

Received 3 September 2015 Accepted 8 September 2015

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; hydrogen bonds; paclitaxel; cyclohexane; hydroxy groups

CCDC reference: 1422946 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of (±)-(7RS,8SR)-7-methyl-1,4dioxaspiro[4.5]decane-7,8-diol

Takeshi Oishi,^a* Hiroaki Yamamoto,^b Tomoya Sugai,^b Keisuke Fukaya,^b Yu Yamaguchi,^b Ami Watanabe,^b Takaaki Sato^b and Noritaka Chida^b

^aSchool of Medicine, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, and ^bDepartment of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan. *Correspondence e-mail: oec@keio.jp

In the title compound, $C_9H_{16}O_4$, the five-membered dioxolane ring adopts a twist conformation; two adjacent C atoms deviate alternately from the mean plane of other atoms by -0.297 (4) and 0.288 (4) Å. The spiro-fused cyclohexane ring shows a chair form. The hydroxy group substituted in an axial position makes an intramolecular $O-H\cdots O$ hydrogen bond with one of the O atoms in the cyclic ether, forming an S(6) ring motif. In the crystal, the $O-H\cdots O$ hydrogen bond involving the equatorial hydroxy group connects the molecules into a zigzag chain with a C(5) motif running along the c axis.

1. Chemical context

Paclitaxel (systematic name: (1S,2S,3R,4S,7R,9S,10S,12R,-15S)-4,12-diacetoxy-1,9-dihydroxy-15-{[(2R,3S)-3-benzoy]amino-2-hydroxy-3-phenyl]propanoyl}oxy-10,14,17,17-tetramethyl-11-oxo-6-oxatetracyclo[11.3.1.0^{3,10}.0^{4,7}]heptadec-13en-2-yl benzoate) is a well-known natural diterpenoid with a potent antitumor activity (Wall & Wani, 1995). Its rather complicated structure and significant bioactivity have attracted chemical and medicinal interests. While we recently reported several structures of the compounds (Oishi, Yamaguchi et al., 2015; Oishi, Fukaya et al., 2015a,b) obtained in the synthesis of paclitaxel (Fukaya, Tanaka et al., 2015; Fukaya, Kodama et al., 2015), the title compound has been prepared in an efficient synthetic approach to furnish the highly functionalized cyclohexane unit (Fukaya, Sugai et al., 2015). Although the title compound has been reported first with a different synthetic procedure, any stereochemical or conformational assignment was not mentioned (Li et al., 1981).

OPEN d ACCESS

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1. The dioxolane ring (O1/C2/C3/O4/C5) adopts a twist form with puckering parameters of Q(2) = 0.3523 (16) Å and $\varphi(2) = 233.8$ (3)°. Atoms C2 and C3 deviate from the mean plane of the other three atoms by -0.297 (4) and 0.288 (4) Å, respectively. The cyclohexane ring (C5–C10) adopts a chair form with puckering parameters of Q = 0.5560 (18) Å, $\theta = 3.32$ (18)°, $\varphi = 193$ (3)°, Q(2) = 0.0323 (17) Å and Q(3) =

Figure 1

The molecular structure of the title compound, showing the atom labels. Displacement ellipsoids are drawn at the 50% probability level. The yellow dotted line indicates the intramolecular $O-H\cdots O$ hydrogen bond. Only H atoms connected to O and chiral C atoms are shown for clarity.

Figure 2

A partial packing view showing the chain structure. Yellow lines indicate the intramolecular $O-H\cdots O$ hydrogen bonds. Purple dashed lines indicate the intermolecular $O-H\cdots O$ hydrogen bonds. Only H atoms involved in hydrogen bonds are shown for clarity. [Symmetry code: (i) x, $-y + \frac{3}{2}$, $z - \frac{1}{2}$.]

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
O12−H12···O4	0.84	2.05	2.7838 (16)	146
$O13-H13\cdots O12^{i}$	0.84	1.99	2.8093 (16)	166
$C6-H6B\cdotsO1^{ii}$	0.99	2.61	3.5631 (19)	162

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) -x, -y + 1, -z + 2.

0.5551 (18) Å. The C5–O1, C7–C11 and C8–O13 bonds of equatorially oriented substituents make angles of 68.30 (9), 69.85 (9) and 75.76 (9)°, respectively, with the normal to the Cremer and Pople plane of the cyclohexane ring. The axially oriented hydroxy group forms an intramolecular O–H···O hydrogen bond (O12–H12···O4; Table 1), generating an S(6) graph-set motif. In this ring motif, five atoms (C5–O4···H12–O12–O7) are nearly coplanar with a maximum deviation of 0.012 (5) Å for atom O4.

3. Supramolecular features

The crystal packing features an intermolecular $O-H\cdots O$ hydrogen bond (O13-H13 \cdots O12ⁱ; Table 1) connecting enantiomers related by a glide plane to form a chain structure with a C(5) graph-set motif running along the *c* axis (Fig. 2). An intermolecular $C-H\cdots O$ interaction (C6-H6 $B\cdots O1^{ii}$; Table 1) with a slightly longer distance, leading to form a sheet parallel to (100), is also observed (Fig. 3).

4. Database survey

In the Cambridge Structural Database (CSD, Version 5.36, November 2014; Groom & Allen, 2014), 266 structures containing a 7-methyl-1,4-dioxaspiro[4.5]decane skeleton, (*a*), are registered (Fig. 4). These include six compounds with 7,8-dioxy-substituents. Two of them (JIQFIY and JIQGAR; Collins *et al.*, 1998), synthesized from D-glucose, are closely

Figure 3

A packing diagram viewed down the *c* axis. Black dotted lines indicate the intermolecular $C-H\cdots O$ interactions. Yellow lines and purple dashed lines indicate the intra- and intermolecular $O-H\cdots O$ hydrogen bonds, respectively. Only H atoms involved in hydrogen bonds are shown for clarity. [Symmetry code: (ii) -x, -y + 1, -z + 2.]

Figure 4

(a) 7-Methyl-1,4-dioxaspiro[4.5]decane; as the core structure for database survey, (b) the title compound, and its (c) 9,10-dimethoxy-8-O-methyl and (d) 9,10-dimethoxy-6-phenyl-8-O-methyl derivatives.

related to the title compound [(b); racemic, $P2_1/c]$, which are its 9,10-dimethoxy-8-O-methyl [(c); chiral, $P2_12_12_1$] and 9,10dimethoxy-6-phenyl-8-O-methyl [(d); chiral, $P2_12_12_1$] derivatives. In the crystal structures of (c) and (d), the dioxolane rings adopt twist forms and the cyclohexane rings show chair forms. The intramolecular $O-H\cdots O$ hydrogen bond is also observed in (c), but not in (d).

5. Synthesis and crystallization

The title compound was afforded in an improved synthetic approach of paclitaxel from 3-methylanisole (Fukaya, Sugai *et al.*, 2015). Purification was carried out by silica gel column chromatography, and colorless crystals were obtained from an ethyl acetate solution by slow evaporation at ambient temperature. M.p. 359–360 K. HRMS (ESI) m/z calculated for C₉H₁₆O₄Na⁺ [M + Na]⁺: 211.0946; found: 211.0936. Analysis calculated for C₉H₁₆O₄: C 57.43, H 8.57%; found: C 57.51, H 8.50%. It is noted that the crystals grown from a diethyl ether solution under a pentane-saturated atmosphere were non-merohedral twins, and the structure is essentially the same as that reported here.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically with C-H = 0.98–1.00 Å, and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. The hydroxy H atoms were placed guided by difference maps, with O-H = 0.84 Å and with $U_{iso}(H) =$ $1.5U_{eq}(O)$.

 Table 2

 Experimental details.

Crystal data	
Chemical formula	$C_9H_{16}O_4$
M _r	188.22
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	90
a, b, c (Å)	7.7403 (5), 18.1498 (11), 6.7335 (5)
β (°)	103.281 (2)
$V(Å^3)$	920.66 (11)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.11
Crystal size (mm)	$0.28 \times 0.27 \times 0.25$
Data collection	
Diffractometer	Bruker D8 Venture
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2014)
T_{\min}, T_{\max}	0.97, 0.97
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	8165, 1612, 1205
R _{int}	0.037
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.036, 0.092, 1.01
No. of reflections	1612
No. of parameters	121
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.25, -0.27

Computer programs: *APEX2* and *SAINT* (Bruker, 2014), *SHELXS2013* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015), *Mercury* (Macrae *et al.*, 2006), *publCIF* (Westrip, 2010) and *PLATON* (Spek, 2009).

Acknowledgements

This research was partially supported by the Keio Gijuku Fukuzawa Memorial Fund for the Advancement of Education and Research. We also thank Professor S. Ohba (Keio University, Japan) for his valuable advice.

References

- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Collins, D. J., Hibberd, A. I., Skelton, B. W. & White, A. H. (1998). Aust. J. Chem. **51**, 681–694.
- Fukaya, K., Kodama, K., Tanaka, Y., Yamazaki, H., Sugai, T., Yamaguchi, Y., Watanabe, A., Oishi, T., Sato, T. & Chida, N. (2015). *Org. Lett.* **17**, 2574–2577.
- Fukaya, K., Sugai, T., Sugai, T., Yamaguchi, Y., Watanabe, A., Yamamoto, H., Sato, T. & Chida, N. (2015). In preparation.
- Fukaya, K., Tanaka, Y., Sato, A. C., Kodama, K., Yamazaki, H., Ishimoto, T., Nozaki, Y., Iwaki, Y. M., Yuki, Y., Umei, K., Sugai, T., Yamaguchi, Y., Watanabe, A., Oishi, T., Sato, T. & Chida, N. (2015). *Org. Lett.* **17**, 2570–2573.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Li, Y.-L., Pan, X.-F., Huang, W.-K., Wang, Y.-K. & Li, Y.-C. (1981). Acta Chim. Sin. **39**, 937–939.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Oishi, T., Fukaya, K., Yamaguchi, Y., Sugai, T., Watanabe, A., Sato, T. & Chida, N. (2015*a*). *Acta Cryst.* E**71**, 466–472.
- Oishi, T., Fukaya, K., Yamaguchi, Y., Sugai, T., Watanabe, A., Sato, T. & Chida, N. (2015*b*). *Acta Cryst.* E**71**, 490–493.

Oishi, T., Yamaguchi, Y., Fukaya, K., Sugai, T., Watanabe, A., Sato, T. & Chida, N. (2015). *Acta Cryst.* E71, 8–11.
Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.
Sheldrick, G. M. (2015). *Acta Cryst.* C71, 3–8.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.
Wall, M. E. & Wani, M. C. (1995). ACS Symp. Ser. 583, 18–30.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

supporting information

Acta Cryst. (2015). E71, 1181-1184 [doi:10.1107/S2056989015016783]

Crystal structure of (±)-(7RS,8SR)-7-methyl-1,4-dioxaspiro[4.5]decane-7,8-diol

Takeshi Oishi, Hiroaki Yamamoto, Tomoya Sugai, Keisuke Fukaya, Yu Yamaguchi, Ami Watanabe, Takaaki Sato and Noritaka Chida

Computing details

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT* (Bruker, 2014); program(s) used to solve structure: *SHELXS2013* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010) and *PLATON* (Spek, 2009).

(±)-(7RS,8SR)-7-Methyl-1,4-dioxaspiro[4.5]decane-7,8-diol

Crystal data $C_{9}H_{16}O_{4}$ $D_{\rm x} = 1.358 {\rm Mg} {\rm m}^{-3}$ $M_r = 188.22$ Melting point: 360.2 K Mo *K* α radiation, $\lambda = 0.71073$ Å Monoclinic, $P2_1/c$ a = 7.7403 (5) ÅCell parameters from 2733 reflections b = 18.1498 (11) Å $\theta = 2.7 - 24.7^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ c = 6.7335(5) Å T = 90 K $\beta = 103.281 \ (2)^{\circ}$ $V = 920.66 (11) \text{ Å}^3$ Prism. colorless Z = 4 $0.28 \times 0.27 \times 0.25 \text{ mm}$ F(000) = 408Data collection Bruker D8 Venture 8165 measured reflections diffractometer 1612 independent reflections Radiation source: fine-focus sealed tube 1205 reflections with $I > 2\sigma(I)$ Multilayered confocal mirror monochromator $R_{\rm int} = 0.037$ Detector resolution: 10.4167 pixels mm⁻¹ $\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 2.7^{\circ}$ φ and ω scans $h = -9 \rightarrow 8$ $k = -21 \rightarrow 21$ Absorption correction: multi-scan (SADABS; Bruker, 2014) $l = -8 \rightarrow 7$ $T_{\rm min} = 0.97, \ T_{\rm max} = 0.97$ Refinement Refinement on F^2 Primary atom site location: structure-invariant Least-squares matrix: full direct methods $R[F^2 > 2\sigma(F^2)] = 0.036$ Secondary atom site location: difference Fourier $wR(F^2) = 0.092$ map S = 1.01Hydrogen site location: inferred from 1612 reflections neighbouring sites 121 parameters H-atom parameters constrained 0 restraints

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0407P)^{2} + 0.4103P] \qquad \Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$ $(\Delta / \sigma)_{max} = 0.008$

Special details

Experimental. IR (KBr) 3476, 3398, 2986, 2950, 2931, 2895, 1448, 1419, 1397, 1356, 1229, 1120, 1083, 1060, 1013, 952, 840, 696 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ (p.p.m.) 4.02–3.91 (m, 4H), 3.73 (s, 1H), 3.33 (ddd, J = 10.7, 10.6, 4.9 Hz, 1H), 2.03 (d, J = 10.6 Hz, 1H), 1.94–1.86 (m, 2H), 1.78–1.56 (m, 4H), 1.25 (d, J = 0.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (p.p.m.) 108.7 (C), 74.0 (CH), 72.5 (C), 64.7 (CH₂), 64.4 (CH₂), 44.1 (CH₂), 33.2 (CH₂), 28.4 (CH₂), 26.2 (CH₃).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. Problematic one reflection with $|I(\text{obs})-I(\text{calc})|/\sigma W(I)$ greater than 10 (0 2 0) has been omitted in the final refinement.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.27151 (15)	0.55328 (6)	1.12431 (17)	0.0191 (3)	
C2	0.4342 (2)	0.58896 (9)	1.2186 (3)	0.0209 (4)	
H2A	0.5326	0.5725	1.158	0.025*	
H2B	0.4662	0.5796	1.3675	0.025*	
C3	0.3914 (2)	0.66886 (9)	1.1734 (3)	0.0204 (4)	
H3A	0.327	0.6902	1.271	0.025*	
H3B	0.5002	0.698	1.1772	0.025*	
O4	0.28135 (15)	0.66576 (6)	0.97209 (18)	0.0177 (3)	
C5	0.1875 (2)	0.59633 (9)	0.9519 (2)	0.0154 (4)	
C6	-0.0045 (2)	0.60871 (9)	0.9585 (2)	0.0139 (4)	
H6A	-0.0085	0.6365	1.0839	0.017*	
H6B	-0.0617	0.5603	0.9663	0.017*	
C7	-0.1103 (2)	0.65073 (8)	0.7741 (3)	0.0139 (4)	
C8	-0.0926 (2)	0.61203 (9)	0.5774 (2)	0.0141 (4)	
H8	-0.1427	0.5614	0.5804	0.017*	
С9	0.1009 (2)	0.60306 (9)	0.5692 (3)	0.0161 (4)	
H9A	0.1551	0.6523	0.5649	0.019*	
H9B	0.1079	0.5764	0.443	0.019*	
C10	0.2047 (2)	0.56059 (9)	0.7546 (3)	0.0160 (4)	
H10A	0.1598	0.5094	0.7496	0.019*	
H10B	0.3315	0.5586	0.7499	0.019*	
C11	-0.3033 (2)	0.65735 (10)	0.7850 (3)	0.0209 (4)	
H11A	-0.3108	0.6838	0.9097	0.031*	
H11B	-0.3544	0.608	0.7868	0.031*	
H11C	-0.3692	0.6845	0.6658	0.031*	
O12	-0.04355 (15)	0.72524 (6)	0.77185 (18)	0.0170 (3)	
H12	0.0652	0.726	0.828	0.026*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

O13	-0.19319 (15)	0.64738 (6)	0.40008 (17)	0.0179 (3)	
H13	-0.1446	0.6875	0.3825	0.027*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0174 (6)	0.0186 (7)	0.0174 (7)	-0.0029 (5)	-0.0040 (5)	0.0046 (5)
C2	0.0167 (9)	0.0220 (10)	0.0206 (10)	-0.0018 (8)	-0.0024 (7)	-0.0001 (8)
C3	0.0197 (10)	0.0203 (10)	0.0186 (10)	-0.0022 (8)	-0.0012 (8)	-0.0022 (8)
O4	0.0167 (6)	0.0158 (6)	0.0178 (7)	-0.0057 (5)	-0.0021 (5)	0.0019 (5)
C5	0.0157 (9)	0.0124 (8)	0.0162 (9)	-0.0029 (7)	-0.0001 (7)	0.0041 (7)
C6	0.0165 (9)	0.0130 (9)	0.0130 (9)	-0.0021 (7)	0.0048 (7)	-0.0011 (7)
C7	0.0154 (9)	0.0099 (8)	0.0166 (10)	-0.0008(7)	0.0042 (7)	0.0003 (7)
C8	0.0160 (9)	0.0114 (9)	0.0132 (9)	-0.0010 (7)	-0.0002 (7)	0.0010 (7)
C9	0.0178 (9)	0.0162 (9)	0.0147 (9)	-0.0001 (7)	0.0045 (7)	-0.0020 (7)
C10	0.0135 (9)	0.0164 (9)	0.0188 (10)	0.0001 (7)	0.0051 (7)	-0.0005 (7)
C11	0.0181 (9)	0.0223 (10)	0.0233 (10)	0.0017 (8)	0.0071 (8)	0.0005 (8)
O12	0.0176 (6)	0.0129 (6)	0.0195 (7)	-0.0011 (5)	0.0021 (5)	-0.0007 (5)
O13	0.0192 (7)	0.0171 (6)	0.0145 (7)	-0.0021 (5)	-0.0019 (5)	0.0036 (5)

Geometric parameters (Å, °)

01—C5	1.4265 (19)	C7—C11	1.517 (2)
O1—C2	1.428 (2)	С7—С8	1.532 (2)
C2—C3	1.503 (2)	C8—O13	1.4200 (19)
C2—H2A	0.99	C8—C9	1.520 (2)
C2—H2B	0.99	C8—H8	1.0
C3—O4	1.427 (2)	C9—C10	1.529 (2)
С3—НЗА	0.99	С9—Н9А	0.99
С3—Н3В	0.99	С9—Н9В	0.99
O4—C5	1.4453 (19)	C10—H10A	0.99
C5—C10	1.512 (2)	C10—H10B	0.99
С5—С6	1.514 (2)	C11—H11A	0.98
C6—C7	1.526 (2)	C11—H11B	0.98
С6—Н6А	0.99	C11—H11C	0.98
С6—Н6В	0.99	O12—H12	0.84
C7—O12	1.4491 (19)	O13—H13	0.84
$C_{5} - 0_{1} - C_{2}$	107 70 (12)	012	108 41 (13)
01 - C2 - C3	102.52 (13)	$C_{11} - C_{7} - C_{8}$	111.28 (14)
01—C2—H2A	111.3	C6—C7—C8	109.66 (13)
C3—C2—H2A	111.3	O13—C8—C9	111.85 (13)
O1—C2—H2B	111.3	O13—C8—C7	112.27 (13)
C3—C2—H2B	111.3	C9—C8—C7	111.41 (13)
H2A—C2—H2B	109.2	O13—C8—H8	107.0
O4—C3—C2	102.13 (13)	С9—С8—Н8	107.0
O4—C3—H3A	111.3	С7—С8—Н8	107.0
С2—С3—НЗА	111.3	C8—C9—C10	111.21 (14)

O4—C3—H3B	111.3	С8—С9—Н9А	109.4
С2—С3—Н3В	111.3	С10—С9—Н9А	109.4
НЗА—СЗ—НЗВ	109.2	С8—С9—Н9В	109.4
C3—O4—C5	107.54 (12)	С10—С9—Н9В	109.4
O1—C5—O4	105.99 (12)	Н9А—С9—Н9В	108.0
O1—C5—C10	111.37 (13)	C5—C10—C9	111.42 (13)
O4—C5—C10	108.24 (13)	C5-C10-H10A	109.3
O1—C5—C6	108.93 (13)	C9—C10—H10A	109.3
O4—C5—C6	110.10 (13)	C5-C10-H10B	109.3
C10—C5—C6	112.02 (13)	C9—C10—H10B	109.3
C5—C6—C7	113.40 (13)	H10A—C10—H10B	108.0
С5—С6—Н6А	108.9	C7—C11—H11A	109.5
С7—С6—Н6А	108.9	C7—C11—H11B	109.5
С5—С6—Н6В	108.9	H11A—C11—H11B	109.5
С7—С6—Н6В	108.9	C7—C11—H11C	109.5
H6A—C6—H6B	107.7	H11A—C11—H11C	109.5
O12—C7—C11	106.50 (13)	H11B—C11—H11C	109.5
O12—C7—C6	110.42 (13)	C7—O12—H12	109.5
С11—С7—С6	110.50 (14)	C8—O13—H13	109.5
C5—O1—C2—C3	30.97 (17)	C5—C6—C7—C8	53.80 (17)
O1—C2—C3—O4	-37.36 (16)	O12—C7—C8—O13	-61.28 (17)
C2—C3—O4—C5	30.55 (17)	C11—C7—C8—O13	55.53 (17)
C2-01-C5-04	-12.62 (16)	C6—C7—C8—O13	178.10 (12)
C2-01-C5-C10	104.89 (15)	O12—C7—C8—C9	65.06 (16)
C2-01-C5-C6	-131.06 (14)	C11—C7—C8—C9	-178.13 (13)
C3—O4—C5—O1	-12.23 (16)	C6—C7—C8—C9	-55.56 (17)
C3—O4—C5—C10	-131.81 (14)	O13—C8—C9—C10	-176.36 (12)
C3—O4—C5—C6	105.44 (15)	C7—C8—C9—C10	57.07 (18)
O1—C5—C6—C7	-176.78 (12)	O1—C5—C10—C9	174.98 (12)
O4—C5—C6—C7	67.39 (16)	O4—C5—C10—C9	-68.89 (16)
C10—C5—C6—C7	-53.12 (18)	C6—C5—C10—C9	52.69 (18)
C5—C6—C7—O12	-65.60 (17)	C8—C9—C10—C5	-55.09 (18)
C5—C6—C7—C11	176.83 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
O12—H12…O4	0.84	2.05	2.7838 (16)	146
O13—H13…O12 ⁱ	0.84	1.99	2.8093 (16)	166
C6—H6 <i>B</i> …O1 ⁱⁱ	0.99	2.61	3.5631 (19)	162

Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) -x, -y+1, -z+2.