

Received 24 July 2015 Accepted 30 July 2015

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

Keywords: crystal structure; cyclooctadiene; fused ring system; hydrogen bonding

CCDC reference: 1415865 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 6,6,12,12-tetrachlorotricyclo[8.2.0.0^{4,7}]dodecane-5,11-dione

Esra Turan Akın^a and Tuncer Hökelek^b*

^aDepartment of Chemistry, Atatürk University, 25240, Erzurum, Turkey, and ^bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey. *Correspondence e-mail: merzifon@hacettepe.edu.tr

The asymmetric unit of the title compound, $C_{12}H_{12}Cl_4O_2$, contains two crystallographically independent molecules with almost identical conformations (r.m.s. overlay fit for the non-hydrogen atoms = 0.059 Å). In each molecule, the central eight-membered ring has a distorted boat configuration, and two non-planar four-membered rings are fused on either side of the eight-membered ring. A weak C-H···O hydrogen bond links the two independent molecules. In the crystal, weak C-H···O hydrogen bonds link the molecules into a two-dimensional network parallel to (001).

1. Chemical context

The eight-membered-ring cyclic hydrocarbon, 1,5-cyclooctadiene (COD), attracts the attention of researchers because of its use as an intermediate product in the production of epoxides, suberic acid (1,8-octanodioic acid), caprylolactam (8-aminooctanoic acid lactam) and related chemicals and polymers (Dowd & Zhang, 1991; Zhang & Dowd, 1992; Mehta & Rao, 2006; Brady, 1981; Ghosez *et al.* 1971; Brady & Roe, 1971). COD serves as a useful precursor in the syntheses of other organic compounds and as a ligand in organometallic chemistry (Shriver & Atkins, 1999).

Ketenes, containing R and R' groups (where R, R' can be hydrogen), and formed cumulene enon systems are reactive compounds. The stability or reactivity of ketenes depends on the electronic structures of the R and R' groups. Ketenes providing electron-donating (+I or +M) R groups are stable, and their reactivity is low. Electron-attracting ketenes [containing (-I or -M) R groups] are less stable and behave in a more unstable manner in reactions.

2. Structural commentary

The asymmetric unit of the title compound contains two crystallographically independent molecules (Fig. 1). Each molecule consists of a central non-planar eight-membered cyclooctadiene [B (C2–C5/C8–C11) and E (C14–C17/C20–

OPEN d ACCESS

Figure 1

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intermolecular $C-H\cdots O$ hydrogen bond is shown as dashed line. H atoms not involved in hydrogen bonds have been omitted for clarity.

C23)] ring system having two non-planar four-membered [A (C1/C2/C11/C12), C (C5–C8) and D (C13/C14/C23/C24), F (C17–C20)] rings fused on both sides. A weak C–H···O hydrogen bond (Table 1) links the two independent molecules.

The conformations of the cyclooctadiene rings can be clarified from the torsion angles of the rings bonds (Table 2). The total puckering amplitudes $Q_{\rm T}$ of the cyclooctadiene rings are 1.632 (3) Å (for ring B) and 1.631 (3) Å (for ring E). As can also be seen from the distribution of the torsion angles (Table 2), the asymmetry parameters indicate eight local pseudo twofold axes running along C2···C8, C3···C9, C4···C10, C5···C11, the midpoints of C2–C3 and C8–C9, the midpoints of C3-C4 and C9-C10, the midpoints of C4-C5 and C10-C11, the midpoints of C5-C8 and C2-C11 (for ring B) and C14···C20, C15···C21, C16···C22, C17···C23, the midpoints of C14-C15 and C20-C21, the midpoints of C15-C16 and C21-C22, the midpoints of C16-C17 and C22-C23, the midpoints of C17-C20 and C14-C23 (for ring E) (Nardelli, 1983). In the cyclooctadiene rings, the C-Cbond distances vary from 1.514 (4) to 1.573 (4) Å (for ring B) and 1.508 (4) to 1.573 (4) Å (for ring *E*), while the C–C–C bond angles vary from 114.1 (2) to 121.8 (2)° (for ring B) and 114.5 (2) to 121.6 (3)° (for ring *E*). The mean ring C–C bond lengths and C–C–C bond angles are 1.537 (4) Å (for rings B and *E*) and 117.0 (4)° (for ring *B*) and 116.9 (3)° (for ring *E*).

In the non-planar four-membered rings (*A*, *C* and *D*, *F*), the (C1/C2/C11) and (C1/C11/C12), (C1/C2/C12) and (C2/C11/C12) (in ring *A*), (C5/C6/C7) and (C5/C7/C8), (C5/C6/C8) and (C6/C7/C8) (in ring *C*), (C13/C14/C23) and (C13/C23/C24), (C13/C14/C24) and (C14/C23/C24) (in ring *D*), (C17/C18/C19) and (C17/C19/C20), (C17/C18/C20) and (C18/C19/C20) (in ring *F*) fragments are oriented at dihedral angles of 155.2 (3), 155.7 (3)° (in ring *D*), 155.1 (3), 155.7 (3)° (in ring *D*), 155.1 (3), 155.7 (3)° (in ring *F*).

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C3-H3B\cdots O2^{i}$	0.97	2.57	3.473 (4)	154
$C8-H8\cdots O4^n$	0.98	2.43	3.406 (4)	176
$C14 - H14 \cdots O1$	0.98	2.38	3.342 (4)	168

Symmetry codes: (i) -x + 2, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x + 1, y, z.

Table 2Selected torsion angles (°).

C11-C2-C3-C4	67.5 (3)	C23-C14-C15-C16	-65.6 (4)
C2-C3-C4-C5	24.0 (4)	C15-C14-C23-C22	21.1 (4)
C8-C5-C4-C3	-77.3(3)	C17-C16-C15-C14	-25.8(4)
C9-C8-C5-C4	-19.1(4)	C20-C17-C16-C15	76.5 (4)
C5-C8-C9-C10	65.3 (3)	C21-C20-C17-C16	21.6 (4)
C8-C9-C10-C11	24.6 (4)	C17-C20-C21-C22	-67.5(4)
C10-C11-C2-C3	-22.1(4)	C20-C21-C22-C23	-23.7(4)
C2-C11-C10-C9	-75.4 (3)	C14-C23-C22-C21	75.6 (4)

3. Supramolecular features

In the crystal, weak C-H···O hydrogen bonds (Table 1) link the molecules into a two-dimensional network parallel to (001) (Fig. 2).

4. Synthesis and crystallization

The title compound was synthesized according to a literature method (Bosmajian *et al.* 1964). For the preparation of the title compound, a mixture of COD (2.00 g, 18.5 mmol) and Zn powder (12.09 g, 184.9 mmol) in absolute ether (15 ml) was

Figure 2

Part of the crystal structure viewed down [001]. Intermolecular C– $H \cdots O$ hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity.

research communications

Table 3Experimental details.

Crystal data	
Chemical formula	$C_{12}H_{12}Cl_4O_2$
$M_{ m r}$	330.02
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	296
a, b, c (Å)	10.9786 (3), 10.9374 (3), 23.5429 (5)
β (°)	97.554 (2)
$V(A^3)$	2802.43 (12)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.83
Crystal size (mm)	$0.11 \times 0.10 \times 0.07$
Data collection	
Diffractometer	Bruker Kappa APEXII CCD area detector
Absorption correction	Multi-scan (SADABS; Bruker, 2012)
T_{\min}, T_{\max}	0.901, 0.933
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	64865, 6994, 4542
R _{int}	0.069
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.668
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.064, 0.131, 1.10
No. of reflections	6994
No. of parameters	325
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.70, -0.54

Computer programs: *APEX2* and *SAINT* (Bruker, 2012), *SHELXS97* and *SHELXL97* (Sheldrick, 2008), *ORTEP-3 for Windows* and *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

stirred for 15 min under a nitrogen atmosphere. Then, a solution of Cl₃CCOCl (30.30 g, 64.7 mmol) in absolute ether (20 ml) was added to the mixture over 20 min, and stirred for 20 h under a nitrogen atmosphere. The reaction mixture was filtered, and the ZnCl₂ salt was removed. The reaction mixture was extracted with water (3×10 ml). The organic phases were combined, and dried over MgSO₄. The solvent was evaporated

and the crude product was eluted in a silica gel (50.00 g) column, and was filtered using ethyl acetate/*n*-hexane (2:8). The obtained solid product (yield; 1.55 g, 25%) was crystallized from CH_2Cl_2/n -hexane (1:4) solution over two days (m.p. 472–474 K).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The C-bound H atoms were positioned geometrically with C-H = 0.97 Å (for CH₂) and 0.98 Å (for CH), and constrained to ride on their parent atoms, $U_{iso}(H) = 1.2U_{eq}(C)$.

Acknowledgements

The authors are grateful to Professor Arif Daştan (Atatürk University, Department of Chemistry, Erzurum, Turkey) for helpful discussions.

References

- Bosmajian, G., Burks, R. E., Feazel, C. E. & Newcombe, J. (1964). *Ind. Eng. Chem. Prod. Res. Dev.* **3**, 117–119.
- T. Brady, W. (1981). Tetrahedron, 37, 2949-2966.
- Brady, W. T. & Roe, R. Jr (1971). J. Am. Chem. Soc. 93, 1662-1664.
- Bruker (2012). *APEX2*, *SAINT* and *SADABS*. Bruker AXS Inc. Madison, Wisconsin, USA.

Dowd, P. & Zhang, W. (1991). J. Am. Chem. Soc. 113, 9875-9876.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ghosez, L., Montaigne, R., Roussel, A., Vanlierde, H. & Mollet, P. (1971). *Tetrahedron*, **27**, 615–633.

Mehta, G. & Rao, H. S. P. (2006). Synth. Commun. 15, 991-1000.

- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shriver, D. & Atkins, P. (1999). *Inorg. Chem.* 3rd ed. Oxford University Press.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zhang, W. & Dowd, P. (1992). Tetrahedron Lett. 33, 3285-3288.

supporting information

Acta Cryst. (2015). E71, 1000-1002 [https://doi.org/10.1107/S2056989015014383]

Crystal structure of 6,6,12,12-tetrachlorotricyclo[8.2.0.0^{4,7}]dodecane-5,11dione

Esra Turan Akın and Tuncer Hökelek

Computing details

Data collection: *APEX2* (Bruker, 2012); cell refinement: *SAINT* (Bruker, 2012); data reduction: *SAINT* (Bruker, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

6,6,12,12-Tetrachlorotricyclo[8.2.0.0^{4,7}]dodecane-5,11-dione

Crystal data

C₁₂H₁₂Cl₄O₂ $M_r = 330.02$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 10.9786 (3) Å b = 10.9374 (3) Å c = 23.5429 (5) Å $\beta = 97.554$ (2)° V = 2802.43 (12) Å³ Z = 8

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2012) $T_{\min} = 0.901, T_{\max} = 0.933$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.064$ $wR(F^2) = 0.131$ S = 1.106994 reflections 325 parameters 0 restraints F(000) = 1344 $D_x = 1.564 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9888 reflections $\theta = 3.2-27.5^{\circ}$ $\mu = 0.83 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.11 \times 0.10 \times 0.07 \text{ mm}$

64865 measured reflections 6994 independent reflections 4542 reflections with $I > 2\sigma(I)$ $R_{int} = 0.069$ $\theta_{max} = 28.4^\circ, \theta_{min} = 3.0^\circ$ $h = -14 \rightarrow 13$ $k = -14 \rightarrow 14$ $l = -31 \rightarrow 31$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0326P)^{2} + 3.8912P] \qquad \Delta$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta$ $(\Delta/\sigma)_{max} = 0.001$

 $\begin{array}{l} \Delta\rho_{\rm max}=0.70~{\rm e}~{\rm \AA}^{-3}\\ \Delta\rho_{\rm min}=-0.54~{\rm e}~{\rm \AA}^{-3} \end{array}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and	l isotropic or	^r equivalent	isotropic	displacement	parameters	$(Å^2)$
	1	1	1	1	1	· /

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.93872 (9)	0.43272 (9)	0.66192 (5)	0.0694 (3)
Cl2	0.74549 (9)	0.35318 (9)	0.72561 (4)	0.0574 (3)
Cl3	1.22527 (7)	-0.11648 (9)	0.60649 (4)	0.0539 (2)
Cl4	1.03076 (9)	-0.25182 (8)	0.53791 (4)	0.0525 (2)
C15	0.72656 (8)	0.66388 (9)	0.59660 (6)	0.0717 (3)
Cl6	0.53149 (10)	0.80518 (9)	0.53202 (4)	0.0598 (3)
C17	0.44151 (9)	0.11622 (9)	0.64870 (6)	0.0770 (4)
C18	0.25781 (10)	0.19145 (10)	0.71898 (4)	0.0653 (3)
O1	0.6556 (2)	0.3265 (2)	0.58919 (10)	0.0511 (6)
O2	1.0164 (2)	-0.2842 (2)	0.67506 (11)	0.0537 (6)
O3	0.5260 (3)	0.8322 (2)	0.66995 (11)	0.0600 (7)
O4	0.1521 (2)	0.2303 (3)	0.58563 (12)	0.0677 (8)
C1	0.8295 (3)	0.3158 (3)	0.66906 (14)	0.0396 (7)
C2	0.8854 (3)	0.1854 (3)	0.66500 (12)	0.0299 (6)
H2	0.9753	0.1858	0.6726	0.036*
C3	0.8287 (3)	0.0903 (3)	0.70038 (13)	0.0370 (7)
H3A	0.7401	0.0991	0.6936	0.044*
H3B	0.8547	0.1071	0.7406	0.044*
C4	0.8614 (3)	-0.0435 (3)	0.68815 (13)	0.0351 (7)
H4A	0.8672	-0.0894	0.7237	0.042*
H4B	0.7951	-0.0786	0.6619	0.042*
C5	0.9808 (3)	-0.0583 (3)	0.66279 (12)	0.0299 (6)
Н5	1.0465	-0.0141	0.6865	0.036*
C6	1.0233 (3)	-0.1884 (3)	0.65266 (13)	0.0334 (7)
C7	1.0648 (3)	-0.1495 (3)	0.59541 (13)	0.0326 (7)
C8	0.9881 (2)	-0.0305 (3)	0.59796 (11)	0.0268 (6)
H8	1.0375	0.0425	0.5933	0.032*
C9	0.8675 (3)	-0.0282 (3)	0.55768 (12)	0.0319 (6)
H9A	0.8264	-0.1061	0.5605	0.038*
H9B	0.8861	-0.0204	0.5187	0.038*
C10	0.7780 (3)	0.0745 (3)	0.56886 (13)	0.0359 (7)
H10A	0.7336	0.1001	0.5324	0.043*

H10B	0.7184	0.0417	0.5918	0.043*
C11	0.8375 (3)	0.1859 (3)	0.59901 (12)	0.0309 (6)
H11	0.9022	0.2166	0.5778	0.037*
C12	0.7531 (3)	0.2904 (3)	0.61064 (13)	0.0345 (7)
C13	0.5667 (3)	0.6999 (3)	0.58827 (14)	0.0394 (7)
C14	0.4886 (2)	0.5814 (3)	0.59130 (12)	0.0304 (6)
H14	0.5354	0.5079	0.5843	0.036*
C15	0.3647 (3)	0.5847 (3)	0.55390 (13)	0.0384 (7)
H15A	0.3783	0.5788	0.5141	0.046*
H15B	0.3265	0.6632	0.5590	0.046*
C16	0.2746 (3)	0.4827 (3)	0.56630 (14)	0.0408 (8)
H16A	0.2204	0.5146	0.5921	0.049*
H16B	0.2243	0.4610	0.5307	0.049*
C17	0.3358 (3)	0.3679 (3)	0.59241 (13)	0.0343 (7)
H17	0.3964	0.3386	0.5685	0.041*
C18	0.2521 (3)	0.2633 (3)	0.60474 (15)	0.0420 (8)
C19	0.3348 (3)	0.2323 (3)	0.66063 (15)	0.0420 (8)
C20	0.3916 (3)	0.3620 (3)	0.65730 (13)	0.0337 (7)
H20	0.4816	0.3600	0.6624	0.040*
C21	0.3421 (3)	0.4551 (3)	0.69642 (13)	0.0408 (8)
H21A	0.3726	0.4344	0.7358	0.049*
H21B	0.2532	0.4481	0.6920	0.049*
C22	0.3756 (3)	0.5896 (3)	0.68587 (14)	0.0430 (8)
H22A	0.3070	0.6279	0.6623	0.052*
H22B	0.3872	0.6320	0.7224	0.052*
C23	0.4896 (3)	0.6061 (3)	0.65719 (12)	0.0331 (7)
H23	0.5577	0.5610	0.6787	0.040*
C24	0.5308 (3)	0.7358 (3)	0.64670 (14)	0.0397 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0513 (5)	0.0330 (5)	0.1188 (9)	-0.0081 (4)	-0.0081 (5)	0.0036 (5)
Cl2	0.0661 (6)	0.0528 (6)	0.0511 (5)	0.0209 (5)	-0.0012 (4)	-0.0169 (4)
C13	0.0289 (4)	0.0472 (5)	0.0861 (7)	0.0055 (4)	0.0089 (4)	-0.0021 (5)
Cl4	0.0624 (6)	0.0450 (5)	0.0501 (5)	0.0064 (4)	0.0079 (4)	-0.0147 (4)
C15	0.0334 (5)	0.0460 (6)	0.1380 (10)	-0.0049 (4)	0.0196 (5)	0.0034 (6)
C16	0.0738 (6)	0.0465 (6)	0.0594 (6)	-0.0112 (5)	0.0106 (5)	0.0138 (4)
C17	0.0478 (5)	0.0304 (5)	0.1492 (11)	0.0037 (4)	-0.0001 (6)	-0.0076 (6)
C18	0.0705 (6)	0.0599 (7)	0.0636 (6)	-0.0214 (5)	0.0013 (5)	0.0226 (5)
O1	0.0460 (14)	0.0513 (16)	0.0524 (14)	0.0212 (12)	-0.0069 (11)	0.0002 (12)
O2	0.0708 (17)	0.0295 (14)	0.0590 (15)	-0.0002 (12)	0.0019 (13)	0.0135 (12)
O3	0.0795 (19)	0.0327 (15)	0.0642 (16)	-0.0003 (13)	-0.0036 (14)	-0.0151 (13)
O4	0.0529 (16)	0.0673 (19)	0.0757 (18)	-0.0307 (14)	-0.0185 (13)	0.0128 (15)
C1	0.0358 (17)	0.0296 (18)	0.0515 (19)	0.0038 (13)	-0.0014 (14)	-0.0037 (15)
C2	0.0259 (14)	0.0229 (15)	0.0402 (16)	0.0026 (11)	0.0007 (12)	-0.0015 (12)
C3	0.0425 (17)	0.041 (2)	0.0286 (15)	0.0015 (14)	0.0076 (13)	-0.0013 (14)
C4	0.0475 (18)	0.0252 (17)	0.0348 (16)	-0.0022 (13)	0.0140 (13)	0.0056 (13)

supporting information

C5	0.0351 (15)	0.0250 (15)	0.0283 (15)	-0.0009 (12)	-0.0005 (12)	0.0021 (12)
C6	0.0322 (15)	0.0247 (17)	0.0406 (17)	0.0004 (12)	-0.0048 (13)	0.0026 (13)
C7	0.0311 (15)	0.0248 (16)	0.0423 (17)	0.0025 (12)	0.0059 (12)	-0.0032 (13)
C8	0.0271 (14)	0.0224 (15)	0.0317 (15)	-0.0018 (11)	0.0066 (11)	0.0038 (12)
C9	0.0345 (15)	0.0339 (17)	0.0270 (15)	0.0018 (13)	0.0028 (12)	-0.0005 (13)
C10	0.0289 (15)	0.044 (2)	0.0331 (16)	0.0055 (13)	-0.0025 (12)	-0.0001 (14)
C11	0.0290 (15)	0.0288 (16)	0.0357 (16)	0.0040 (12)	0.0067 (12)	0.0055 (13)
C12	0.0353 (16)	0.0272 (17)	0.0406 (17)	0.0023 (13)	0.0039 (13)	0.0070 (13)
C13	0.0330 (16)	0.0301 (18)	0.056 (2)	-0.0012 (13)	0.0068 (14)	0.0015 (15)
C14	0.0292 (14)	0.0255 (16)	0.0378 (16)	-0.0004 (12)	0.0095 (12)	-0.0051 (13)
C15	0.0413 (17)	0.0403 (19)	0.0329 (16)	-0.0035 (14)	0.0017 (13)	0.0029 (14)
C16	0.0344 (17)	0.046 (2)	0.0399 (18)	-0.0084 (14)	-0.0054 (13)	0.0028 (15)
C17	0.0318 (15)	0.0326 (17)	0.0385 (17)	-0.0062 (13)	0.0047 (12)	-0.0078 (13)
C18	0.0371 (18)	0.0345 (19)	0.054 (2)	-0.0105 (14)	0.0034 (15)	-0.0074 (15)
C19	0.0318 (16)	0.0288 (18)	0.064 (2)	-0.0032 (13)	-0.0002 (15)	0.0069 (16)
C20	0.0275 (14)	0.0285 (17)	0.0441 (17)	-0.0005 (12)	0.0016 (12)	-0.0006 (13)
C21	0.052 (2)	0.0332 (19)	0.0382 (18)	-0.0039 (15)	0.0111 (15)	0.0043 (14)
C22	0.061 (2)	0.037 (2)	0.0333 (17)	0.0035 (16)	0.0168 (15)	-0.0049 (14)
C23	0.0384 (16)	0.0235 (16)	0.0352 (16)	-0.0007 (13)	-0.0032 (13)	-0.0040 (13)
C24	0.0386 (17)	0.0307 (19)	0.0466 (19)	0.0007 (14)	-0.0064 (14)	-0.0030 (15)

Geometric parameters (Å, °)

Cl1—C1	1.776 (3)	C11—H11	0.9800
Cl2—C1	1.764 (3)	C12—O1	1.189 (3)
Cl3—C7	1.783 (3)	C12—C1	1.539 (4)
Cl4—C7	1.758 (3)	C12—C11	1.519 (4)
Cl5—C13	1.784 (3)	C14—C13	1.561 (4)
Cl6—C13	1.759 (3)	C14—C15	1.521 (4)
Cl7—C19	1.775 (3)	C14—C23	1.573 (4)
Cl8—C19	1.763 (4)	C14—H14	0.9800
C2-C1	1.561 (4)	C15—H15A	0.9700
C2—C3	1.516 (4)	C15—H15B	0.9700
С2—Н2	0.9800	C16—C15	1.544 (4)
C3—C4	1.542 (4)	C16—H16A	0.9700
С3—НЗА	0.9700	C16—H16B	0.9700
С3—Н3В	0.9700	C17—C16	1.515 (4)
C4—H4A	0.9700	C17—C18	1.519 (4)
C4—H4B	0.9700	C17—H17	0.9800
C5—C4	1.519 (4)	C18—O4	1.187 (4)
С5—Н5	0.9800	C18—C19	1.535 (5)
C6—O2	1.180 (4)	C20—C17	1.571 (4)
C6—C5	1.526 (4)	C20—C19	1.556 (4)
С6—С7	1.538 (4)	C20—C21	1.520 (4)
C8—C5	1.569 (4)	C20—H20	0.9800
C8—C7	1.557 (4)	C21—C22	1.544 (5)
C8—C9	1.524 (4)	C21—H21A	0.9700
С8—Н8	0.9800	C21—H21B	0.9700

supporting information

C9—C10	1.538 (4)	С22—Н22А	0.9700
С9—Н9А	0.9700	C22—H22B	0.9700
С9—Н9В	0.9700	C23—C22	1.508 (4)
C10—H10A	0.9700	C23—C24	1.520 (4)
C10—H10B	0.9700	С23—Н23	0.9800
C11—C2	1.573 (4)	C24—O3	1.192 (4)
C11—C10	1.514 (4)	C24—C13	1.531 (5)
Cl2—C1—Cl1	109.33 (18)	Cl6—C13—Cl5	110.07 (17)
C2—C1—C11	112.2 (2)	C14—C13—C15	110.5 (2)
C2—C1—Cl2	120.4 (2)	C14—C13—Cl6	120.7 (2)
C12—C1—Cl1	109.9 (2)	C24—C13—C15	108.9 (2)
C12—C1—Cl2	116.0 (2)	C24—C13—Cl6	116.8 (2)
C12—C1—C2	87.3 (2)	C24—C13—C14	87.9 (2)
C1—C2—C11	88.5 (2)	C13—C14—C23	88.3 (2)
C1—C2—H2	112.2	C13—C14—H14	111.8
C3—C2—C1	113.6 (2)	C15—C14—C13	114.2 (3)
C3—C2—C11	115.9 (2)	C15—C14—C23	117.1 (2)
С3—С2—Н2	112.2	C15—C14—H14	111.8
С11—С2—Н2	112.2	C23—C14—H14	111.8
C2—C3—C4	115.2 (2)	C14—C15—C16	114.8 (3)
С2—С3—НЗА	108.5	C14—C15—H15A	108.6
С2—С3—Н3В	108.5	C14—C15—H15B	108.6
С4—С3—НЗА	108.5	C16—C15—H15A	108.6
С4—С3—Н3В	108.5	C16—C15—H15B	108.6
НЗА—СЗ—НЗВ	107.5	H15A—C15—H15B	107.5
C3—C4—H4A	108.7	C15—C16—H16A	108.6
C3—C4—H4B	108.7	C15—C16—H16B	108.6
C5—C4—C3	114.1 (2)	C17—C16—C15	114.5 (2)
C5—C4—H4A	108.7	C17—C16—H16A	108.6
C5—C4—H4B	108.7	C17—C16—H16B	108.6
H4A—C4—H4B	107.6	H16A—C16—H16B	107.6
C4—C5—C6	117.3 (2)	C16—C17—C18	117.0 (3)
C4—C5—C8	121.3 (2)	C16—C17—C20	121.6 (3)
C4—C5—H5	109.4	С16—С17—Н17	109.7
C6—C5—C8	88.5 (2)	C18—C17—C20	87.2 (2)
С6—С5—Н5	109.4	C18—C17—H17	109.7
С8—С5—Н5	109.4	С20—С17—Н17	109.7
O2—C6—C5	136.0 (3)	O4—C18—C17	135.2 (3)
O2—C6—C7	132.9 (3)	O4—C18—C19	132.2 (3)
C5—C6—C7	90.7 (2)	C17—C18—C19	91.5 (2)
Cl4—C7—Cl3	110.34 (16)	Cl8—C19—Cl7	109.62 (18)
C6—C7—Cl3	109.2 (2)	C18—C19—C17	110.5 (2)
C6—C7—Cl4	116.2 (2)	C18—C19—C18	115.7 (2)
C6—C7—C8	88.4 (2)	C18—C19—C20	87.2 (2)
C8—C7—Cl3	110.7 (2)	C20—C19—C17	111.5 (2)
C8—C7—Cl4	120.0 (2)	C20—C19—C18	120.5 (2)
С5—С8—Н8	111.5	C17—C20—H20	112.2

C7—C8—C5	88.4 (2)	C19—C20—C17	88.8 (2)
С7—С8—Н8	111.5	C19—C20—H20	112.2
C9—C8—C5	117.2 (2)	C21—C20—C17	115.9 (3)
C9—C8—C7	114.8 (2)	C21—C20—C19	113.7 (3)
C9—C8—H8	111.5	$C_{21} = C_{20} = H_{20}$	112.2
C_{8} C_{9} C_{10}	115.3 (2)	C_{20} C_{21} C_{20} C_{21} C_{22}	112.2 115.4(3)
$C_8 = C_9 = C_{10}$	119.5 (2)	$C_{20} = C_{21} = C_{22}$	108.4
C_{0} C_{0} U_{0} U_{0}	108.4	C_{20} C_{21} H_{21A}	100.4
Clo Co HoA	108.4	C_{22} — C_{21} — H_{21} A	108.4
С10—С9—Н9А	108.4	C20—C21—H21B	108.4
С10—С9—Н9В	108.4	C22—C21—H21B	108.4
Н9А—С9—Н9В	107.5	H21A—C21—H21B	107.5
C9—C10—H10A	108.5	C21—C22—H22A	108.6
C9—C10—H10B	108.5	C21—C22—H22B	108.6
C11—C10—C9	115.0 (2)	C23—C22—C21	114.5 (3)
C11—C10—H10A	108.5	C23—C22—H22A	108.6
C11—C10—H10B	108.5	C23—C22—H22B	108.6
H10A—C10—H10B	107.5	H22A—C22—H22B	107.6
C2-C11-H11	109 5	C14—C23—H23	109.3
C10-C11-C2	121.8(2)	C^{22} C^{23} H^{23}	109.3
C_{10} C_{11} C_{12}	121.0(2) 117.0(2)	C_{22} C_{23} C_{14}	107.5 121.5(2)
$C_{10} = C_{11} = C_{12}$	117.0 (2)	$C_{22} = C_{23} = C_{14}$	121.3(2)
	109.5	$C_{22} - C_{23} - C_{24}$	117.8(3)
	87.5 (2)	$C_{24} - C_{23} - C_{14}$	87.9(2)
С12—С11—Н11	109.5	C24—C23—H23	109.3
O1—C12—C1	132.4 (3)	O3—C24—C13	132.2 (3)
O1—C12—C11	135.2 (3)	O3—C24—C23	136.0 (3)
C11—C12—C1	91.3 (2)	C23—C24—C13	91.4 (2)
C3—C2—C1—Cl1	148.8 (2)	C15—C14—C13—Cl5	-147.1 (2)
$C_{3}-C_{2}-C_{1}-C_{2}$	18.0 (3)	C15—C14—C13—C16	-16.8(4)
C_{3} $-C_{2}$ $-C_{1}$ $-C_{12}$	$-100 \ 8 \ (3)$	C_{15} C_{14} C_{13} C_{24}	103.5(3)
$C_{11} = C_{2} = C_{11} = C_{11}$	-934(2)	C_{23} C_{14} C_{13} C_{15}	937(2)
C_{11} C_{2} C_{1} C_{12}	135.7(2)	C_{23} C_{14} C_{13} C_{16}	-135.9(2)
$C_{11} = C_2 = C_1 = C_{12}$	133.7(2)	$C_{23} = C_{14} = C_{13} = C_{10}$	153.9(2)
$C_1 = C_2 = C_1 = C_1 Z_2$	17.0(2)	C_{23} C_{14} C_{15} C_{14} C_{15} C_{16}	-13.7(2)
C1 - C2 - C3 - C4	168.0(3)	C13 - C14 - C15 - C16	-166.8(3)
011-02-03-04	67.5 (3)	023-014-015-016	-65.6 (4)
C2—C3—C4—C5	24.0 (4)	C13—C14—C23—C22	137.5 (3)
C6—C5—C4—C3	176.6 (3)	C13—C14—C23—C24	15.8 (2)
C8—C5—C4—C3	-77.3 (3)	C15—C14—C23—C22	21.1 (4)
O2—C6—C5—C4	-32.6 (5)	C15—C14—C23—C24	-100.6 (3)
O2—C6—C5—C8	-157.4 (4)	C17—C16—C15—C14	-25.8 (4)
C7—C6—C5—C4	140.0 (3)	C18—C17—C16—C15	-179.0 (3)
C7—C6—C5—C8	15.2 (2)	C20-C17-C16-C15	76.5 (4)
O2—C6—C7—Cl3	-90.9 (4)	C16—C17—C18—O4	26.3 (6)
O2—C6—C7—C8	157.7 (4)	C16—C17—C18—C19	-141.8 (3)
O2—C6—C7—C14	34.7 (4)	C20—C17—C18—O4	150.7 (4)
C5—C6—C7—C13	96.1 (2)	C20-C17-C18-C19	-17.4(2)
$C_{5}-C_{6}-C_{7}-C_{14}$	-1383(2)	04-C18-C19-C17	97 0 (4)
C_{5} C_{6} C_{7} C_{8}	-153(2)	04-C18-C19-C18	-284(5)
-00-0/-00	13.3 (4)	07 - 010 - 017 - 010	20. T (3)

C7—C8—C5—C4	-136.4 (3)	O4—C18—C19—C20	-151.1 (4)
C7—C8—C5—C6	-15.0 (2)	C17—C18—C19—C17	-94.4 (2)
C9—C8—C5—C4	-19.1 (4)	C17—C18—C19—C18	140.3 (2)
C9—C8—C5—C6	102.2 (3)	C17—C18—C19—C20	17.6 (2)
C5—C8—C7—Cl3	-95.1 (2)	C19—C20—C17—C16	137.5 (3)
C5-C8-C7-Cl4	134.5 (2)	C19—C20—C17—C18	17.2 (2)
C5—C8—C7—C6	14.9 (2)	C21—C20—C17—C16	21.6 (4)
C9—C8—C7—Cl3	145.5 (2)	C21—C20—C17—C18	-98.7 (3)
C9—C8—C7—Cl4	15.1 (3)	C17—C20—C19—C17	94.0 (2)
C9—C8—C7—C6	-104.5 (2)	C17—C20—C19—C18	-135.4 (2)
C7—C8—C9—C10	167.1 (2)	C17—C20—C19—C18	-17.0 (2)
C5—C8—C9—C10	65.3 (3)	C21—C20—C19—C17	-148.1 (2)
C8—C9—C10—C11	24.6 (4)	C21—C20—C19—C18	-17.5 (4)
C10-C11-C2-C1	-137.8 (3)	C21—C20—C19—C18	100.9 (3)
C10—C11—C2—C3	-22.1 (4)	C17—C20—C21—C22	-67.5 (4)
C12—C11—C2—C1	-17.2 (2)	C19—C20—C21—C22	-168.3 (3)
C12—C11—C2—C3	98.5 (3)	C20—C21—C22—C23	-23.7 (4)
C2-C11-C10-C9	-75.4 (3)	C14—C23—C22—C21	75.6 (4)
C12—C11—C10—C9	179.5 (2)	C24—C23—C22—C21	-178.4 (3)
O1—C12—C1—C11	-96.0 (4)	C14—C23—C24—O3	156.3 (4)
O1-C12-C1-Cl2	28.6 (5)	C14—C23—C24—C13	-16.1 (2)
O1—C12—C1—C2	151.4 (4)	C22—C23—C24—O3	31.4 (5)
C11—C12—C1—Cl1	95.0 (2)	C22—C23—C24—C13	-141.0 (3)
C11—C12—C1—Cl2	-140.4 (2)	O3—C24—C13—Cl5	92.4 (4)
C11—C12—C1—C2	-17.6 (2)	O3—C24—C13—Cl6	-33.0 (5)
O1-C12-C11-C2	-151.0 (4)	O3—C24—C13—C14	-156.6 (4)
O1-C12-C11-C10	-26.2 (5)	C23—C24—C13—Cl5	-94.7 (2)
C1-C12-C11-C2	17.5 (2)	C23—C24—C13—Cl6	139.9 (2)
C1-C12-C11-C10	142.3 (3)	C23—C24—C13—C14	16.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C3—H3 <i>B</i> ····O2 ⁱ	0.97	2.57	3.473 (4)	154
C8—H8····O4 ⁱⁱ	0.98	2.43	3.406 (4)	176
C14—H14…O1	0.98	2.38	3.342 (4)	168

Symmetry codes: (i) -x+2, y+1/2, -z+3/2; (ii) x+1, y, z.