

Received 8 August 2015 Accepted 25 August 2015

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina

**Keywords**: crystal structures; carbamoyl disulfanes; hydrogen bonding; Z = 16; Z' = 2; halogen bonding

CCDC references: 1420526; 1420527; 1420528 Supporting information: this article has supporting information at journals.iucr.org/e





# Crystal structures of three (trichloromethyl)(carbamoyl)disulfanes

Barbara L. Goldenberg, Victor G. Young Jr and George Barany\*

Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA. \*Correspondence e-mail: barany@umn.edu

The present paper reports crystallographic studies on three related compounds that were of interest as precursors for synthetic and mechanistic work in organosulfur chemistry, as well as to model nitrogen-protecting groups: (N-methylcarbamoyl)(trichloromethyl)disulfane, C<sub>3</sub>H<sub>4</sub>Cl<sub>3</sub>NOS<sub>2</sub>, (1), (N-benzylcarbamoyl)(trichloromethyl)disulfane, C<sub>9</sub>H<sub>8</sub>Cl<sub>3</sub>NOS<sub>2</sub>, (2), and (N-methyl-Nphenylcarbamoyl)(trichloromethyl)disulfane,  $C_0H_8Cl_3NOS_2$ , (3). Their molecular structures, with similar bond lengths and angles for the CCl<sub>3</sub>SS(C=O)N moieties, are confirmed. Compounds (1) and (3) both crystallized with two independent molecules in the asymmetric unit. Classical hydrogen bonding, as well as chlorine-dense regions, are evident in the crystal packing for (1) and (2). In the crystal of (1), molecules are linked via  $N-H\cdots O$  hydrogen bonds forming chains along [110], which are linked by short  $Cl \cdots Cl$  and  $S \cdots O$  contacts forming sheets parallel to (001). In the crystal of (2), molecules are linked via N-H···O hydrogen bonds forming chains along [001], which in turn are linked by pairs of short  $O \cdots Cl$  contacts forming ribbons along the *c*-axis direction. In the crystal of (3), there are no classical hydrogen bonds present and the chlorine-dense regions observed in (1) and (2) are lacking.

## 1. Chemical context

Carbamoyl disulfanes were first reported by Harris (1960). This family of compounds has served as useful model compounds for synthetic and mechanistic work in organosulfur chemistry and nitrogen-protecting-group development (Barany & Merrifield, 1977; Barany *et al.*, 1983; Schroll & Barany, 1986; Barany *et al.*, 2005; Schrader *et al.*, 2011). The trichloromethyl derivatives reported here, (trichloromethyl)(*N*-methylcarbamoyl)disulfane, (1) (Fig. 1), (trichloromethyl)(*N*-benzylcarbamoyl)disulfane, (2) (Fig. 2), and (trichloromethyl)(*N*-methyl-*N*-phenylcarbamoyl)disulfane,

(3) (Fig. 3), are particularly stable. All three compounds have been stored under ambient conditions for periods in the range of two to four decades, with no evidence of decomposition based on unchanged <sup>1</sup>H NMR spectra and melting points.





Figure 1

The molecular structure of compound (1) showing the atom-labelling scheme, with two molecules (Z' = 2) per asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.

## 2. Structural commentary

The three (trichloromethyl)(carbamoyl)disulfanes differ in the substituents on the carbamoyl nitrogen, but the bond lengths and angles of the common  $CCl_3SS(C=O)N$  moieties of each are markedly similar for the two molecules in the asymmetric units of (1) and (3), as well as for the single conformation of (2) (Tables 1 and 2). The corresponding structural features of (3) are also similar to the bond lengths and torsion angles of other carbamoyl disulfanes that include an SS(C=O)N(Me)Ph chain, including, for example, bis(*N*methyl-*N*-phenylcarbamoyl)disulfane (ZAQWUL, formula [Ph(Me)N(C=O)S]<sub>2</sub>) (Schroll *et al.*, 2012) and (*N*-methyl-*N*-phenylcarbamoyl)(*N*-methyl-*N*-phenylamino)disulfane [formula Ph(Me)N(C=O)SSN(Me)Ph] (Henley *et al.*, 2015).

| Table 1       |               |            |                  |                         |               |
|---------------|---------------|------------|------------------|-------------------------|---------------|
| Selected bond | lengths (Å) a | and angles | $(^{\circ})$ for | CCl <sub>3</sub> SS(C=0 | O)N moieties. |









The molecular structure of compound (3) showing the atom-labelling scheme, with two molecules (Z' = 2) per asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.

### 3. Supramolecular features

The three compounds arrange in three distinct packing configurations. The two nearly superimposable molecular structures of (1) are alternately hydrogen-bonded (NH···O=C) in chains along [110] (Table 3). Successive molecules of each of two chains are linked by 3.162 (1) Å S1A···O1B contacts, 0.157 Å less than their van der Waals radii sum (Fig. 4). Additional packing features result in a Z = 16 unit cell. A chlorine from each of four molecules – in separate hydrogen-bonded chains – form a short-contact skew quadrilateral with intermolecular contact distances of

|          | (1 <i>a</i> ) | (1 <i>b</i> ) | (2)         | ( <b>3</b> <i>a</i> ) | ( <b>3</b> <i>b</i> ) |
|----------|---------------|---------------|-------------|-----------------------|-----------------------|
| \$1-C1   | 1.8242 (18)   | 1.8261 (18)   | 1.826 (3)   | 1.824 (2)             | 1.822 (2)             |
| S1-S2    | 2.0100 (7)    | 2.0126 (6)    | 2.0099 (11) | 2.0202 (7)            | 2.0160 (7)            |
| S2-C2    | 1.8367 (17)   | 1.8426 (17)   | 1.842 (3)   | 1.856 (2)             | 1.842 (2)             |
| O1-C2    | 1.214 (2)     | 1.212 (2)     | 1.213 (4)   | 1.208 (2)             | 1.211 (2)             |
| N1-C2    | 1.322 (2)     | 1.324 (2)     | 1.319 (4)   | 1.345 (3)             | 1.346 (3)             |
| N1-C3    | 1.458 (2)     | 1.460 (2)     | 1.475 (4)   | 1.467 (3)             | 1.460 (3)             |
| N1-C4    | -             | _             | -           | 1.440 (3)             | 1.447 (3)             |
| C1-S1-S2 | 103.09 (6)    | 103.10 (6)    | 103.68 (11) | 102.38 (7)            | 104.40 (7)            |
| C2-S2-S1 | 102.20 (6)    | 101.43 (6)    | 101.40 (10) | 99.96 (7)             | 101.59 (7)            |
| C2-N1-C3 | 121.71 (15)   | 120.35 (14)   | 121.8 (3)   | 118.95 (18)           | 119.49 (18)           |
| O1-C2-N1 | 126.31 (16)   | 126.23 (16)   | 126.4 (3)   | 125.9 (2)             | 126.4 (2)             |
| O1-C2-S2 | 123.02 (13)   | 122.17 (13)   | 122.4 (2)   | 122.09 (16)           | 122.96 (16)           |
| N1-C2-S2 | 110.67 (12)   | 111.58 (12)   | 111.2 (2)   | 111.99 (15)           | 110.65 (14)           |

Table 2Comparison of selected torsion angles (°).

| 1           | 0 ()                  |               |            |               |                       |
|-------------|-----------------------|---------------|------------|---------------|-----------------------|
|             | ( <b>1</b> <i>a</i> ) | (1 <i>b</i> ) | (2)        | (3 <i>a</i> ) | ( <b>3</b> <i>b</i> ) |
| C1-S1-S2-C2 | 93.63 (8)             | 93.49 (8)     | 96.54 (14) | 92.91 (10)    | -95.23 (10)           |
| C3-N1-C2-O1 | 3.3 (3)               | 1.6 (3)       | -1.3(5)    | 0.3 (3)       | -0.8(3)               |
| C3-N1-C2-S2 | -176.22(14)           | -176.67 (12)  | -178.2(3)  | -179.98 (15)  | 179.73 (16)           |
| S1-S2-C2-O1 | 2.87 (16)             | -0.66(15)     | -2.5(3)    | 10.32 (19)    | 6.32 (19)             |
| S1-S2-C2-N1 | -177.64 (11)          | 177.64 (11)   | 174.6 (2)  | -169.40(14)   | -174.23(13)           |
| C2-N1-C4-C9 | _                     | _             | _          | -72.9 (3)     | 93.8 (2)              |
| C2-N1-C4-C5 | -                     | -             | _          | 109.7 (2)     | -86.4(3)              |
| C3-N1-C4-C9 | -                     | -             | _          | 104.1 (2)     | -78.0(3)              |
| C3-N1-C4-C5 | -                     | -             | _          | -73.3 (3)     | 101.8 (2)             |

Table 3

Hydrogen-bond geometry (Å,  $^{\circ}$ ) for (1).

| $D - H \cdot \cdot \cdot A$  | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------|----------------|-------------------------|--------------|--------------------------------------|
| $N1A - H1AA \cdots O1B^{i}$  | 0.86 (1)       | 1.94 (1)                | 2.7825 (18)  | 164 (2)                              |
| $N1B - H1BA \cdots O1A^{ii}$ | 0.86 (1)       | 1.97 (1)                | 2.8231 (18)  | 175 (2)                              |

Symmetry codes: (i)  $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$ ; (ii) -x, -y + 1, -z + 1.

Table 4

Hydrogen-bond geometry (Å,  $^{\circ}$ ) for (2).

| $\overline{D-\mathrm{H}\cdots A}$ | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|-----------------------------------|----------|-------------------------|--------------|------------------|
| N1-H1 $A$ ···O1 <sup>i</sup>      | 0.87 (1) | 2.02 (1)                | 2.887 (3)    | 174 (3)          |

Symmetry code: (i)  $x, -y + \frac{3}{2}, z + \frac{1}{2}$ .

3.4304 (8) Å (-0.070 Å less than their van der Waals radii sum) and 3.3463 (8) Å (-0.154 Å less than their van der Waals radii sum), Cl3*B*···Cl1*A*···Cl3*B* and Cl1*A*···Cl3*B*···Cl1*A* angles 73.40 (2) and 82.01 (2)°, and Cl3*B*···Cl1*A*···Cl3*B*··· Cl1*A* and Cl1*A*···Cl3*B*···Cl1*A*···Cl3*B* torsion angles -50.45 (2) and 48.78 (2)°. These result in chlorine-dense regions of the crystal structure (Fig. 5), and the formation of sheets parallel to (001). Halogen bonding involving trichloromethyl groups in supramolecular structures was described by Rybarczyk-Pirek *et al.* (2013).

The unit cell of (2) consists of pairs of hydrogen-bonded dimers about an inversion center. The molecules in each dimer are linked by  $NH \cdots O=C$  hydrogen bonds (Table 4), which extend into hydrogen-bonded molecular chains along [001]. A network of linked chains is formed by  $O1 \cdots Cl3$  contacts. Two



Figure 4

Hydrogen-bonded chains of (1) are linked by  $S1A \cdots O1B$  contacts. Only H atoms involved in N-H···O=C bonds are shown.

O1···Cl3 contacts [3.028 (2) Å, 0.242 Å less than their van der Waals radii sum] form between each pair of molecules in separate hydrogen-bonded chains, and the links extend throughout the chains in alternate molecules. In this way, each





A chlorine from each of four molecules of (1), in separate chains, form a short-contact skew quadrilateral. Only H atoms involved in  $N-H\cdots O=C$  bonds are shown.



#### Figure 6

Packing structure of (2). Hydrogen-bonded chains are linked by pairs of  $O1\cdots Cl3$  contacts. H atoms are not shown unless they participate in hydrogen bonding.

## research communications





Packing diagram for (3). H atoms are not shown unless they participate in hydrogen bonding. [Symmetry codes: (i) -x + 1, -y, -z; (ii) x, y + 1, z.]

hydrogen-bonded chain has extensive links to two other chains. The resulting structure features alternating layers of trichloromethyl and benzyl groups (Fig. 6).

Compound (3) has no available classical hydrogen bonding and lacks the chlorine-dense regions of (1) and (2). Of the two conformations available for (3), it is noteworthy that the four sulfurs of two adjacent molecules of (3b) are positioned in a parallelogram [angles 80.65 (2) and 99.35 (2) $^{\circ}$ , torsion angle  $(0.00 (2)^{\circ})$  with intermolecular contact distances of 3.5969 (8) Å, slightly less than the sum of their van der Waals radii; no such configuration is evident for molecules of (3a). Fig. 7 shows a schematic view of the intermolecular interactions. A pair of non-classical hydrogen bonds [C9A-H9AA...O1B and C9B-H9BA...O1A, with H...C contact distances 2.55 and 2.54 Å, C···O distances of 3.360 (3) and 3.432 (3) Å, and C-H···O angles of 143 and  $157^{\circ}$ ] connect (3a) and (3b) molecules. Two additional non-classical hydrogen bonds  $[C5A - H5AA \cdots Cl1B]$ and C3B-H3BA···Cl3A, with H···Cl contact distances 2.82 and 2.81 Å,  $C \cdots Cl$  distances of 3.732 (2) and 3.649 (2) Å, and  $C - H \cdots Cl$ angles of 161 and 144°] are shown.

### 4. Database survey

Crystal structures for two additional carbamoyl disulfanes have been reported: bis(indolylcarbamoyl)disulfane (BOWGAV, formula  $[C_8H_6N(C=O)S]_2$ ) (Bereman *et al.*, 1983) and bis(*N*,*N*-dicyclohexylcarbamoyl)disulfane (UDALER,  $[cHex_2N(C=O)S]_2$ ) (Li *et al.*, 2006). Their molecular structures are consistent with those of the three compounds reported here. Neither of these comparison structures contains halogen atoms or supramolecular



 $R^1, R^3 = H \text{ or TMS}; R^2 = CH_3 \text{ or } CH_2C_6H_5$  [leads to (1) or (2), respectively]  $R^3 = H, R^1 = CH_3, R^2 = C_6H_5$  [leads to (3)]

Figure 8

Synthetic routes to (trichloromethyl)(carbamoyl)disulfanes, (1), (2) and (3). See text for further details.

hydrogen bonds. The crystal structure of 1,7-bis(trichloromethyl)heptasulfane contains both short  $Cl \cdots Cl$  contacts and a parallelogram (four sulfurs) formed from the trichloromethyl-adjacent S–S bonds of two molecules (REHKUK; Steudel *et al.*, 1995).

#### 5. Synthesis and crystallization

Compounds (1) (Harris, 1960; Barany *et al.*, 2005), (2) (Barany et al., 2005), and (3) (Barany et al., 1983; Schroll & Barany, 1986) were synthesized and crystallized as outlined in Fig. 8 and described in the referenced publications. The reaction of (4) plus (5), shown in the top pathway of Fig. 8, is termed the Harris reaction (Harris, 1960). For the alternative Harris pathway shown in the middle of Fig. 8, compound (6), a thiocarbamate salt, is typically made by reaction of carbonyl sulfide (COS) with a primary or secondary amine  $HNR^{1}R^{2}$ . Therefore B<sup>+</sup> is usually the appropriate ammonium counterion  $H_2N^+R^1R^2$ . Finally, several variations of acylation chemistry are summarized in the bottom pathway of Fig. 8, as originally worked out by Barany *et al.* (2005). When  $R^3 = H$ , starting amine  $HNR^{1}R^{2}$  is present in sufficient excess so that a second equivalent of amine can absorb the HCl co-product. When  $R^1$  and/or  $R^3$  = TMS, stoichiometric ratios can be used, since co-product TMS-Cl is neutral. Note that for some reactions, a TMS group attached to N becomes an H after aqueous workup.

#### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. N–H hydrogen atoms were refined positionally, with restrained d(N-H) = 0.85 (1)Å. H atoms attached to C were idealized (C–H: 0.95 Å, C–H<sub>2</sub>: 0.99 Å, C–H<sub>3</sub>: 0.98 Å). In all cases,  $U_{iso}(H) = x \times U_{eq}(Host)$ , x = 1.2 except for methyl groups, where x = 1.5.

Table 5Experimental details.

|                                                                            | (1)                                                                          | (2)                                                                          | (3)                                                                          |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Crystal data                                                               |                                                                              |                                                                              |                                                                              |
| Chemical formula                                                           | $C_3H_4Cl_3NOS_2$                                                            | C <sub>0</sub> H <sub>8</sub> Cl <sub>3</sub> NOS <sub>2</sub>               | C <sub>0</sub> H <sub>8</sub> Cl <sub>3</sub> NOS <sub>2</sub>               |
| $M_r$                                                                      | 240.54                                                                       | 316.63                                                                       | 316.63                                                                       |
| Crystal system, space group                                                | Monoclinic, C2/c                                                             | Monoclinic, $P2_1/c$                                                         | Triclinic, $P\overline{1}$                                                   |
| Temperature (K)                                                            | 123                                                                          | 173                                                                          | 123                                                                          |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                         | 13.1141 (16), 13.9234 (17),<br>20.172 (3)                                    | 11.4247 (17), 13.548 (2),<br>8.5675 (12)                                     | 8.9231 (12), 10.1724 (13),<br>15.364 (2)                                     |
| $\alpha, \beta, \gamma$ (°)                                                | 90, 98.969 (2), 90                                                           | 90, 103.176 (2), 90                                                          | 81.964 (2), 81.806 (2), 68.851 (2)                                           |
| $V(\text{\AA}^3)$                                                          | 3638.3 (8)                                                                   | 1291.2 (3)                                                                   | 1281.5 (3)                                                                   |
| Z                                                                          | 16                                                                           | 4                                                                            | 4                                                                            |
| Radiation type                                                             | Μο Κα                                                                        | Μο Κα                                                                        | Μο <i>Κα</i>                                                                 |
| $\mu \ (\mathrm{mm}^{-1})$                                                 | 1.40                                                                         | 1.01                                                                         | 1.02                                                                         |
| Crystal size (mm)                                                          | $0.40 \times 0.30 \times 0.11$                                               | $0.30 \times 0.15 \times 0.10$                                               | $0.25 \times 0.20 \times 0.09$                                               |
| Data collection                                                            |                                                                              |                                                                              |                                                                              |
| Diffractometer                                                             | Bruker SMART CCD area<br>detector                                            | Bruker SMART CCD area<br>detector                                            | Bruker SMART CCD area<br>detector                                            |
| Absorption correction                                                      | Multi-scan (SADABS; Sheldrick, 2008)                                         | Multi-scan SADABS, (Sheldrick, 2008)                                         | Multi-scan (SADABS; Sheldrick, 2008)                                         |
| $T_{\min}, T_{\max}$                                                       | 0.646, 0.746                                                                 | 0.752, 0.906                                                                 | 0.676, 0.746                                                                 |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections   | 21324, 4168, 3556                                                            | 12180, 2284, 2056                                                            | 15282, 5790, 4557                                                            |
| R <sub>int</sub>                                                           | 0.030                                                                        | 0.041                                                                        | 0.034                                                                        |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                       | 0.650                                                                        | 0.596                                                                        | 0.649                                                                        |
| Refinement                                                                 |                                                                              |                                                                              |                                                                              |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.025, 0.061, 1.03                                                           | 0.042, 0.080, 1.00                                                           | 0.030, 0.073, 0.97                                                           |
| No. of reflections                                                         | 4168                                                                         | 2284                                                                         | 5790                                                                         |
| No. of parameters                                                          | 189                                                                          | 148                                                                          | 291                                                                          |
| No. of restraints                                                          | 2                                                                            | 1                                                                            | 0                                                                            |
| H-atom treatment                                                           | H atoms treated by a mixture of<br>independent and constrained<br>refinement | H atoms treated by a mixture of<br>independent and constrained<br>refinement | H atoms treated by a mixture of<br>independent and constrained<br>refinement |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({\rm e} \ {\rm A}^{-3})$ | 0.80, -0.63                                                                  | 0.33, -0.27                                                                  | 0.39, -0.27                                                                  |

Computer programs: SMART and SAINT (Bruker, 2007), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and ACD/ChemBioDraw (ACD/Labs, 2014).

### Acknowledgements

We thank Al-Mutassim Abu-Khdeir, Michael J. Barany, Charles S. Barrett, Megan M. Corey, Courtney Elm, David A. Halsrud, Michael C. Hanson, Matthew J. Henley, Isaac D. Mitchell, Ross A. Moretti, Alex M. Schrader, Matthew J. Turcotte and Xiaolu Zheng for preparing compounds used in this work, as well as studies on their chemistry, and Alayne L. Schroll for helpful discussions during the preparation of this manuscript.

#### References

- ACD/Labs (2014). ACD/ChemBioDraw. Advanced Chemistry Development, Inc., Toronto, ON, Canada. www. acdlabs. com.
- Barany, G. & Merrifield, R. B. (1977). J. Am. Chem. Soc. 99, 7363-7365.
- Barany, G., Schroll, A. L., Mott, A. W. & Halsrud, D. A. (1983). J. Org. Chem. 48, 4750–4761.
- Barany, M. J., Hammer, R. P., Merrifield, R. B. & Barany, G. (2005). J. Am. Chem. Soc. 127, 508–509.

- Bereman, R. D., Baird, D. M., Bordner, J. & Dorfman, J. R. (1983). Polyhedron, 2, 25–30.
- Bruker (2007). SMART, SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Harris, J. F. Jr (1960). J. Am. Chem. Soc. 82, 155-158.
- Henley, M. J., Schroll, A. L., Young Jr, V. G. & Barany, G. (2015). Acta Cryst. E71. Submitted [ZS2342].
- Li, F., Yin, H.-D., Hong, M., Zhai, J. & Wang, D.-Q. (2006). Acta Cryst. E62, m1417–m1418.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Rybarczyk-Pirek, A. J., Chęcińska, L., Małecka, M. & Wojtulewski, S. (2013). Cryst. Growth Des. 13, 3913–3924.
- Schrader, A. M., Schroll, A. L. & Barany, G. (2011). J. Org. Chem. 76, 7882–7892.
- Schroll, A. L. & Barany, G. (1986). J. Org. Chem. 51, 1866-1881.
- Schroll, A. L., Pink, M. & Barany, G. (2012). Acta Cryst. E68, 01550.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Steudel, R., Pridöhl, M., Buschmann, J. & Luger, P. (1995). Chem. Ber. 128, 725–728.

# supporting information

Acta Cryst. (2015). E71, 1169-1173 [doi:10.1107/S2056989015015893]

## Crystal structures of three (trichloromethyl)(carbamoyl)disulfanes

## Barbara L. Goldenberg, Victor G. Young Jr and George Barany

## **Computing details**

For all compounds, data collection: *SMART* (Bruker, 2007); cell refinement: *SMART* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008), *PLATON* (Spek, 2009), *ACD/ChemBioDraw* (ACD/Labs, 2014).

## (1) (N-Methylcarbamoyl)(trichloromethyl)disulfane

| Crystal data                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_{3}H_{4}Cl_{3}NOS_{2}$ $M_{r} = 240.54$ Monoclinic, C2/c<br>a = 13.1141 (16)  Å<br>b = 13.9234 (17)  Å<br>c = 20.172 (3)  Å<br>$\beta = 98.969 (2)^{\circ}$<br>$V = 3638.3 (8) \text{ Å}^{3}$<br>Z = 16<br>F(000) = 1920                                | $D_x = 1.757 \text{ Mg m}^{-3}$<br>Melting point = 352–353 K<br>Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 2920 reflections<br>$\theta = 2.5-27.5^{\circ}$<br>$\mu = 1.40 \text{ mm}^{-1}$<br>T = 123  K<br>Plate, colorless<br>$0.40 \times 0.30 \times 0.11 \text{ mm}$                        |
| Data collection                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                     |
| Bruker SMART CCD area detector<br>diffractometer<br>Radiation source: sealed tube<br>phi and $\omega$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Sheldrick, 2008)<br>$T_{min} = 0.646, T_{max} = 0.746$<br>21324 measured reflections | 4168 independent reflections<br>3556 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.030$<br>$\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.0^{\circ}$<br>$h = -16 \rightarrow 17$<br>$k = -18 \rightarrow 17$<br>$l = -26 \rightarrow 26$                                                                                        |
| Refinement                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                     |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.025$<br>$wR(F^2) = 0.061$<br>S = 1.03<br>4168 reflections<br>189 parameters<br>2 restraints                                                                                | Hydrogen site location: mixed<br>H atoms treated by a mixture of independent<br>and constrained refinement<br>$w = 1/[\sigma^2(F_o^2) + (0.0241P)^2 + 4.8271P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} = 0.002$<br>$\Delta\rho_{max} = 0.80$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.63$ e Å <sup>-3</sup> |

## Special details

**Experimental**. Compound (1) (Harris, 1960; Barany *et al.*, 2005) was synthesized and crystallized as outlined in the Scheme and described in the referenced publications.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

|      | x             | У            | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|---------------|--------------|-------------|-----------------------------|
| Cl1A | -0.00541 (4)  | 0.37732 (4)  | 0.35962 (3) | 0.04712 (15)                |
| Cl2A | 0.19373 (3)   | 0.28755 (4)  | 0.39682 (2) | 0.03390 (11)                |
| Cl3A | 0.08631 (4)   | 0.35934 (3)  | 0.49989 (3) | 0.03684 (12)                |
| S1A  | -0.00492 (3)  | 0.19396 (3)  | 0.41765 (2) | 0.02805 (11)                |
| S2A  | 0.08261 (4)   | 0.10871 (3)  | 0.48401 (2) | 0.02537 (10)                |
| O1A  | -0.04393 (10) | 0.18404 (9)  | 0.56382 (7) | 0.0302 (3)                  |
| N1A  | 0.08133 (11)  | 0.08323 (10) | 0.61229 (7) | 0.0239 (3)                  |
| H1AA | 0.1296 (12)   | 0.0437 (12)  | 0.6058 (10) | 0.029*                      |
| C1A  | 0.07085 (13)  | 0.30414 (13) | 0.42009 (9) | 0.0255 (4)                  |
| C2A  | 0.02947 (13)  | 0.13163 (11) | 0.56154 (9) | 0.0211 (3)                  |
| C3A  | 0.05085 (16)  | 0.08425 (15) | 0.67878 (9) | 0.0334 (4)                  |
| H3AA | 0.0441        | 0.0181       | 0.6942      | 0.050*                      |
| H3AB | -0.0155       | 0.1174       | 0.6767      | 0.050*                      |
| H3AC | 0.1034        | 0.1179       | 0.7102      | 0.050*                      |
| Cl1B | 0.27558 (4)   | 0.53778 (4)  | 0.16143 (2) | 0.03787 (12)                |
| Cl2B | 0.08921 (4)   | 0.64264 (4)  | 0.17392 (3) | 0.04065 (13)                |
| Cl3B | 0.15634 (4)   | 0.48946 (4)  | 0.26583 (2) | 0.03589 (12)                |
| S1B  | 0.28444 (4)   | 0.66744 (3)  | 0.27052 (2) | 0.02689 (10)                |
| S2B  | 0.19567 (4)   | 0.71821 (3)  | 0.33553 (2) | 0.02639 (10)                |
| O1B  | 0.29056 (10)  | 0.57063 (9)  | 0.40606 (6) | 0.0273 (3)                  |
| N1B  | 0.18133 (11)  | 0.65897 (10) | 0.45778 (7) | 0.0222 (3)                  |
| H1BA | 0.1388 (12)   | 0.7061 (11)  | 0.4536 (10) | 0.027*                      |
| C1B  | 0.19848 (14)  | 0.58421 (13) | 0.21883 (8) | 0.0254 (4)                  |
| C2B  | 0.22943 (12)  | 0.63574 (11) | 0.40702 (8) | 0.0195 (3)                  |
| C3B  | 0.20171 (14)  | 0.60575 (13) | 0.52084 (9) | 0.0262 (4)                  |
| H3BA | 0.1735        | 0.6412       | 0.5558      | 0.039*                      |
| H3BB | 0.2764        | 0.5979       | 0.5341      | 0.039*                      |
| H3BC | 0.1690        | 0.5424       | 0.5149      | 0.039*                      |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$      | $U^{13}$      | $U^{23}$      |
|------|------------|------------|------------|---------------|---------------|---------------|
| Cl1A | 0.0370 (3) | 0.0591 (3) | 0.0472 (3) | 0.0132 (2)    | 0.0127 (2)    | 0.0337 (3)    |
| Cl2A | 0.0227 (2) | 0.0413 (3) | 0.0390 (3) | -0.00235 (18) | 0.00915 (18)  | 0.0030 (2)    |
| Cl3A | 0.0477 (3) | 0.0276 (2) | 0.0371 (3) | -0.0091 (2)   | 0.0123 (2)    | -0.00656 (19) |
| S1A  | 0.0242 (2) | 0.0362 (3) | 0.0220 (2) | -0.00899 (18) | -0.00211 (17) | 0.00193 (18)  |
| S2A  | 0.0311 (2) | 0.0216 (2) | 0.0251 (2) | 0.00138 (17)  | 0.00954 (17)  | -0.00147 (16) |

| O1A  | 0.0276 (7)  | 0.0306 (7)  | 0.0346 (7)  | 0.0138 (5)    | 0.0115 (5)   | 0.0094 (6)    |
|------|-------------|-------------|-------------|---------------|--------------|---------------|
| N1A  | 0.0233 (7)  | 0.0235 (7)  | 0.0258 (7)  | 0.0083 (6)    | 0.0063 (6)   | 0.0027 (6)    |
| C1A  | 0.0236 (8)  | 0.0281 (9)  | 0.0250 (9)  | -0.0008 (7)   | 0.0044 (7)   | 0.0071 (7)    |
| C2A  | 0.0216 (8)  | 0.0180 (8)  | 0.0250 (8)  | -0.0005 (6)   | 0.0072 (7)   | 0.0001 (6)    |
| C3A  | 0.0377 (11) | 0.0366 (10) | 0.0276 (10) | 0.0080 (9)    | 0.0101 (8)   | 0.0080 (8)    |
| Cl1B | 0.0494 (3)  | 0.0412 (3)  | 0.0250 (2)  | 0.0009 (2)    | 0.0121 (2)   | -0.00839 (19) |
| Cl2B | 0.0380 (3)  | 0.0494 (3)  | 0.0303 (2)  | 0.0055 (2)    | -0.0078 (2)  | -0.0003(2)    |
| Cl3B | 0.0457 (3)  | 0.0362 (3)  | 0.0246 (2)  | -0.0184 (2)   | 0.00170 (19) | 0.00053 (18)  |
| S1B  | 0.0291 (2)  | 0.0312 (2)  | 0.0211 (2)  | -0.00846 (18) | 0.00602 (17) | -0.00414 (17) |
| S2B  | 0.0358 (2)  | 0.0232 (2)  | 0.0198 (2)  | 0.00546 (18)  | 0.00314 (17) | -0.00014 (16) |
| O1B  | 0.0289 (6)  | 0.0262 (6)  | 0.0270 (6)  | 0.0102 (5)    | 0.0051 (5)   | -0.0037 (5)   |
| N1B  | 0.0237 (7)  | 0.0207 (7)  | 0.0227 (7)  | 0.0074 (6)    | 0.0047 (6)   | -0.0002 (6)   |
| C1B  | 0.0307 (9)  | 0.0288 (9)  | 0.0163 (8)  | -0.0028 (7)   | 0.0023 (7)   | -0.0016 (7)   |
| C2B  | 0.0197 (8)  | 0.0184 (8)  | 0.0193 (8)  | 0.0001 (6)    | -0.0003 (6)  | -0.0023 (6)   |
| C3B  | 0.0308 (9)  | 0.0258 (9)  | 0.0228 (9)  | 0.0012 (7)    | 0.0065 (7)   | 0.0021 (7)    |
|      |             |             |             |               |              |               |

Geometric parameters (Å, °)

| Cl1A—C1A      | 1.7736 (18) | Cl1B—C1B      | 1.7736 (18) |
|---------------|-------------|---------------|-------------|
| Cl2A—C1A      | 1.7625 (18) | Cl2B—C1B      | 1.7696 (19) |
| Cl3A—C1A      | 1.7667 (19) | Cl3B—C1B      | 1.7629 (18) |
| S1A—C1A       | 1.8242 (18) | S1B—C1B       | 1.8261 (18) |
| S1A—S2A       | 2.0100 (7)  | S1B—S2B       | 2.0126 (6)  |
| S2A—C2A       | 1.8367 (17) | S2B—C2B       | 1.8426 (17) |
| O1A—C2A       | 1.214 (2)   | O1B—C2B       | 1.212 (2)   |
| N1A—C2A       | 1.322 (2)   | N1B—C2B       | 1.324 (2)   |
| N1A—C3A       | 1.458 (2)   | N1B—C3B       | 1.460 (2)   |
| N1A—H1AA      | 0.864 (9)   | N1B—H1BA      | 0.857 (9)   |
| СЗА—НЗАА      | 0.9800      | СЗВ—НЗВА      | 0.9800      |
| СЗА—НЗАВ      | 0.9800      | C3B—H3BB      | 0.9800      |
| СЗА—НЗАС      | 0.9800      | C3B—H3BC      | 0.9800      |
|               |             |               |             |
| C1A—S1A—S2A   | 103.09 (6)  | C1B—S1B—S2B   | 103.10 (6)  |
| C2A—S2A—S1A   | 102.20 (6)  | C2B—S2B—S1B   | 101.43 (6)  |
| C2A—N1A—C3A   | 121.71 (15) | C2B—N1B—C3B   | 120.35 (14) |
| C2A—N1A—H1AA  | 120.5 (14)  | C2B—N1B—H1BA  | 119.5 (14)  |
| C3A—N1A—H1AA  | 117.3 (14)  | C3B—N1B—H1BA  | 120.2 (14)  |
| Cl2A—ClA—Cl3A | 108.65 (10) | Cl3B—C1B—Cl2B | 108.82 (10) |
| Cl2A—C1A—Cl1A | 109.45 (9)  | Cl3B—C1B—Cl1B | 109.68 (10) |
| Cl3A—C1A—Cl1A | 110.43 (10) | Cl2B—C1B—Cl1B | 109.38 (9)  |
| Cl2A—C1A—S1A  | 113.54 (10) | Cl3B—C1B—S1B  | 112.65 (9)  |
| Cl3A—C1A—S1A  | 112.03 (9)  | Cl2B—C1B—S1B  | 112.28 (10) |
| Cl1A—C1A—S1A  | 102.60 (9)  | Cl1B—C1B—S1B  | 103.90 (9)  |
| O1A—C2A—N1A   | 126.31 (16) | O1B—C2B—N1B   | 126.23 (16) |
| O1A—C2A—S2A   | 123.02 (13) | O1B—C2B—S2B   | 122.17 (13) |
| N1A—C2A—S2A   | 110.67 (12) | N1B—C2B—S2B   | 111.58 (12) |
| N1A—C3A—H3AA  | 109.5       | N1B—C3B—H3BA  | 109.5       |
| N1A—C3A—H3AB  | 109.5       | N1B—C3B—H3BB  | 109.5       |

| H3AA—C3A—H3AB    | 109.5        | H3BA—C3B—H3BB    | 109.5        |
|------------------|--------------|------------------|--------------|
| N1A—C3A—H3AC     | 109.5        | N1B—C3B—H3BC     | 109.5        |
| H3AA—C3A—H3AC    | 109.5        | H3BA—C3B—H3BC    | 109.5        |
| H3AB—C3A—H3AC    | 109.5        | H3BB—C3B—H3BC    | 109.5        |
| C1A—S1A—S2A—C2A  | 93.63 (8)    | C1B—S1B—S2B—C2B  | 93.49 (8)    |
| S2A—S1A—C1A—C12A | 60.37 (10)   | S2B—S1B—C1B—C13B | -60.94 (10)  |
| S2A—S1A—C1A—C13A | -63.18 (10)  | S2B—S1B—C1B—C12B | 62.34 (9)    |
| S2A—S1A—C1A—C11A | 178.38 (6)   | S2B—S1B—C1B—C11B | -179.58 (6)  |
| C3A—N1A—C2A—O1A  | 3.3 (3)      | C3B—N1B—C2B—O1B  | 1.6 (3)      |
| C3A—N1A—C2A—S2A  | -176.22 (14) | C3B—N1B—C2B—S2B  | -176.67 (12) |
| S1A—S2A—C2A—O1A  | 2.87 (16)    | S1B—S2B—C2B—O1B  | -0.66 (15)   |
| S1A—S2A—C2A—N1A  | -177.64 (11) | S1B—S2B—C2B—N1B  | 177.64 (11)  |

*Hydrogen-bond geometry (Å, °)* 

| D—H···A                         | D—H     | H···A    | D···A       | D—H···A |
|---------------------------------|---------|----------|-------------|---------|
| $N1A$ — $H1AA$ ···O1 $B^{i}$    | 0.86(1) | 1.94 (1) | 2.7825 (18) | 164 (2) |
| N1 $B$ —H1 $BA$ ····O1 $A^{ii}$ | 0.86(1) | 1.97 (1) | 2.8231 (18) | 175 (2) |

Symmetry codes: (i) -x+1/2, -y+1/2, -z+1; (ii) -x, -y+1, -z+1.

## (2) (N-Benzylcarbamoyl)(trichloromethyl)disulfane

Crystal data C<sub>9</sub>H<sub>8</sub>Cl<sub>3</sub>NOS<sub>2</sub>  $M_r = 316.63$ Monoclinic,  $P2_1/c$  a = 11.4247 (17) Å b = 13.548 (2) Å c = 8.5675 (12) Å  $\beta = 103.176$  (2)° V = 1291.2 (3) Å<sup>3</sup> Z = 4F(000) = 640

## Data collection

Bruker SMART CCD area detector diffractometer Radiation source: sealed tube phi and  $\omega$  scans Absorption correction: multi-scan *SADABS*, (Sheldrick, 2008)  $T_{\min} = 0.752$ ,  $T_{\max} = 0.906$ 12180 measured reflections

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.042$  $wR(F^2) = 0.080$ S = 1.002284 reflections  $D_x = 1.629 \text{ Mg m}^{-3}$ Melting point = 357–359 K Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2312 reflections  $\theta = 2.4-24.9^{\circ}$  $\mu = 1.01 \text{ mm}^{-1}$ T = 173 KRod, white  $0.30 \times 0.15 \times 0.10 \text{ mm}$ 

2284 independent reflections 2056 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.041$  $\theta_{max} = 25.1^{\circ}, \ \theta_{min} = 1.8^{\circ}$  $h = -13 \rightarrow 13$  $k = -16 \rightarrow 16$  $l = -10 \rightarrow 10$ 

148 parameters1 restraintHydrogen site location: mixedH atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0157P)^2 + 3.520P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{\text{max}} < 0.001$ 

$$\Delta \rho_{\text{max}} = 0.33 \text{ e } \text{\AA}^{-3}$$
  
 $\Delta \rho_{\text{min}} = -0.27 \text{ e } \text{\AA}^{-3}$ 

## Special details

**Experimental**. Compound (2) (Barany *et al.*, 2005) was synthesized and crystallized as outlined in the Scheme and described in the referenced publication.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|            | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------------|--------------|--------------|--------------|-----------------------------|--|
| C11        | 0.57223 (8)  | 0.68834 (7)  | 0.12990 (11) | 0.0399 (2)                  |  |
| C12        | 0.69283 (7)  | 0.60896 (7)  | 0.43579 (10) | 0.0320 (2)                  |  |
| C13        | 0.64826 (8)  | 0.48462 (7)  | 0.15317 (11) | 0.0385 (2)                  |  |
| <b>S</b> 1 | 0.44925 (7)  | 0.53104 (6)  | 0.27940 (9)  | 0.02193 (18)                |  |
| S2         | 0.37502 (7)  | 0.64387 (6)  | 0.37478 (9)  | 0.0249 (2)                  |  |
| 01         | 0.26774 (19) | 0.66377 (16) | 0.0620(2)    | 0.0250 (5)                  |  |
| N1         | 0.2069 (2)   | 0.7676 (2)   | 0.2344 (3)   | 0.0247 (6)                  |  |
| H1A        | 0.222 (3)    | 0.785 (2)    | 0.3348 (16)  | 0.030*                      |  |
| C1         | 0.5911 (3)   | 0.5817 (2)   | 0.2514 (4)   | 0.0249 (7)                  |  |
| C2         | 0.2734 (3)   | 0.6962 (2)   | 0.1955 (3)   | 0.0207 (7)                  |  |
| C3         | 0.1156 (3)   | 0.8196 (3)   | 0.1127 (4)   | 0.0327 (8)                  |  |
| H2A        | 0.0778       | 0.7728       | 0.0272       | 0.039*                      |  |
| H2B        | 0.1544       | 0.8728       | 0.0632       | 0.039*                      |  |
| C4         | 0.0210 (3)   | 0.8631 (2)   | 0.1889 (4)   | 0.0258 (7)                  |  |
| C5         | 0.0178 (3)   | 0.9637 (3)   | 0.2167 (4)   | 0.0319 (8)                  |  |
| H5A        | 0.0737       | 1.0060       | 0.1833       | 0.038*                      |  |
| C6         | -0.0662(3)   | 1.0032 (3)   | 0.2928 (5)   | 0.0374 (9)                  |  |
| H6A        | -0.0681      | 1.0724       | 0.3102       | 0.045*                      |  |
| C7         | -0.1466 (3)  | 0.9429 (3)   | 0.3430 (4)   | 0.0347 (9)                  |  |
| H7A        | -0.2029      | 0.9701       | 0.3974       | 0.042*                      |  |
| C8         | -0.1457 (3)  | 0.8434 (3)   | 0.3145 (4)   | 0.0377 (9)                  |  |
| H8A        | -0.2023      | 0.8019       | 0.3481       | 0.045*                      |  |
| C9         | -0.0627 (3)  | 0.8028 (3)   | 0.2371 (4)   | 0.0333 (8)                  |  |
| H9A        | -0.0632      | 0.7338       | 0.2171       | 0.040*                      |  |
|            |              |              |              |                             |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| Cl1 | 0.0348 (5)  | 0.0426 (5)  | 0.0407 (5)  | -0.0039 (4) | 0.0055 (4)  | 0.0208 (4)  |
| Cl2 | 0.0283 (4)  | 0.0376 (5)  | 0.0262 (4)  | -0.0033 (4) | -0.0021 (3) | -0.0023 (4) |
| C13 | 0.0296 (5)  | 0.0506 (6)  | 0.0360 (5)  | 0.0088 (4)  | 0.0088 (4)  | -0.0132 (4) |
| S1  | 0.0225 (4)  | 0.0209 (4)  | 0.0225 (4)  | 0.0011 (3)  | 0.0054 (3)  | 0.0005 (3)  |
| S2  | 0.0263 (4)  | 0.0321 (5)  | 0.0159 (4)  | 0.0072 (4)  | 0.0036 (3)  | -0.0006 (3) |
| 01  | 0.0283 (12) | 0.0321 (13) | 0.0143 (11) | 0.0036 (10) | 0.0043 (9)  | -0.0007 (9) |
|     |             |             |             |             |             |             |

# supporting information

| N1 | 0.0275 (15) | 0.0317 (15) | 0.0137 (13) | 0.0101 (12)  | 0.0020 (11)  | -0.0024 (11) |
|----|-------------|-------------|-------------|--------------|--------------|--------------|
| C1 | 0.0216 (16) | 0.0311 (18) | 0.0216 (16) | 0.0023 (14)  | 0.0038 (13)  | 0.0012 (14)  |
| C2 | 0.0210 (16) | 0.0242 (17) | 0.0176 (16) | -0.0015 (13) | 0.0059 (12)  | 0.0018 (13)  |
| C3 | 0.0319 (19) | 0.041 (2)   | 0.0228 (17) | 0.0146 (17)  | 0.0023 (14)  | 0.0023 (16)  |
| C4 | 0.0239 (17) | 0.0323 (19) | 0.0188 (16) | 0.0067 (14)  | -0.0004 (13) | 0.0013 (14)  |
| C5 | 0.0242 (18) | 0.0318 (19) | 0.038 (2)   | 0.0007 (15)  | 0.0032 (15)  | 0.0032 (16)  |
| C6 | 0.030 (2)   | 0.0291 (19) | 0.052 (2)   | 0.0074 (16)  | 0.0059 (17)  | -0.0070 (17) |
| C7 | 0.0199 (17) | 0.048 (2)   | 0.035 (2)   | 0.0112 (16)  | 0.0039 (15)  | -0.0053 (17) |
| C8 | 0.0246 (18) | 0.051 (2)   | 0.037 (2)   | -0.0034 (17) | 0.0051 (16)  | 0.0099 (18)  |
| C9 | 0.0334 (19) | 0.0282 (19) | 0.0344 (19) | 0.0018 (16)  | -0.0006 (16) | -0.0005 (15) |
|    |             |             |             |              |              |              |

Geometric parameters (Å, °)

| Cl1—C1       | 1.764 (3)   | C3—H2B      | 0.9900    |  |
|--------------|-------------|-------------|-----------|--|
| Cl2—C1       | 1.773 (3)   | C4—C5       | 1.386 (5) |  |
| Cl3—C1       | 1.766 (3)   | C4—C9       | 1.391 (5) |  |
| S1—C1        | 1.826 (3)   | C5—C6       | 1.385 (5) |  |
| S1—S2        | 2.0099 (11) | С5—Н5А      | 0.9500    |  |
| S2—C2        | 1.842 (3)   | C6—C7       | 1.369 (5) |  |
| O1—C2        | 1.213 (4)   | C6—H6A      | 0.9500    |  |
| N1—C2        | 1.319 (4)   | C7—C8       | 1.370 (5) |  |
| N1—C3        | 1.475 (4)   | С7—Н7А      | 0.9500    |  |
| N1—H1A       | 0.870 (10)  | C8—C9       | 1.389 (5) |  |
| C3—C4        | 1.504 (4)   | C8—H8A      | 0.9500    |  |
| С3—Н2А       | 0.9900      | С9—Н9А      | 0.9500    |  |
| C1—S1—S2     | 103.68 (11) | H2A—C3—H2B  | 108.2     |  |
| C2—S2—S1     | 101.40 (10) | C5—C4—C9    | 118.7 (3) |  |
| C2—N1—C3     | 121.8 (3)   | C5—C4—C3    | 120.7 (3) |  |
| C2—N1—H1A    | 117 (2)     | C9—C4—C3    | 120.6 (3) |  |
| C3—N1—H1A    | 121 (2)     | C6—C5—C4    | 120.6 (3) |  |
| Cl1—C1—Cl3   | 109.72 (17) | С6—С5—Н5А   | 119.7     |  |
| Cl1—C1—Cl2   | 108.81 (18) | C4—C5—H5A   | 119.7     |  |
| Cl3—C1—Cl2   | 109.94 (17) | C7—C6—C5    | 120.3 (3) |  |
| Cl1—C1—S1    | 113.13 (17) | С7—С6—Н6А   | 119.9     |  |
| Cl3—C1—S1    | 102.59 (17) | С5—С6—Н6А   | 119.9     |  |
| Cl2—C1—S1    | 112.48 (17) | C6—C7—C8    | 119.9 (3) |  |
| O1—C2—N1     | 126.4 (3)   | С6—С7—Н7А   | 120.1     |  |
| O1—C2—S2     | 122.4 (2)   | С8—С7—Н7А   | 120.1     |  |
| N1—C2—S2     | 111.2 (2)   | С7—С8—С9    | 120.6 (3) |  |
| N1—C3—C4     | 110.0 (3)   | C7—C8—H8A   | 119.7     |  |
| N1—C3—H2A    | 109.7       | C9—C8—H8A   | 119.7     |  |
| C4—C3—H2A    | 109.7       | C8—C9—C4    | 119.9 (3) |  |
| N1—C3—H2B    | 109.7       | С8—С9—Н9А   | 120.0     |  |
| C4—C3—H2B    | 109.7       | С4—С9—Н9А   | 120.0     |  |
| C1—S1—S2—C2  | 96.54 (14)  | N1—C3—C4—C9 | -72.6 (4) |  |
| S2—S1—C1—Cl1 | -57.38 (18) | C9—C4—C5—C6 | 0.8 (5)   |  |

| S2—S1—C1—Cl3 | -175.51 (11) | C3—C4—C5—C6 | -177.4 (3) |  |
|--------------|--------------|-------------|------------|--|
| S2—S1—C1—Cl2 | 66.42 (17)   | C4—C5—C6—C7 | 0.7 (5)    |  |
| C3—N1—C2—O1  | -1.3 (5)     | C5—C6—C7—C8 | -1.5 (5)   |  |
| C3—N1—C2—S2  | -178.2 (3)   | C6—C7—C8—C9 | 0.9 (5)    |  |
| S1—S2—C2—O1  | -2.5 (3)     | C7—C8—C9—C4 | 0.5 (5)    |  |
| S1—S2—C2—N1  | 174.6 (2)    | C5—C4—C9—C8 | -1.4 (5)   |  |
| C2—N1—C3—C4  | 155.8 (3)    | C3—C4—C9—C8 | 176.8 (3)  |  |
| N1—C3—C4—C5  | 105.5 (4)    |             |            |  |
|              |              |             |            |  |

Hydrogen-bond geometry (Å, °)

| D—H···A                   | <i>D</i> —Н | Н…А      | D····A    | <i>D</i> —H··· <i>A</i> |
|---------------------------|-------------|----------|-----------|-------------------------|
| N1—H1A····O1 <sup>i</sup> | 0.87 (1)    | 2.02 (1) | 2.887 (3) | 174 (3)                 |

Symmetry code: (i) x, -y+3/2, z+1/2.

## (3) (N-Methyl-N-phenylcarbamoyl)(trichloromethyl)disulfane

| Crystal data                         |                                                                    |
|--------------------------------------|--------------------------------------------------------------------|
| $C_9H_8Cl_3NOS_2$                    | F(000) = 640                                                       |
| $M_r = 316.63$                       | $D_{\rm x} = 1.641 {\rm Mg} {\rm m}^{-3}$                          |
| Triclinic, P1                        | Melting point = $327-328$ K                                        |
| a = 8.9231 (12)  Å                   | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å              |
| b = 10.1724 (13)  Å                  | Cell parameters from 2932 reflections                              |
| c = 15.364 (2) Å                     | $\theta = 2.5 - 27.4^{\circ}$                                      |
| $\alpha = 81.964 \ (2)^{\circ}$      | $\mu = 1.02 \text{ mm}^{-1}$                                       |
| $\beta = 81.806 \ (2)^{\circ}$       | T = 123  K                                                         |
| $\gamma = 68.851 \ (2)^{\circ}$      | Plate, colourless                                                  |
| V = 1281.5 (3) Å <sup>3</sup>        | $0.25 \times 0.20 \times 0.09 \text{ mm}$                          |
| Z = 4                                |                                                                    |
| Data collection                      |                                                                    |
| Bruker SMART CCD area detector       | 5790 independent reflections                                       |
| diffractometer                       | 4557 reflections with $I > 2\sigma(I)$                             |
| Radiation source: sealed tube        | $R_{\rm int} = 0.034$                                              |
| phi and $\omega$ scans               | $\theta_{\rm max} = 27.5^{\circ},  \theta_{\rm min} = 1.4^{\circ}$ |
| Absorption correction: multi-scan    | $h = -11 \rightarrow 11$                                           |
| (SADABS; Sheldrick, 2008)            | $k = -13 \rightarrow 12$                                           |
| $T_{\min} = 0.676, T_{\max} = 0.746$ | $l = -19 \rightarrow 19$                                           |
| 15282 measured reflections           |                                                                    |

Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.030$  $wR(F^2) = 0.073$ S = 0.975790 reflections 291 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0294P)^2 + 0.677P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.39 \text{ e } \text{Å}^{-3}$  $\Delta\rho_{min} = -0.27 \text{ e } \text{Å}^{-3}$ 

## Special details

**Experimental**. Compound (3) (Barany *et al.*, 1983; Schroll & Barany, 1986) was synthesized and crystallized as outlined in the Scheme and described in the reference publications.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

|      | x            | У             | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|---------------|---------------|-----------------------------|--|
| Cl1A | 0.39735 (6)  | 0.18646 (6)   | 0.21843 (4)   | 0.02947 (13)                |  |
| Cl2A | 0.74662 (6)  | 0.06953 (6)   | 0.18508 (4)   | 0.02861 (13)                |  |
| Cl3A | 0.54721 (7)  | 0.15353 (7)   | 0.04057 (4)   | 0.03453 (14)                |  |
| S1A  | 0.59372 (6)  | 0.36579 (6)   | 0.14069 (4)   | 0.02254 (12)                |  |
| S2A  | 0.37780 (6)  | 0.50367 (6)   | 0.10688 (3)   | 0.02229 (12)                |  |
| O1A  | 0.34261 (18) | 0.50799 (16)  | 0.28397 (10)  | 0.0278 (3)                  |  |
| N1A  | 0.1137 (2)   | 0.61782 (18)  | 0.21527 (11)  | 0.0216 (4)                  |  |
| C1A  | 0.5668 (2)   | 0.1953 (2)    | 0.14591 (14)  | 0.0222 (4)                  |  |
| C2A  | 0.2724 (3)   | 0.5449 (2)    | 0.21823 (14)  | 0.0216 (4)                  |  |
| C3A  | 0.0124 (3)   | 0.6590 (3)    | 0.29789 (15)  | 0.0330 (5)                  |  |
| H3AA | 0.0804       | 0.6312        | 0.3468        | 0.050*                      |  |
| H3AB | -0.0674      | 0.6115        | 0.3089        | 0.050*                      |  |
| H3AC | -0.0433      | 0.7618        | 0.2931        | 0.050*                      |  |
| C4A  | 0.0386 (2)   | 0.6638 (2)    | 0.13409 (13)  | 0.0202 (4)                  |  |
| C5A  | -0.0647 (3)  | 0.6002 (2)    | 0.11406 (15)  | 0.0264 (5)                  |  |
| H5AA | -0.0818      | 0.5242        | 0.1525        | 0.032*                      |  |
| C6A  | -0.1425 (3)  | 0.6478 (3)    | 0.03785 (16)  | 0.0300 (5)                  |  |
| H6AA | -0.2142      | 0.6052        | 0.0244        | 0.036*                      |  |
| C7A  | -0.1160 (3)  | 0.7568 (3)    | -0.01833 (15) | 0.0307 (5)                  |  |
| H7AA | -0.1693      | 0.7889        | -0.0707       | 0.037*                      |  |
| C8A  | -0.0124 (3)  | 0.8198 (2)    | 0.00094 (15)  | 0.0301 (5)                  |  |
| H8AA | 0.0066       | 0.8940        | -0.0386       | 0.036*                      |  |
| C9A  | 0.0643 (3)   | 0.7748 (2)    | 0.07821 (14)  | 0.0255 (5)                  |  |
| H9AA | 0.1332       | 0.8195        | 0.0924        | 0.031*                      |  |
| Cl1B | -0.02011 (7) | 0.26039 (6)   | 0.25446 (4)   | 0.03331 (14)                |  |
| Cl2B | -0.30856 (6) | 0.26958 (5)   | 0.37202 (4)   | 0.02562 (12)                |  |
| Cl3B | -0.02396 (7) | 0.27511 (6)   | 0.43942 (4)   | 0.03100 (14)                |  |
| S1B  | -0.04426 (6) | 0.01403 (5)   | 0.38013 (3)   | 0.02037 (12)                |  |
| S2B  | 0.19477 (6)  | -0.06161 (6)  | 0.39221 (3)   | 0.02144 (12)                |  |
| O1B  | 0.19752 (18) | -0.07526 (17) | 0.21777 (10)  | 0.0290 (4)                  |  |
| N1B  | 0.4406 (2)   | -0.17006 (18) | 0.27509 (11)  | 0.0220 (4)                  |  |
| C1B  | -0.0950 (2)  | 0.2053 (2)    | 0.36108 (14)  | 0.0213 (4)                  |  |
| C2B  | 0.2795 (3)   | -0.1046 (2)   | 0.27890 (13)  | 0.0205 (4)                  |  |
| C3B  | 0.5317 (3)   | -0.2140 (3)   | 0.19095 (15)  | 0.0352 (6)                  |  |
| H3BA | 0.4622       | -0.1715       | 0.1431        | 0.053*                      |  |
| H3BB | 0.5691       | -0.3174       | 0.1926        | 0.053*                      |  |
| H3BC | 0.6250       | -0.1826       | 0.1807        | 0.053*                      |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| C4B  | 0.5250 (2) | -0.2155 (2) | 0.35376 (13) | 0.0191 (4) |
|------|------------|-------------|--------------|------------|
| C5B  | 0.5752 (2) | -0.1230 (2) | 0.39013 (14) | 0.0213 (4) |
| H5BA | 0.5574     | -0.0298     | 0.3626       | 0.026*     |
| C6B  | 0.6515 (3) | -0.1679 (2) | 0.46693 (14) | 0.0241 (5) |
| H6BA | 0.6852     | -0.1048     | 0.4926       | 0.029*     |
| C7B  | 0.6789 (2) | -0.3044 (2) | 0.50636 (15) | 0.0243 (5) |
| H7BA | 0.7295     | -0.3344     | 0.5596       | 0.029*     |
| C8B  | 0.6322 (3) | -0.3973 (2) | 0.46799 (15) | 0.0269 (5) |
| H8BA | 0.6535     | -0.4917     | 0.4943       | 0.032*     |
| C9B  | 0.5547 (2) | -0.3531 (2) | 0.39146 (15) | 0.0245 (5) |
| H9BA | 0.5223     | -0.4166     | 0.3652       | 0.029*     |
|      |            |             |              |            |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| Cl1A | 0.0243 (3)  | 0.0276 (3)  | 0.0345 (3)  | -0.0101 (2)  | 0.0015 (2)   | 0.0022 (2)   |
| Cl2A | 0.0235 (3)  | 0.0256 (3)  | 0.0300 (3)  | 0.0005 (2)   | -0.0074 (2)  | -0.0007 (2)  |
| Cl3A | 0.0382 (3)  | 0.0403 (3)  | 0.0264 (3)  | -0.0111 (3)  | -0.0104 (2)  | -0.0075 (2)  |
| S1A  | 0.0169 (3)  | 0.0241 (3)  | 0.0257 (3)  | -0.0062 (2)  | -0.0052 (2)  | 0.0014 (2)   |
| S2A  | 0.0195 (3)  | 0.0243 (3)  | 0.0189 (3)  | -0.0028 (2)  | -0.0042 (2)  | 0.0009 (2)   |
| O1A  | 0.0284 (8)  | 0.0337 (9)  | 0.0205 (8)  | -0.0074 (7)  | -0.0086 (7)  | -0.0031 (7)  |
| N1A  | 0.0222 (9)  | 0.0225 (9)  | 0.0173 (9)  | -0.0035 (7)  | -0.0029 (7)  | -0.0030 (7)  |
| C1A  | 0.0182 (10) | 0.0252 (11) | 0.0205 (11) | -0.0041 (9)  | -0.0028 (8)  | -0.0019 (9)  |
| C2A  | 0.0244 (11) | 0.0194 (10) | 0.0215 (11) | -0.0072 (9)  | -0.0038 (9)  | -0.0026 (8)  |
| C3A  | 0.0304 (13) | 0.0390 (14) | 0.0248 (12) | -0.0056 (11) | 0.0022 (10)  | -0.0100 (10) |
| C4A  | 0.0167 (10) | 0.0203 (10) | 0.0189 (10) | 0.0003 (8)   | -0.0013 (8)  | -0.0054 (8)  |
| C5A  | 0.0239 (11) | 0.0248 (11) | 0.0301 (12) | -0.0082 (9)  | -0.0023 (9)  | -0.0028 (9)  |
| C6A  | 0.0214 (11) | 0.0370 (13) | 0.0329 (13) | -0.0081 (10) | -0.0035 (10) | -0.0122 (11) |
| C7A  | 0.0214 (11) | 0.0432 (14) | 0.0200 (11) | 0.0001 (10)  | -0.0034 (9)  | -0.0080 (10) |
| C8A  | 0.0284 (12) | 0.0304 (12) | 0.0255 (12) | -0.0044 (10) | -0.0024 (10) | 0.0014 (10)  |
| C9A  | 0.0238 (11) | 0.0241 (11) | 0.0273 (12) | -0.0062 (9)  | -0.0035 (9)  | -0.0028 (9)  |
| Cl1B | 0.0299 (3)  | 0.0319 (3)  | 0.0323 (3)  | -0.0101 (2)  | 0.0021 (2)   | 0.0089 (2)   |
| Cl2B | 0.0155 (2)  | 0.0262 (3)  | 0.0328 (3)  | -0.0023 (2)  | -0.0045 (2)  | -0.0064 (2)  |
| Cl3B | 0.0288 (3)  | 0.0259 (3)  | 0.0428 (3)  | -0.0104 (2)  | -0.0143 (2)  | -0.0046 (2)  |
| S1B  | 0.0169 (2)  | 0.0196 (3)  | 0.0239 (3)  | -0.0055 (2)  | -0.0045 (2)  | 0.0002 (2)   |
| S2B  | 0.0169 (2)  | 0.0262 (3)  | 0.0181 (3)  | -0.0022 (2)  | -0.0042 (2)  | -0.0037 (2)  |
| O1B  | 0.0285 (8)  | 0.0374 (9)  | 0.0212 (8)  | -0.0080 (7)  | -0.0092 (7)  | -0.0065 (7)  |
| N1B  | 0.0224 (9)  | 0.0251 (9)  | 0.0180 (9)  | -0.0060 (7)  | -0.0013 (7)  | -0.0071 (7)  |
| C1B  | 0.0169 (10) | 0.0212 (11) | 0.0251 (11) | -0.0058 (8)  | -0.0046 (8)  | 0.0005 (9)   |
| C2B  | 0.0253 (11) | 0.0185 (10) | 0.0185 (10) | -0.0073 (9)  | -0.0020 (9)  | -0.0052 (8)  |
| C3B  | 0.0332 (13) | 0.0463 (15) | 0.0239 (12) | -0.0089 (11) | 0.0030 (10)  | -0.0158 (11) |
| C4B  | 0.0149 (10) | 0.0209 (10) | 0.0196 (10) | -0.0028 (8)  | -0.0010 (8)  | -0.0053 (8)  |
| C5B  | 0.0205 (10) | 0.0187 (10) | 0.0242 (11) | -0.0057 (8)  | -0.0015 (8)  | -0.0045 (8)  |
| C6B  | 0.0221 (11) | 0.0272 (11) | 0.0268 (12) | -0.0113 (9)  | -0.0042 (9)  | -0.0061 (9)  |
| C7B  | 0.0163 (10) | 0.0279 (11) | 0.0270 (12) | -0.0056 (9)  | -0.0045 (9)  | -0.0005 (9)  |
| C8B  | 0.0213 (11) | 0.0202 (11) | 0.0370 (13) | -0.0057 (9)  | -0.0047 (10) | 0.0017 (10)  |
| C9B  | 0.0207 (11) | 0.0217 (11) | 0.0322 (12) | -0.0072 (9)  | -0.0018 (9)  | -0.0074 (9)  |
|      |             |             |             |              |              |              |

Geometric parameters (Å, °)

| Cl1A—C1A      | 1.768 (2)   | Cl1B—C1B      | 1.774 (2)   |
|---------------|-------------|---------------|-------------|
| Cl2A—C1A      | 1.776 (2)   | Cl2B—C1B      | 1.768 (2)   |
| Cl3A—C1A      | 1.777 (2)   | Cl3B—C1B      | 1.771 (2)   |
| S1A—C1A       | 1.824 (2)   | S1B—C1B       | 1.822 (2)   |
| S1A—S2A       | 2.0202 (7)  | S1B—S2B       | 2.0160 (7)  |
| S2A—C2A       | 1.856 (2)   | S2B—C2B       | 1.842 (2)   |
| O1A—C2A       | 1.208 (2)   | O1B—C2B       | 1.211 (2)   |
| N1A—C2A       | 1.345 (3)   | N1B—C2B       | 1.346 (3)   |
| N1A—C4A       | 1.440 (3)   | N1B—C4B       | 1.447 (3)   |
| N1A—C3A       | 1.467 (3)   | N1B—C3B       | 1.460 (3)   |
| СЗА—НЗАА      | 0.9800      | СЗВ—НЗВА      | 0.9800      |
| СЗА—НЗАВ      | 0.9800      | C3B—H3BB      | 0.9800      |
| СЗА—НЗАС      | 0.9800      | C3B—H3BC      | 0.9800      |
| C4A—C9A       | 1.387 (3)   | C4B—C9B       | 1.384 (3)   |
| C4A—C5A       | 1.389 (3)   | C4B—C5B       | 1.386 (3)   |
| C5A—C6A       | 1.385 (3)   | C5B—C6B       | 1.385 (3)   |
| С5А—Н5АА      | 0.9500      | C5B—H5BA      | 0.9500      |
| C6A—C7A       | 1.376 (3)   | C6B—C7B       | 1.385 (3)   |
| С6А—Н6АА      | 0.9500      | C6B—H6BA      | 0.9500      |
| C7A—C8A       | 1.383 (3)   | C7B—C8B       | 1.387 (3)   |
| C7A—H7AA      | 0.9500      | C7B—H7BA      | 0.9500      |
| C8A—C9A       | 1.393 (3)   | C8B—C9B       | 1.387 (3)   |
| C8A—H8AA      | 0.9500      | C8B—H8BA      | 0.9500      |
| С9А—Н9АА      | 0.9500      | С9В—Н9ВА      | 0.9500      |
| C1A—S1A—S2A   | 102.38 (7)  | C1B—S1B—S2B   | 104.40 (7)  |
| C2A—S2A—S1A   | 99.96 (7)   | C2B—S2B—S1B   | 101.59 (7)  |
| C2A—N1A—C4A   | 123.13 (17) | C2B—N1B—C4B   | 122.00 (17) |
| C2A—N1A—C3A   | 118.95 (18) | C2B—N1B—C3B   | 119.49 (18) |
| C4A—N1A—C3A   | 117.85 (17) | C4B—N1B—C3B   | 118.00 (17) |
| Cl1A—C1A—Cl2A | 110.05 (11) | Cl2B—C1B—Cl3B | 109.89 (11) |
| Cl1A—C1A—Cl3A | 108.33 (11) | Cl2B—C1B—Cl1B | 110.25 (11) |
| Cl2A—ClA—Cl3A | 108.62 (11) | Cl3B—C1B—Cl1B | 107.66 (11) |
| Cl1A—C1A—S1A  | 112.54 (11) | Cl2B—C1B—S1B  | 103.07 (10) |
| Cl2A—C1A—S1A  | 104.78 (11) | Cl3B—C1B—S1B  | 113.09 (11) |
| Cl3A—C1A—S1A  | 112.43 (11) | Cl1B—C1B—S1B  | 112.83 (11) |
| O1A—C2A—N1A   | 125.9 (2)   | O1B—C2B—N1B   | 126.4 (2)   |
| O1A—C2A—S2A   | 122.09 (16) | O1B—C2B—S2B   | 122.96 (16) |
| N1A—C2A—S2A   | 111.99 (15) | N1B—C2B—S2B   | 110.65 (14) |
| N1A—C3A—H3AA  | 109.5       | N1B—C3B—H3BA  | 109.5       |
| N1A—C3A—H3AB  | 109.5       | N1B—C3B—H3BB  | 109.5       |
| НЗАА—СЗА—НЗАВ | 109.5       | H3BA—C3B—H3BB | 109.5       |
| N1A—C3A—H3AC  | 109.5       | N1B—C3B—H3BC  | 109.5       |
| НЗАА—СЗА—НЗАС | 109.5       | H3BA—C3B—H3BC | 109.5       |
| НЗАВ—СЗА—НЗАС | 109.5       | H3BB—C3B—H3BC | 109.5       |
| C9A—C4A—C5A   | 120.4 (2)   | C9B—C4B—C5B   | 120.95 (19) |

| C9A—C4A—N1A      | 120.05 (19)  | C9B—C4B—N1B      | 118.54 (18)  |
|------------------|--------------|------------------|--------------|
| C5A—C4A—N1A      | 119.51 (19)  | C5B—C4B—N1B      | 120.51 (18)  |
| C6A—C5A—C4A      | 119.8 (2)    | C6B—C5B—C4B      | 119.38 (19)  |
| С6А—С5А—Н5АА     | 120.1        | C6B—C5B—H5BA     | 120.3        |
| С4А—С5А—Н5АА     | 120.1        | C4B—C5B—H5BA     | 120.3        |
| C7A—C6A—C5A      | 120.0 (2)    | C7B—C6B—C5B      | 120.23 (19)  |
| С7А—С6А—Н6АА     | 120.0        | С7В—С6В—Н6ВА     | 119.9        |
| С5А—С6А—Н6АА     | 120.0        | С5В—С6В—Н6ВА     | 119.9        |
| C6A—C7A—C8A      | 120.4 (2)    | C6B—C7B—C8B      | 119.9 (2)    |
| С6А—С7А—Н7АА     | 119.8        | С6В—С7В—Н7ВА     | 120.1        |
| С8А—С7А—Н7АА     | 119.8        | C8B—C7B—H7BA     | 120.1        |
| C7A—C8A—C9A      | 120.2 (2)    | C9B—C8B—C7B      | 120.3 (2)    |
| С7А—С8А—Н8АА     | 119.9        | C9B—C8B—H8BA     | 119.8        |
| С9А—С8А—Н8АА     | 119.9        | C7B—C8B—H8BA     | 119.8        |
| C4A—C9A—C8A      | 119.2 (2)    | C4B—C9B—C8B      | 119.2 (2)    |
| С4А—С9А—Н9АА     | 120.4        | C4B—C9B—H9BA     | 120.4        |
| С8А—С9А—Н9АА     | 120.4        | C8B—C9B—H9BA     | 120.4        |
|                  |              |                  |              |
| C1A—S1A—S2A—C2A  | 92.91 (10)   | C1B—S1B—S2B—C2B  | -95.23 (10)  |
| S2A—S1A—C1A—C11A | -55.40 (11)  | S2B—S1B—C1B—Cl2B | -169.19 (7)  |
| S2A—S1A—C1A—Cl2A | -174.96 (8)  | S2B—S1B—C1B—Cl3B | -50.59 (12)  |
| S2A—S1A—C1A—Cl3A | 67.26 (11)   | S2B—S1B—C1B—Cl1B | 71.90 (11)   |
| C4A—N1A—C2A—O1A  | 177.3 (2)    | C4B—N1B—C2B—O1B  | -172.5 (2)   |
| C3A—N1A—C2A—O1A  | 0.3 (3)      | C3B—N1B—C2B—O1B  | -0.8 (3)     |
| C4A—N1A—C2A—S2A  | -3.0 (2)     | C4B—N1B—C2B—S2B  | 8.1 (2)      |
| C3A—N1A—C2A—S2A  | -179.98 (15) | C3B—N1B—C2B—S2B  | 179.73 (16)  |
| S1A—S2A—C2A—O1A  | 10.32 (19)   | S1B—S2B—C2B—O1B  | 6.32 (19)    |
| S1A—S2A—C2A—N1A  | -169.40 (14) | S1B—S2B—C2B—N1B  | -174.23 (13) |
| C2A—N1A—C4A—C9A  | -72.9 (3)    | C2B—N1B—C4B—C9B  | 93.8 (2)     |
| C3A—N1A—C4A—C9A  | 104.1 (2)    | C3B—N1B—C4B—C9B  | -78.0 (3)    |
| C2A—N1A—C4A—C5A  | 109.7 (2)    | C2B—N1B—C4B—C5B  | -86.4 (3)    |
| C3A—N1A—C4A—C5A  | -73.3 (3)    | C3B—N1B—C4B—C5B  | 101.8 (2)    |
| C9A—C4A—C5A—C6A  | 0.0 (3)      | C9B—C4B—C5B—C6B  | -2.1 (3)     |
| N1A—C4A—C5A—C6A  | 177.36 (19)  | N1B—C4B—C5B—C6B  | 178.12 (19)  |
| C4A—C5A—C6A—C7A  | 0.8 (3)      | C4B—C5B—C6B—C7B  | 0.7 (3)      |
| C5A—C6A—C7A—C8A  | -0.3 (3)     | C5B—C6B—C7B—C8B  | 1.1 (3)      |
| C6A—C7A—C8A—C9A  | -1.0 (3)     | C6B—C7B—C8B—C9B  | -1.6 (3)     |
| C5A—C4A—C9A—C8A  | -1.2 (3)     | C5B—C4B—C9B—C8B  | 1.6 (3)      |
| N1A—C4A—C9A—C8A  | -178.58 (19) | N1B—C4B—C9B—C8B  | -178.57 (19) |
| C7A—C8A—C9A—C4A  | 1.7 (3)      | C7B—C8B—C9B—C4B  | 0.2 (3)      |
|                  |              |                  |              |