.0248 (4)	
H9A	0.8756	0.2410	0.0243	0.030*	

C10	0.87516 (7)	0.4146 (2)	-0.08094 (10)	0.0264 (4)
H10A	0.8981	0.4233	-0.1300	0.032*
H10B	0.8838	0.5309	-0.0459	0.032*
C11	0.80634 (7)	0.4027 (2)	-0.11454 (10)	0.0253 (4)
H11A	0.7831	0.4048	-0.0657	0.030*
H11B	0.7936	0.5146	-0.1511	0.030*
C12	0.96641 (7)	0.2486 (2)	0.00546 (10)	0.0308 (4)
H12A	0.9786	0.1362	0.0407	0.046*
H12B	0.9763	0.3635	0.0400	0.046*
H12C	0.9888	0.2505	-0.0436	0.046*
C13	0.27358 (6)	0.2281 (2)	0.44724 (10)	0.0266 (4)
H13A	0.2807	0.1132	0.4836	0.032*
H13B	0.2858	0.3397	0.4842	0.032*
C14	0.31350 (7)	0.2189 (2)	0.38025 (10)	0.0254 (4)
C15	0.34323 (7)	0.2140 (2)	0.32287 (10)	0.0237 (3)
C16	0.38357 (6)	0.2046 (2)	0.25885 (9)	0.0215 (3)
C17	0.37212 (6)	0.3064 (2)	0.18216 (9)	0.0229 (3)
H17A	0.3354	0.3788	0.1691	0.027*
C18	0.41397 (6)	0.3028 (2)	0.12486 (9)	0.0214 (3)
H18A	0.4054	0.3731	0.0730	0.026*
C19	0.46856 (6)	0.1975 (2)	0.14209 (9)	0.0198 (3)
C20	0.51543 (6)	0.2019 (2)	0.08399 (9)	0.0199 (3)
C21	0.57773 (6)	0.1686 (2)	0.11555 (9)	0.0236 (4)
H21A	0.5898	0.1423	0.1748	0.028*
C22	0.62205 (7)	0.1732 (2)	0.06218 (9)	0.0250 (4)
H22A	0.6640	0.1505	0.0852	0.030*
C23	0.60560 (7)	0.2107 (2)	-0.02488 (10)	0.0225 (3)
C24	0.64979 (7)	0.2140 (2)	-0.08346 (10)	0.0247 (4)
C25	0.68349 (7)	0.2177 (2)	-0.13613 (10)	0.0244 (4)
C26	0.72570 (6)	0.2217 (2)	-0.20057 (9)	0.0256 (4)
H26A	0.7181	0.1073	-0.2372	0.031*
H26B	0.7157	0.3341	-0.2379	0.031*
C27	0.43683 (6)	0.0935 (2)	0.27488 (9)	0.0226 (3)
H27A	0.4446	0.0193	0.3257	0.027*
C28	0.47825 (6)	0.0904 (2)	0.21758 (9)	0.0223 (3)
H28A	0.5141	0.0138	0.2297	0.027*
C29	0.49939 (7)	0.2415 (2)	-0.00348 (10)	0.0214 (3)
H29A	0.4576	0.2659	-0.0266	0.026*
C30	0.54362 (7)	0.2455 (2)	-0.05680 (9)	0.0221 (3)
H30A	0.5317	0.2723	-0.1161	0.027*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0214 (6)	0.0309 (8)	0.0216 (7)	-0.0012 (5)	0.0049 (5)	-0.0001 (6)
N2	0.0216 (6)	0.0271 (8)	0.0218 (7)	-0.0004 (5)	0.0045 (5)	-0.0014 (5)
C1	0.0259 (8)	0.0268 (9)	0.0243 (8)	-0.0011 (7)	0.0061 (7)	-0.0036 (7)
C2	0.0278 (8)	0.0273 (9)	0.0255 (8)	0.0033 (7)	0.0053 (7)	-0.0013 (7)

supporting information

C3	0.0228 (8)	0.0299 (9)	0.0216 (8)	0.0002 (6)	0.0051 (6)	-0.0005 (7)
C4	0.0244 (8)	0.0274 (9)	0.0257 (8)	-0.0029 (7)	0.0037 (7)	0.0010 (7)
C5	0.0256 (8)	0.0253 (9)	0.0247 (8)	-0.0018 (6)	0.0053 (7)	0.0016 (7)
C6	0.0267 (8)	0.0352 (10)	0.0284 (9)	0.0020 (7)	0.0014 (7)	0.0009 (7)
C7	0.0271 (8)	0.0243 (9)	0.0250 (8)	-0.0010 (7)	0.0071 (7)	-0.0026 (7)
C8	0.0263 (8)	0.0263 (9)	0.0263 (9)	0.0036 (7)	0.0044 (7)	-0.0008 (7)
C9	0.0262 (8)	0.0287 (9)	0.0202 (8)	-0.0008 (7)	0.0059 (6)	-0.0006 (7)
C10	0.0294 (8)	0.0242 (9)	0.0252 (8)	-0.0028 (7)	0.0028 (7)	0.0013 (7)
C11	0.0284 (8)	0.0234 (9)	0.0244 (8)	0.0008 (7)	0.0048 (7)	0.0014 (7)
C12	0.0283 (8)	0.0347 (10)	0.0285 (9)	0.0005 (7)	0.0024 (7)	-0.0014 (7)
C13	0.0210 (8)	0.0367 (10)	0.0226 (8)	-0.0013 (7)	0.0048 (6)	0.0010 (7)
C14	0.0227 (8)	0.0276 (9)	0.0257 (8)	-0.0022 (7)	0.0036 (7)	-0.0007 (7)
C15	0.0219 (8)	0.0221 (8)	0.0263 (8)	-0.0016 (6)	0.0014 (7)	-0.0010 (7)
C16	0.0219 (7)	0.0205 (8)	0.0222 (8)	-0.0036 (6)	0.0040 (6)	-0.0024 (6)
C17	0.0200 (7)	0.0214 (8)	0.0270 (8)	0.0011 (6)	0.0031 (6)	-0.0007 (7)
C18	0.0224 (7)	0.0207 (8)	0.0207 (8)	-0.0002 (6)	0.0019 (6)	0.0020 (6)
C19	0.0209 (7)	0.0180 (8)	0.0206 (8)	-0.0032 (6)	0.0033 (6)	-0.0027 (6)
C20	0.0219 (7)	0.0152 (8)	0.0232 (8)	-0.0004 (6)	0.0053 (6)	-0.0018 (6)
C21	0.0261 (8)	0.0231 (9)	0.0213 (8)	0.0035 (6)	0.0030(7)	0.0015 (7)
C22	0.0210 (8)	0.0269 (9)	0.0271 (8)	0.0023 (6)	0.0041 (7)	0.0001 (7)
C23	0.0250 (8)	0.0181 (8)	0.0257 (8)	0.0013 (6)	0.0083 (7)	-0.0008 (7)
C24	0.0252 (8)	0.0225 (9)	0.0260 (8)	0.0009 (6)	0.0030(7)	0.0004 (7)
C25	0.0221 (8)	0.0254 (9)	0.0259 (8)	-0.0001 (6)	0.0044 (7)	0.0000(7)
C26	0.0231 (8)	0.0320 (9)	0.0224 (8)	-0.0001 (7)	0.0059 (6)	-0.0020 (7)
C27	0.0251 (8)	0.0213 (9)	0.0213 (8)	-0.0012 (6)	0.0034 (6)	0.0012 (6)
C28	0.0213 (7)	0.0205 (8)	0.0247 (8)	0.0018 (6)	0.0026 (6)	-0.0004 (6)
C29	0.0217 (7)	0.0178 (8)	0.0240 (8)	0.0001 (6)	0.0019 (6)	-0.0015 (6)
C30	0.0267 (8)	0.0197 (8)	0.0199 (8)	-0.0007 (6)	0.0034 (6)	0.0009 (6)

Geometric parameters (Å, °)

N1—C5	1.4647 (19)	C11—H11B	0.9900
N1—C1	1.4657 (19)	C12—H12A	0.9800
N1—C13	1.4741 (18)	C12—H12B	0.9800
N2—C7	1.4631 (19)	C12—H12C	0.9800
N2-C11	1.4666 (19)	C13—C14	1.478 (2)
N2-C26	1.4707 (18)	C13—H13A	0.9900
C1—C2	1.523 (2)	C13—H13B	0.9900
C1—H1A	0.9900	C14—C15	1.198 (2)
C1—H1B	0.9900	C15—C16	1.447 (2)
С2—С3	1.524 (2)	C16—C17	1.395 (2)
C2—H2A	0.9900	C16—C27	1.398 (2)
C2—H2B	0.9900	C17—C18	1.3880 (19)
C3—C4	1.526 (2)	C17—H17A	0.9500
С3—С6	1.5280 (19)	C18—C19	1.401 (2)
С3—НЗА	1.0000	C18—H18A	0.9500
C4—C5	1.5252 (19)	C19—C28	1.3976 (19)
C4—H4A	0.9900	C19—C20	1.483 (2)

C4—H4B	0 9900	C20—C29	1 398 (2)
C5—H5A	0.9900	C20—C21	1.4019 (19)
C5—H5B	0.9900	$C_{21} - C_{22}$	1.3848 (19)
C6—H6A	0.9800	C21—H21A	0.9500
C6—H6B	0.9800	C^{22} C^{23}	1.390(2)
C6—H6C	0.9800	C22_H22A	0.9500
C7-C8	1 523 (2)	C_{23} C_{30} C_{30}	1 3984 (19)
C7—H7A	0.9900	C_{23} C_{24}	1 443 (2)
C7—H7B	0.9900	C_{24} C_{25}	1.113(2) 1 197(2)
C8-C9	1 527 (2)	C_{25} C_{25} C_{26}	1.197(2) 1 481(2)
C8—H8A	0.9900	C26—H26A	0.9900
C8—H8B	0.9900	C26—H26B	0.9900
C9-C10	1 520 (2)	C_{27} C_{28}	1,3807(19)
C_{9} C_{12}	1.526 (2)	C_{27} H_{27}	0.9500
C9 - H9A	1.0000	C_{28} H28A	0.9500
C10-C11	1.525 (2)	$C_{20} = C_{20}$	1383(2)
C10_H10A	0.9900	C_{29} H_{29A}	0.9500
C10 H10R	0.9900	C_{2} H_{2} A	0.9500
	0.9900	C30—1130A	0.9500
en-mix	0.7700		
C5—N1—C1	111.28 (11)	H10A—C10—H10B	108.0
C5—N1—C13	110.47 (12)	N2-C11-C10	110.91 (12)
C1—N1—C13	110.65 (12)	N2—C11—H11A	109.5
C7—N2—C11	110.83 (11)	C10—C11—H11A	109.5
C7—N2—C26	110.99 (12)	N2—C11—H11B	109.5
C11—N2—C26	110.93 (12)	C10—C11—H11B	109.5
N1—C1—C2	111.08 (12)	H11A—C11—H11B	108.0
N1—C1—H1A	109.4	C9—C12—H12A	109.5
C2—C1—H1A	109.4	C9—C12—H12B	109.5
N1—C1—H1B	109.4	H12A—C12—H12B	109.5
C2—C1—H1B	109.4	C9—C12—H12C	109.5
H1A—C1—H1B	108.0	H12A—C12—H12C	109.5
C1—C2—C3	111.25 (12)	H12B—C12—H12C	109.5
C1—C2—H2A	109.4	N1—C13—C14	114.15 (12)
C3—C2—H2A	109.4	N1—C13—H13A	108.7
C1—C2—H2B	109.4	C14—C13—H13A	108.7
С3—С2—Н2В	109.4	N1—C13—H13B	108.7
H2A—C2—H2B	108.0	C14—C13—H13B	108.7
C2—C3—C4	108.91 (12)	H13A—C13—H13B	107.6
C2—C3—C6	112.03 (13)	C15—C14—C13	176.56 (16)
C4—C3—C6	112.04 (13)	C14—C15—C16	175.24 (15)
С2—С3—НЗА	107.9	C17—C16—C27	118.45 (13)
С4—С3—НЗА	107.9	C17—C16—C15	122.39 (13)
С6—С3—НЗА	107.9	C27—C16—C15	119.14 (13)
C5—C4—C3	110.95 (12)	C18—C17—C16	120.54 (13)
C5—C4—H4A	109.4	С18—С17—Н17А	119.7
C3—C4—H4A	109.4	С16—С17—Н17А	119.7
C5—C4—H4B	109.4	C17—C18—C19	121.25 (14)

C3—C4—H4B	109.4	C17—C18—H18A	119.4
H4A—C4—H4B	108.0	C19—C18—H18A	119.4
N1—C5—C4	110.99 (12)	C28—C19—C18	117.53 (13)
N1—C5—H5A	109.4	C28—C19—C20	120.70 (13)
C4—C5—H5A	109.4	C18—C19—C20	121.75 (13)
N1—C5—H5B	109.4	C29—C20—C21	117.70 (13)
C4—C5—H5B	109.4	C29—C20—C19	121.51 (13)
H5A—C5—H5B	108.0	$C_{21} - C_{20} - C_{19}$	120.79(13)
C3—C6—H6A	109.5	C_{22} C_{21} C_{20} C_{20}	121 44 (14)
C3—C6—H6B	109.5	$C_{22} = C_{21} = H_{21} A$	1193
H6AC6H6B	109.5	C_{20} C_{21} H_{21A}	119.3
C_3 C_6 H_{6C}	109.5	$C_{20} = C_{21} = H_{21} K$	119.3 120.46 (14)
	109.5	$C_{21} = C_{22} = C_{23}$	120.40 (14)
	109.5	C_{21} C_{22} C_{22} H_{22A}	119.0
$H_{0} = C_{0} = H_{0} C_{0}$	109.3	$C_{23} = C_{22} = C_{20}$	119.8
N2 - C7 - U7 A	110.85 (12)	$C_{22} = C_{23} = C_{30}$	118.49 (13)
$N_2 - C_1 - H_1 A$	109.5	$C_{22} = C_{23} = C_{24}$	122.66 (13)
С8—С/—Н/А	109.5	C30—C23—C24	118.85 (14)
N2—C7—H7B	109.5	C25—C24—C23	175.97 (16)
С8—С7—Н7В	109.5	C24—C25—C26	179.41 (16)
H7A—C7—H7B	108.1	N2—C26—C25	114.80 (12)
C7—C8—C9	111.25 (12)	N2—C26—H26A	108.6
С7—С8—Н8А	109.4	C25—C26—H26A	108.6
С9—С8—Н8А	109.4	N2—C26—H26B	108.6
С7—С8—Н8В	109.4	С25—С26—Н26В	108.6
С9—С8—Н8В	109.4	H26A—C26—H26B	107.5
H8A—C8—H8B	108.0	C28—C27—C16	120.67 (14)
C10—C9—C12	112.14 (13)	С28—С27—Н27А	119.7
C10—C9—C8	108.91 (12)	С16—С27—Н27А	119.7
С12—С9—С8	111.96 (12)	C27—C28—C19	121.47 (14)
С10—С9—Н9А	107.9	C27—C28—H28A	119.3
С12—С9—Н9А	107.9	C19—C28—H28A	119.3
C8—C9—H9A	107.9	C_{30} C_{29} C_{20}	120.84 (14)
C9-C10-C11	111 35 (12)	C30-C29-H29A	119.6
C9-C10-H10A	109.4	C_{20} C_{29} H_{29A}	119.6
C_{11} C_{10} H_{10A}	109.4	$C_{20} = C_{20} = C_{20}$	121.06 (14)
C_{0} C_{10} H_{10} H_{10}	109.4	$C_{29} C_{30} H_{30A}$	110.5
$C_{11} = C_{10} = H_{10B}$	109.4	$C_{23} = C_{30} = H_{30A}$	119.5
сп-сто-птов	109.4	C23—C30—H30A	119.5
C5 - N1 - C1 - C2	58 26 (15)	C16—C17—C18—C19	0.1(2)
C13 - N1 - C1 - C2	-17852(12)	C17 - C18 - C19 - C28	24(2)
N1-C1-C2-C3	-56.80(17)	C_{17} C_{18} C_{19} C_{20}	-176 17 (13)
$C_1 = C_2 = C_3$	54.60 (16)	$C_{1}^{2} = C_{1}^{2} = C_{1}^{2} = C_{2}^{2} = C_{2}^{2}$	170.17(13) 154.84(14)
$C_1 = C_2 = C_3 = C_4$	34.00(10)	$C_{20} = C_{10} = C_{20} = C_{20}$	134.04(14)
$C_1 - C_2 - C_3 - C_0$	1/9.11(12) 54.91(16)	$C_{10} = C_{19} = C_{20} = C_{21}$	-20.7(2)
$\begin{array}{c} 1 \\ 1 \\ 2 \\ - \\ 1 \\ - \\ 1 \\ - \\ 1 \\ - \\ 1 \\ - \\ 1 \\ - \\ 1 \\ 1$	-34.81(10)	120 - 19 - 120 - 121	-20.0(2)
$C_0 - C_3 - C_4 - C_5$	-1/9.30(12)	C13 - C19 - C20 - C21	152.48 (14)
CI—NI—C5—C4	-58.59 (15)	C29—C20—C21—C22	-0.5 (2)
C13—N1—C5—C4	178.08 (12)	C19—C20—C21—C22	-179.67 (14)
C3—C4—C5—N1	57.36 (17)	C20—C21—C22—C23	-0.2(2)

C11—N2—C7—C8	-59.31 (15)	C21—C22—C23—C30	0.7 (2)
C26—N2—C7—C8	176.95 (12)	C21—C22—C23—C24	-178.97 (14)
N2—C7—C8—C9	57.45 (17)	C7—N2—C26—C25	61.28 (17)
C7—C8—C9—C10	-54.19 (16)	C11—N2—C26—C25	-62.40 (17)
C7—C8—C9—C12	-178.78 (12)	C17—C16—C27—C28	2.4 (2)
C12-C9-C10-C11	178.51 (12)	C15—C16—C27—C28	-176.02 (13)
C8—C9—C10—C11	54.03 (16)	C16—C27—C28—C19	0.0 (2)
C7—N2—C11—C10	59.11 (15)	C18—C19—C28—C27	-2.4 (2)
C26—N2—C11—C10	-177.12 (12)	C20-C19-C28-C27	176.14 (13)
C9—C10—C11—N2	-57.14 (17)	C21—C20—C29—C30	0.7 (2)
C5-N1-C13-C14	61.90 (17)	C19—C20—C29—C30	179.85 (13)
C1—N1—C13—C14	-61.79 (17)	C20—C29—C30—C23	-0.2 (2)
C27—C16—C17—C18	-2.5 (2)	C22—C23—C30—C29	-0.5 (2)
C15-C16-C17-C18	175.94 (14)	C24—C23—C30—C29	179.17 (13)

(II) 4,4'-Bis[3-(2,2,6,6-tetramethylpiperidin-1-yl)prop-1-yn-1-yl]-1,1'-biphenyl

Crystal data

 $C_{36}H_{48}N_2$ $M_r = 508.76$ Monoclinic, $P2_1/c$ a = 16.0591 (3) Å b = 6.2267 (1) Å c = 15.5921 (3) Å $\beta = 100.895$ (1)° V = 1531.03 (5) Å³ Z = 2

Data collection

Bruker X8 Proteum
diffractometer2Radiation source: fine-focus rotating anode2Detector resolution: 5.6 pixels mm⁻¹2 φ and ω scans2Absorption correction: multi-scan
(SADABS; Bruker, 2006)2 $T_{min} = 0.767, T_{max} = 0.929$ 2

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.137$ S = 1.052797 reflections 176 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 556 $D_x = 1.104 \text{ Mg m}^{-3}$ Cu K\alpha radiation, \lambda = 1.54178 \mathbf{A} Cell parameters from 8231 reflections $\theta = 2.8-67.9^{\circ}$ $\mu = 0.47 \text{ mm}^{-1}$ T = 90 KNeedle, colourless $0.22 \times 0.04 \times 0.03 \text{ mm}$

19631 measured reflections 2797 independent reflections 2405 reflections with $I > 2\sigma(I)$ $R_{int} = 0.053$ $\theta_{max} = 68.2^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -19 \rightarrow 18$ $k = -7 \rightarrow 7$ $l = -7 \rightarrow 18$

Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0655P)^2 + 0.6795P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.24 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement progress was checked using *PLATON* (Spek, 2009) and by an *R*-tensor (Parkin, 2000). The final model was further checked with the IUCr utility *checkCIF*.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.78341 (8)	0.0593 (2)	0.79190 (7)	0.0251 (3)	
C1	0.83571 (10)	-0.0569 (3)	0.73835 (10)	0.0282 (4)	
C2	0.92701 (10)	0.0213 (3)	0.76309 (11)	0.0362 (4)	
H2A	0.9634	-0.0696	0.7333	0.043*	
H2B	0.9303	0.1703	0.7418	0.043*	
C3	0.96116 (11)	0.0163 (3)	0.86058 (12)	0.0459 (5)	
H3A	1.0197	0.0734	0.8732	0.055*	
H3B	0.9623	-0.1334	0.8822	0.055*	
C4	0.90420 (12)	0.1523 (3)	0.90597 (11)	0.0450 (5)	
H4A	0.9072	0.3034	0.8869	0.054*	
H4B	0.9258	0.1472	0.9698	0.054*	
C5	0.81150 (11)	0.0802 (3)	0.88750 (9)	0.0344 (4)	
C6	0.69196 (10)	0.0225 (3)	0.76398 (11)	0.0311 (4)	
H6A	0.6669	-0.0110	0.8158	0.037*	
H6B	0.6829	-0.1031	0.7244	0.037*	
C7	0.64850 (9)	0.2102 (3)	0.71880 (10)	0.0315 (4)	
C8	0.61556 (10)	0.3635 (3)	0.68003 (10)	0.0321 (4)	
C9	0.58105 (9)	0.5448 (3)	0.62925 (10)	0.0306 (4)	
C10	0.52059 (11)	0.6782 (3)	0.65485 (12)	0.0408 (4)	
H10A	0.5007	0.6487	0.7073	0.049*	
C11	0.48936 (11)	0.8531 (3)	0.60457 (12)	0.0401 (4)	
H11A	0.4478	0.9409	0.6232	0.048*	
C12	0.51674 (9)	0.9061 (3)	0.52692 (10)	0.0301 (4)	
C13	0.57751 (13)	0.7705 (4)	0.50380 (12)	0.0497 (5)	
H13A	0.5981	0.7997	0.4517	0.060*	
C14	0.60900 (12)	0.5960 (4)	0.55329 (12)	0.0478 (5)	
H14A	0.6509	0.5086	0.5349	0.057*	
C15	0.80502 (11)	0.0062 (3)	0.64265 (10)	0.0361 (4)	
H15A	0.8023	0.1630	0.6377	0.054*	
H15B	0.7485	-0.0545	0.6217	0.054*	
H15C	0.8446	-0.0496	0.6073	0.054*	
C16	0.83244 (12)	-0.3037 (3)	0.74548 (12)	0.0384 (4)	
H16A	0.8630	-0.3487	0.8031	0.058*	
H16B	0.8590	-0.3685	0.7001	0.058*	
H16C	0.7732	-0.3505	0.7378	0.058*	
C17	0.80193 (14)	-0.1264 (3)	0.93930 (11)	0.0456 (5)	
H17A	0.8451	-0.2307	0.9301	0.068*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H17B	0.7454	-0.1875	0.9190	0.068*
H17C	0.8092	-0.0922	1.0016	0.068*
C18	0.75837 (15)	0.2577 (3)	0.91871 (11)	0.0477 (5)
H18A	0.7586	0.3850	0.8818	0.072*
H18B	0.7825	0.2945	0.9794	0.072*
H18C	0.7000	0.2071	0.9149	0.072*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
N1	0.0261 (6)	0.0330 (7)	0.0174 (6)	-0.0037 (5)	0.0076 (5)	0.0001 (5)
C1	0.0288 (8)	0.0347 (8)	0.0231 (7)	0.0026 (6)	0.0103 (6)	0.0023 (6)
C2	0.0262 (8)	0.0442 (10)	0.0398 (9)	0.0021 (7)	0.0102 (7)	0.0145 (8)
C3	0.0311 (9)	0.0553 (12)	0.0456 (10)	-0.0071 (8)	-0.0075 (8)	0.0224 (9)
C4	0.0568 (11)	0.0472 (11)	0.0241 (8)	-0.0167 (9)	-0.0104 (7)	0.0098 (7)
C5	0.0508 (10)	0.0364 (9)	0.0169 (7)	-0.0088(7)	0.0088 (6)	0.0027 (6)
C6	0.0267 (8)	0.0330 (8)	0.0359 (8)	-0.0049 (6)	0.0120 (6)	-0.0015 (7)
C7	0.0241 (7)	0.0389 (9)	0.0335 (8)	-0.0034 (7)	0.0103 (6)	-0.0075 (7)
C8	0.0243 (7)	0.0387 (9)	0.0347 (8)	-0.0037 (7)	0.0092 (6)	-0.0092 (7)
C9	0.0217 (7)	0.0372 (9)	0.0325 (8)	-0.0017 (6)	0.0040 (6)	-0.0091 (7)
C10	0.0374 (9)	0.0434 (10)	0.0475 (10)	0.0033 (8)	0.0227 (8)	-0.0001 (8)
C11	0.0343 (9)	0.0417 (10)	0.0500 (10)	0.0072 (7)	0.0222 (8)	-0.0021 (8)
C12	0.0222 (7)	0.0376 (9)	0.0306 (8)	-0.0012 (6)	0.0048 (6)	-0.0111 (7)
C13	0.0514 (11)	0.0697 (14)	0.0335 (9)	0.0281 (10)	0.0221 (8)	0.0066 (9)
C14	0.0464 (11)	0.0649 (13)	0.0363 (9)	0.0264 (9)	0.0186 (8)	0.0009 (9)
C15	0.0453 (10)	0.0444 (10)	0.0203 (7)	0.0054 (8)	0.0105 (7)	-0.0009 (7)
C16	0.0436 (10)	0.0342 (9)	0.0400 (9)	0.0042 (7)	0.0148 (7)	0.0009 (7)
C17	0.0688 (13)	0.0434 (11)	0.0286 (8)	-0.0070 (9)	0.0193 (8)	0.0090 (8)
C18	0.0838 (15)	0.0393 (10)	0.0254 (8)	-0.0073 (10)	0.0239 (9)	-0.0047 (7)

Geometric parameters (Å, °)

N1—C6	1.4688 (19)	C9—C10	1.392 (2)
N1C5	1.4793 (18)	C10—C11	1.380 (3)
N1C1	1.4804 (19)	C10—H10A	0.9500
C1—C2	1.524 (2)	C11—C12	1.403 (2)
C1—C15	1.532 (2)	C11—H11A	0.9500
C1-C16	1.542 (2)	C12—C13	1.389 (2)
C2—C3	1.516 (2)	C12-C12 ⁱ	1.480 (3)
C2—H2A	0.9900	C13—C14	1.373 (3)
C2—H2B	0.9900	C13—H13A	0.9500
C3—C4	1.517 (3)	C14—H14A	0.9500
С3—НЗА	0.9900	C15—H15A	0.9800
С3—Н3В	0.9900	C15—H15B	0.9800
C4—C5	1.529 (2)	C15—H15C	0.9800
C4—H4A	0.9900	C16—H16A	0.9800
C4—H4B	0.9900	C16—H16B	0.9800
C5—C18	1.531 (3)	C16—H16C	0.9800

C5—C17	1.542 (2)	С17—Н17А	0.9800
C6—C7	1.471 (2)	C17—H17B	0.9800
С6—Н6А	0.9900	C17—H17C	0.9800
С6—Н6В	0.9900	C18—H18A	0.9800
C7—C8	1.198 (2)	C18—H18B	0.9800
C8—C9	1.429 (2)	C18—H18C	0.9800
C9—C14	1.381 (2)		
C6—N1—C5	114.19 (12)	C14—C9—C8	120.16 (15)
C6—N1—C1	113.49 (12)	C10—C9—C8	122.07 (15)
C5—N1—C1	120.92 (13)	C11—C10—C9	120.43 (16)
N1—C1—C2	108.79 (13)	C11—C10—H10A	119.8
N1—C1—C15	108.16 (12)	C9—C10—H10A	119.8
C2—C1—C15	106.36 (13)	C10-C11-C12	122.43 (15)
N1—C1—C16	114.57 (13)	C10-C11-H11A	118.8
C2—C1—C16	110.15 (14)	C12—C11—H11A	118.8
C15—C1—C16	108.47 (14)	C13—C12—C11	115.55 (16)
C3—C2—C1	113.30 (13)	C13-C12-C12 ⁱ	122.06 (18)
C3—C2—H2A	108.9	C11—C12—C12 ⁱ	122.39 (17)
C1—C2—H2A	108.9	C14—C13—C12	122.53 (16)
C3—C2—H2B	108.9	C14—C13—H13A	118.7
C1—C2—H2B	108.9	C12—C13—H13A	118.7
H2A—C2—H2B	107.7	C13—C14—C9	121.32 (16)
C2—C3—C4	108.70 (14)	C13—C14—H14A	119.3
С2—С3—НЗА	109.9	C9—C14—H14A	119.3
С4—С3—НЗА	109.9	C1—C15—H15A	109.5
С2—С3—Н3В	109.9	C1—C15—H15B	109.5
C4—C3—H3B	109.9	H15A—C15—H15B	109.5
НЗА—СЗ—НЗВ	108.3	C1—C15—H15C	109.5
C3—C4—C5	113.55 (15)	H15A—C15—H15C	109.5
C3—C4—H4A	108.9	H15B—C15—H15C	109.5
C5—C4—H4A	108.9	C1—C16—H16A	109.5
C3—C4—H4B	108.9	C1-C16-H16B	109.5
C5—C4—H4B	108.9	H16A—C16—H16B	109.5
H4A—C4—H4B	107.7	C1—C16—H16C	109.5
N1—C5—C4	108.43 (12)	H16A—C16—H16C	109.5
N1-C5-C18	107.54 (14)	H16B—C16—H16C	109.5
C4—C5—C18	108.02 (15)	С5—С17—Н17А	109.5
N1—C5—C17	114.40 (14)	C5—C17—H17B	109.5
C4—C5—C17	109.65 (15)	H17A—C17—H17B	109.5
C18—C5—C17	108.61 (14)	С5—С17—Н17С	109.5
N1—C6—C7	112.04 (13)	H17A—C17—H17C	109.5
N1—C6—H6A	109.2	H17B—C17—H17C	109.5
С7—С6—Н6А	109.2	C5—C18—H18A	109.5
N1—C6—H6B	109.2	C5—C18—H18B	109.5
С7—С6—Н6В	109.2	H18A—C18—H18B	109.5
H6A—C6—H6B	107.9	C5—C18—H18C	109.5
C8—C7—C6	177.40 (16)	H18A—C18—H18C	109.5

C7—C8—C9 C14—C9—C10	175.42 (16) 117.74 (16)	H18B—C18—H18C	109.5
$\begin{array}{c} C6 & - N1 & - C1 & - C2 \\ C5 & - N1 & - C1 & - C2 \\ C6 & - N1 & - C1 & - C15 \\ C5 & - N1 & - C1 & - C15 \\ C6 & - N1 & - C1 & - C16 \\ C5 & - N1 & - C1 & - C16 \\ N1 & - C1 & - C2 & - C3 \\ C15 & - C1 & - C2 & - C3 \\ C15 & - C1 & - C2 & - C3 \\ C16 & - C1 & - C2 & - C3 \\ C1 & - C2 & - C3 & - C4 \\ C2 & - C3 & - C4 & - C5 \\ C6 & - N1 & - C5 & - C4 \\ C1 & - N1 & - C5 & - C18 \\ C1 & - N1 & - C5 & - C18 \\ \end{array}$	$170.72 (12) \\ -47.93 (18) \\ 55.59 (17) \\ -163.06 (14) \\ -65.52 (17) \\ 75.83 (18) \\ 51.04 (19) \\ 167.34 (15) \\ -75.31 (19) \\ -57.6 (2) \\ 57.58 (19) \\ -171.25 (14) \\ 47.65 (19) \\ -54.69 (17) \\ 164.21 (14) \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -75.06 (19) \\ -50.81 (19) \\ -167.07 (14) \\ 74.74 (17) \\ 109.77 (15) \\ -106.21 (15) \\ 1.0 (3) \\ 179.33 (16) \\ -0.6 (3) \\ 0.0 (3) \\ -179.94 (18) \\ 0.0 (3) \\ 180.0 (2) \\ 0.5 (3) \\ -0.9 (3) \end{array}$
Co-NI-C5-C17	66.04 (19)	C8—C9—C14—C13	-1/9.33 (18)

Symmetry code: (i) -x+1, -y+2, -z+1.