CRYSTALLOGRAPHIC

Crystal structure of 2-azido-1H-imida-zole-4,5-dicarbonitrile

G. Kenneth Windler, ${ }^{\text {a }}$ Brian L. Scott, ${ }^{\text {b }}$ Neil C. Tomson ${ }^{\text {b }}$ and Philip W. Leonard ${ }^{\text {a }}$ *

${ }^{\text {ap }}$ PO Box 1663 MS C920, Los Alamos National Laboratory, Los Alamos, NM 87544, USA, and ${ }^{\text {b PO }} 1663$ MS J514, Los Alamos National Laboratory, Los Alamos, NM 87544, USA. *Correspondence e-mail: philipl@lanl.gov

Received 6 June 2015; accepted 13 July 2015

Edited by G. Smith, Queensland University of Technology, Australia

In the title compound, $\mathrm{C}_{5} \mathrm{HN}_{7}$, the nitrile and azido substituents are close to being coplanar with the central ring. Molecules in the crystal are linked via an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond to a nitrile acceptor, forming a chain extending along the c-axis direction.

Keywords: crystal structure; 2-azido-4,5-dicyano-1H-imidazole; hydrogen bonding.

CCDC reference: 1412579

1. Related literature

For background to imidazole applications, see: Windaus \& Vogt (1907); Katritzky et al. (2006); Epishina et al. (1967); Srinivas et al. (2014). For preparations, see: Sheppard \& Webster (1973); Lu \& Just (2001); Parrish et al. (2015).

2. Experimental

2.1. Crystal data

```
C
Mr}=159.1
Monoclinic, P2 / /n
a=7.3217 (6) \AA
b=12.8128 (11) \AA
c=7.5202 (6) \AA
```

$\beta=102.215$ (2) ${ }^{\circ}$

2.2. Data collection

Bruker D8 Quest with CMOS diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\text {min }}=0.960, T_{\text {max }}=0.989$

13020 measured reflections 2943 independent reflections 2535 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.024$

2.3. Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.117$
$S=1.56$
2943 reflections

112 parameters
All H-atom parameters refined
$\Delta \rho_{\text {max }}=0.51 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.25 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 4^{\mathrm{i}}$	$0.89(2)$	$2.00(2)$	$2.8572(9)$	$160.9(14)$
Symmetry code	(i) $x, y, z-1$			

Symmetry code: (i) $x, y, z-1$.
Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CHEMDRAW Ultra (Cambridge Soft, 2014).

Acknowledgements

This work was supported by the National Nuclear Security Administration Science Campaign 2 and performed at Los Alamos National Laboratory under DE-AC52-06 N A25396. LA-UR-15-23927

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2337).

References

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cambridge Soft (2014). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.
Epishina, L. V., Slovetskii, V. I., Osipov, V. G., Lebedev, O. V., Khmel'nitskii, L. I., Sevost'yanova, V. V. \& Novikova, T. S. (1967). Khim. Geterotsikl. Soedin. 4, 716-723.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Katritzky, A. R., Singh, S., Kirichenko, K., Smiglak, M., Holbrey, J. D., Reichert, W. M., Spear, S. K. \& Rogers, R. D. (2006). Chem. Eur. J. 12, 46304641.

Lu, Y. \& Just, G. (2001). Tetrahedron, 57, 1677-1687.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Parrish, D. A., Kramer, S., Windler, G. K., Chavez, D. E. \& Leonard, P. W. (2015). Acta Cryst. E71, o491.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheppard, W. A. \& Webster, O. W. (1973). J. Am. Chem. Soc. 95, 2695-2697.
Srinivas, D., Ghule, V. D. \& Muralidharan, K. (2014). RSC Adv. 4, 7041-7051.
Windaus, A. \& Vogt, W. (1907). Berichte, 40, 3691-3695.

supporting information

Acta Cryst. (2015). E71, o633 [https://doi.org/10.1107/S2056989015013444]

Crystal structure of 2-azido-1H-imidazole-4,5-dicarbonitrile

G. Kenneth Windler, Brian L. Scott, Neil C. Tomson and Philip W. Leonard

S1. Comment

Imidazoles have a storied history in the pharmaceutical (Windaus et al., 1907), ionic liquid (Katritzky et al., 2006), and energetic materials communities (Epishina et al. 1967). Recently, the title compound, $\mathrm{C}_{5} \mathrm{HN}_{7}$, appeared in a study of imidazoles as potential gas generators (Srinivas et al., 2014). Given this background, we synthesized the title compound to examine the crystal structure, reported herein.
The entire molecule is essentially planar, with the maximum deviation indicated by the torsion angle in the ring atoms of $0.65(7)^{\circ}(\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3)$ and among the substituent groups, $176.76(6)^{\circ}(\mathrm{C} 3-\mathrm{N} 5-\mathrm{N} 6-\mathrm{N} 7)$ (Fig. 1). An intermolecular $\mathrm{N} 1-\mathrm{H} \cdots \mathrm{N} 4$ hydrogen bond involving a cyano N -atom acceptor (Table 1) generates a one-dimensional chain structure, extending along c (Fig. 2).

S2. Experimental

To a stirred room temperature solution of sodium azide ($4.40 \mathrm{~g}, 67.7 \mathrm{mmol}$) in water (100 ml) was added 2-diazo-4,5-dicyanoimidazole ($4.05 \mathrm{~g}, 28.1 \mathrm{mmol}$) in portions (Sheppard \& Webster, 1973; Lu \& Just, 2001; Parrish et al., 2015). Vigorous effervescence of liberated nitrogen gas occurred with each addition. The reaction was allowed to stir for a further 90 min after gas evolution ceased and was then extracted with ethyl acetate ($4 \times 20 \mathrm{ml}$). The organic layer was dried over magnesium sulfate and the solvent was removed by rotary evaporation to afford a light yellow solid. Crystals of the title compound suitable for X-ray diffraction were obtained by crystallization from ethyl acetate.

S3. Refinement

The hydrogen atom was located in a difference-Fourier and the positional parameters were fully refined, with $U_{\text {iso }}(\mathrm{H})$ set invariant at 0.08 .

Figure 1
The molecular structure of the title compound with atom labeling. Ellipsoids are drawn at the 50% probability level, and the hydrogen atom is drawn as a sphere of arbitrary size.

Figure 2
A crystal packing diagram of the title compound viewed along the b axis. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond is shown as a dashed line.

2-Azido-1H-imidazole-4,5-dicarbonitrile

Crystal data

$\mathrm{C}_{5} \mathrm{HN}_{7}$
$M_{r}=159.13$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=7.3217$ (6) \AA
$b=12.8128(11) \AA$
$c=7.5202$ (6) \AA
$\beta=102.215$ (2) ${ }^{\circ}$
$V=689.51(10) \AA^{3}$
$Z=4$

Data collection

Bruker D8 Quest with CMOS
diffractometer
Radiation source: fine-focus sealed tube
Bruker Triumph curved graphite
monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min }=0.960, T_{\text {max }}=0.989$
$F(000)=320$
$D_{\mathrm{x}}=1.533 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2943 reflections
$\theta=3.2-35.1^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, pale yellow
$0.36 \times 0.24 \times 0.10 \mathrm{~mm}$

13020 measured reflections
2943 independent reflections
2535 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=35.1^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-11 \rightarrow 11$
$k=-20 \rightarrow 19$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.117$
$S=1.56$
2943 reflections
112 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors $(\mathrm{gt}) \mathrm{etc}$. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
N1	$0.95971(8)$	$0.23656(4)$	$0.20204(8)$	$0.01244(12)$
H1	$0.946(2)$	$0.2147(12)$	$0.087(3)$	0.080^{*}
N3	$0.79681(9)$	$-0.00660(5)$	$0.33122(9)$	$0.01989(14)$
N4	$0.97866(9)$	$0.20303(5)$	$0.83076(8)$	$0.01915(14)$
N5	$1.08587(9)$	$0.39994(5)$	$0.14988(8)$	$0.01601(13)$
N6	$1.15492(9)$	$0.48197(5)$	$0.22731(9)$	$0.01800(14)$
N7	$1.21954(11)$	$0.55869(5)$	$0.27860(11)$	$0.02869(17)$
N2	$1.05744(8)$	$0.33629(4)$	$0.44841(8)$	$0.01346(13)$
C1	$0.92901(9)$	$0.17977(5)$	$0.34810(8)$	$0.01148(13)$
C2	$0.98919(9)$	$0.24295(5)$	$0.49778(8)$	$0.01203(13)$
C3	$1.03672(9)$	$0.32810(5)$	$0.27026(9)$	$0.01232(13)$
C4	$0.85397(9)$	$0.07743(5)$	$0.33564(9)$	$0.01397(13)$
C5	$0.98406(9)$	$0.22016(5)$	$0.68201(9)$	$0.01401(14)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0156(3)$	$0.0141(3)$	$0.0079(2)$	$0.00008(18)$	$0.00303(19)$	$0.00052(17)$
N3	$0.0220(3)$	$0.0172(3)$	$0.0203(3)$	$-0.0027(2)$	$0.0043(2)$	$-0.0015(2)$
N4	$0.0240(3)$	$0.0226(3)$	$0.0118(3)$	$-0.0040(2)$	$0.0057(2)$	$-0.0011(2)$
N5	$0.0204(3)$	$0.0149(3)$	$0.0138(3)$	$-0.00141(19)$	$0.0059(2)$	$0.00269(19)$
N6	$0.0200(3)$	$0.0162(3)$	$0.0196(3)$	$-0.0002(2)$	$0.0082(2)$	$0.0035(2)$
N7	$0.0357(4)$	$0.0186(3)$	$0.0346(4)$	$-0.0069(3)$	$0.0137(3)$	$-0.0007(3)$
N2	$0.0162(3)$	$0.0143(3)$	$0.0104(2)$	$-0.00187(18)$	$0.00392(19)$	$-0.00013(18)$
C1	$0.0136(3)$	$0.0123(3)$	$0.0088(3)$	$-0.0004(2)$	$0.0029(2)$	$0.00006(19)$

C2	$0.0140(3)$	$0.0136(3)$	$0.0088(3)$	$-0.0007(2)$	$0.0033(2)$	$-0.00039(19)$
C3	$0.0132(3)$	$0.0136(3)$	$0.0107(3)$	$0.0005(2)$	$0.0036(2)$	$0.0010(2)$
C4	$0.0154(3)$	$0.0159(3)$	$0.0105(3)$	$0.0004(2)$	$0.0027(2)$	$-0.0001(2)$
C5	$0.0160(3)$	$0.0154(3)$	$0.0110(3)$	$-0.0025(2)$	$0.0038(2)$	$-0.0021(2)$

Geometric parameters ($\AA,{ }^{\circ}$)

N1-C3	1.3545 (8)	N6-N7	1.1232 (9)
N1-C1	1.3752 (8)	N2-C3	1.3202 (8)
N1-H1	0.893 (19)	N2-C2	1.3770 (9)
N3-C4	1.1530 (8)	C1-C2	1.3808 (9)
N4-C5	1.1489 (9)	C1-C4	1.4171 (9)
N5-N6	1.2549 (8)	C2-C5	1.4241 (9)
N5-C3	1.3907 (8)		
C3-N1-C1	106.32 (5)	N2-C2-C1	111.15 (6)
C3-N1-H1	126.2 (11)	N2-C2-C5	121.75 (6)
C1-N1-H1	127.1 (10)	C1-C2-C5	127.10 (6)
N6-N5-C3	112.74 (6)	N2-C3-N1	113.73 (6)
N7-N6-N5	172.47 (8)	N2-C3-N5	128.17 (6)
C3-N2-C2	103.55 (5)	N1-C3-N5	118.09 (6)
N1-C1-C2	105.25 (6)	N3-C4-C1	177.65 (7)
N1-C1-C4	124.29 (6)	N4-C5-C2	179.07 (8)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4$	130.45 (6)		
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	0.65 (7)	C2-N2-C3-N5	-178.86 (7)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 4$	-178.28 (6)	N6-N5-C3-N1	179.67 (6)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 2$	-0.56 (8)	N6-N5-C3-N2	-1.31 (11)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 5$	178.61 (6)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	-0.56 (8)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	0.24 (8)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5$	178.90 (7)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 5$	-179.26 (6)	$\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	178.28 (7)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3-\mathrm{N} 1$	0.20 (8)	$\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5$	-2.26 (12)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{~N} 4{ }^{\mathrm{i}}$	$0.89(2)$	$2.00(2)$	$2.8572(9)$	$160.9(14)$

Symmetry code: (i) $x, y, z-1$.

