CRYSTALLOGRAPHIC COMMUNICATIONS

Received 6 August 2015
Accepted 18 August 2015

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; mercury; dimethylthiourea; hydrogen bonding

CCDC reference: 1419298
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN O ACCESS

Crystal structure of dichloridobis(N, N^{\prime}-dimethyl-thiourea-кS)mercury(II)

Muhammad Ashraf Shaheen, ${ }^{\text {a }}$ Aisha Munawar, ${ }^{\text {b }}$ Haseeba Sadaf, ${ }^{\text {b }}$ Muhammad Nawaz Tahir, ${ }^{\text {c* }}$ Anvarhusein A. Isab ${ }^{\text {d }}$ and Saeed Ahmad ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, University of Sargodha, Sargodha, Punjab, Pakistan, ${ }^{\mathbf{b}}$ Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, ${ }^{\text {c Department of Physics, University of Sargodha, Sargodha, Punjab, }}$ Pakistan, and ${ }^{\text {d} D e p a r t m e n t ~ o f ~ C h e m i s t r y, ~ K i n g ~ F a h d ~ U n i v e r s i t y ~ o f ~ P e t r o l e u m ~ a n d ~ M i n e r a l s, ~ D h a h r a n ~ 31261, ~ S a u d i ~ A r a b i a . ~}$
*Correspondence e-mail: dmntahir_uos@yahoo.com

The molecular structure of the title compound, $\left[\mathrm{HgCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$, has point group symmetry 2 , with the twofold rotation axis passing through the $\mathrm{Hg}^{\mathrm{II}}$ atom. The latter is coordinated by two Cl atoms and two N, N^{\prime}-dimethylthiourea (Dmtu) ligands through their S atoms, defining a distorted tetrahedral coordination sphere with bond angles in the range 102.47 (4)-118.32 (4) ${ }^{\circ}$. Intraand intermolecular hydrogen bonds of the type $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ with $S(6)$ and $R_{2}^{2}(12)$ ring motifs are present. The intermolecular contacts make up polymeric chains extending parallel to [101].

1. Chemical context

X-ray structural studies of mercury(II) complexes with thiourea ligands (L) or derivatives thereof have shown that in combination with a halide or pseudohalide X, some of the complexes exist as mononuclear species $\left[\operatorname{Hg} X_{2} L_{2}\right]$ (Popović et al., 2000), while the others exist in a dimeric or polymeric form as $\left[\operatorname{Hg} X_{2} L\right]_{n}$ (Bell et al., 2001) in the solid state. In both types of complexes, monomeric (1:2) or polymeric (1:1), the coordination environment around $\mathrm{Hg}^{\mathrm{II}}$ is distorted tetrahedral or pseudo-tetrahedral. We have recently reported the crystal structures of HgCl_{2} and $\mathrm{Hg}(\mathrm{CN})_{2}$ complexes with methylthiourea as an auxiliary ligand (Isab et al., 2011), N, N^{\prime}-dimethylthiourea (Malik et al., 2010a), N, N^{\prime}-diethylthiourea (Mufakkar et al., 2010), N, N^{\prime}-dibutylthiourea (Ahmad et al., 2009) and tetramethylthiourea (Nawaz et al., 2010).

In this article, we report on synthesis and crystal structure of HgCl_{2} with dimethylthiourea (Dmtu) as an additional ligand, $\left[\mathrm{HgCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$, (I).

2. Structural comments

The mercury atom in complex (I) lies on a twofold rotation axis (Fig. 1). It exhibits a distorted tetrahedral coordination

Figure 1
The molecular structure of compound (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radius. [Symmetry code: (i) $-x+1, y,-z+\frac{3}{2}$.]
environment defined by two S atoms of symmetry-related Dmtu ligands and two Cl atoms. The $\mathrm{S}-\mathrm{Hg}-\mathrm{S}$ bond angle is 118.32 (4) ${ }^{\circ}$. At $102.47(4)^{\circ}$, the $\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl}$ bond angle is significantly smaller, which can be attributed to the bulkier Dmtu ligands. The $\mathrm{Hg}-\mathrm{S}, \mathrm{Hg}-\mathrm{Cl}$ and other bond lengths (Table 1) have similar values compared with other $\left[\mathrm{HgCl}_{2} L_{2}\right]$ complexes (Ahmad et al., 2009; Isab et al., 2011; Malik et al., 2010a; Mufakkar et al., 2010; Popović et al., 2000). In (I), the $\mathrm{N}-(\mathrm{C}=\mathrm{S})-\mathrm{N}$ skeleton of the Dmtu ligand is essentially planar with an r.m.s. deviation of $0.0135 \AA$.

3. Supramolecular features

From a supramolecular point of view, adjacent molecules are connected by intermolecular $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 1$ hydrogen bonds (Table 2, Fig. 2) into $R_{2}^{2}(12)$ ring motifs (Bernstein et al., 1995). The supramolecular chains formed this way extend parallel to [101]. Additional intramolecular hydrogen bonds $\mathrm{N} 1-$ H1‥Cl1 (Table 2) with $S(6)$ loop motifs (Bernstein et al., 1995) are also present.

Figure 2
Crystal packing of compound (I) viewed approximately along [010]. N$\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds are shown as dashed lines (see Table 2 for details).

Table 1
Selected bond lengths (\AA).

$\mathrm{Hg} 1-\mathrm{S} 1$	2.4622 (7)	$\mathrm{Hg} 1-\mathrm{Cl} 1$	2.5589 (7)

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1$	0.86	2.37	$3.223(3)$	170
N2-H2 $\cdots \mathrm{Cl}^{\mathrm{i}}$	0.86	2.49	$3.270(3)$	151

Symmetry code: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.

4. Database survey

A systematic search in the Cambridge Structural Database (Groom \& Allen, 2014) revealed a total of 25 hits for mercury chloride complexes with thiourea ligands. The title compound is isotypic with the Zn and Cd analogues $\left[\mathrm{ZnCl}_{2}(\mathrm{Dmtu})_{2}\right]$ (Burrows et al., 2004) and $\left[\mathrm{CdCl}_{2}(\mathrm{Dmtu})_{2}\right]$ (Malik et al., 2010 b) and with $\left[\mathrm{CdBr}_{2}(\mathrm{Dmtu})_{2}\right]$ (Ahmad et al., 2011). The $\mathrm{Hg}^{\mathrm{II}}$ atom in the structure of (I) shows an equivalent degree of distortion from the tetrahedral configuration as the metals in $\left[\mathrm{Zn}(\mathrm{Dmtu})_{2} \mathrm{Cl}_{2}\right]$ and $\left[\mathrm{Hg}\right.$ (tetramethylthiourea) $\left.{ }_{2} \mathrm{Cl}_{2}\right]$ (Nawaz et al., 2010) in which the bond angles at the metal atom vary from 104.35 (2) to $113.30(2)^{\circ}$ and from 104.08 (4) to $120.75(4)^{\circ}$, respectively. However, in $\left[\mathrm{CdCl}_{2}(\mathrm{Dmtu})_{2}\right]$ and $\left[\mathrm{CdBr}_{2}(\mathrm{Dmtu})_{2}\right]$, the coordination spheres around Cd deviate only slightly from ideal tetrahedral values. On the other hand

Table 3
Experimental details.

Crystal data	
Chemical formula	$\left[\mathrm{HgCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{NS}\right)_{2}\right]$
$M_{\text {r }}$	479.84
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	296
$a, b, c(\AA)$	$\begin{aligned} & 13.1434(12), 8.9971(3), \\ & 12.6596(9) \end{aligned}$
$\beta\left({ }^{\circ}\right.$)	107.955 (4)
$V\left(\AA^{3}\right)$	1424.12 (17)
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	11.45
Crystal size (mm)	$0.36 \times 0.18 \times 0.16$
Data collection	
Diffractometer	Bruker Kappa APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2007)
$T_{\text {min }}, T_{\text {max }}$	0.106, 0.265
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	12262, 1721, 1556
$R_{\text {int }}$	0.031
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.661
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.018, $0.038,1.06$
No. of reflections	1721
No. of parameters	71
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.42,-0.32$

in $\left[\mathrm{Hg}(\mathrm{Dmtu})_{2}(\mathrm{CN})_{2}\right]$, the $\mathrm{Hg}^{\text {II }}$ atom exhibits a severely distorted tetrahedral coordination sphere with bond angles in the range 94.31 (2) to $148.83(13)^{\circ}$ (Malik et al., 2010a).

5. Synthesis and crystallization

For the preparation of title complex, $0.27 \mathrm{~g}(1 \mathrm{mmol}) \mathrm{HgCl}_{2}$ dissolved in 4 ml dimethylsulfoxide were mixed with two equivalents of N, N^{\prime}-dimethylthiourea in 10 ml acetonitrile. After stirring for 15 minutes, the resulting solution was filtered and the filtrate kept at room temperature. After one day colourless crystals were obtained. Yield $c a .60 \%$.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.96 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA)$ and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

Ahmad, S., Altaf, M., Stoeckli-Evans, H., Isab, A. A., Malik, M. R., Ali, S. \& Shuja, S. (2011). J. Chem. Crystallogr. 41, 1099-1104.
Ahmad, S., Sadaf, H., Akkurt, M., Sharif, S. \& Khan, I. U. (2009). Acta Cryst. E65, m1191-m1192.
Bell, N. A., Branston, T. N., Clegg, W., Parker, L., Raper, E. S., Sammon, C. \& Constable, C. P. (2001). Inorg. Chim. Acta, 319, 130136.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Burrows, A. D., Harrington, R. W. \& Mahon, M. F. (2004). Acta Cryst. E60, m1317-m1318.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

Isab, A. A., Fettouhi, M., Malik, M. R., Ali, S., Fazal, A. \& Ahmad, S. (2011). Russ. J. Coord. Chem. 37, 180-185.

Malik, M. R, Ali, S., Ahmad, S., Altaf, M. \& Stoeckli-Evans, H. (2010b). Acta Cryst. E66, m1060-m1061.
Malik, M. R., Ali, S., Fettouhi, M., Isab, A. A. \& Ahmad, S. (2010a). J. Struct. Chem. 51, 976-979.
Mufakkar, M., Tahir, M. N., Sadaf, H., Ahmad, S. \& Waheed, A. (2010). Acta Cryst. E66, m1001-m1002.

Nawaz, S., Sadaf, H., Fettouhi, M., Fazal, A. \& Ahmad, S. (2010). Acta Cryst. E66, m952.
Popović, Z., Pavlović, G., Matković-Čalogović, D., Soldin, Ž., Željka, , Rajić, M., Vikić-Topić, D. \& Kovaček, D. (2000). Inorg. Chim. Acta, 306, 142-152.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2015). E71, 1061-1063 [https://doi.org/10.1107/S2056989015015406]

Crystal structure of dichloridobis(N,N'-dimethylthiourea- κ S) mercury(II)

Muhammad Ashraf Shaheen, Aisha Munawar, Haseeba Sadaf, Muhammad Nawaz Tahir, Anvarhusein A. Isab and Saeed Ahmad

Computing details

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Dichloridobis(N, N^{\prime}-dimethylthiourea- κ S)mercury(II)

Crystal data

$\left[\mathrm{HgCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{NS}\right)_{2}\right]$
$M_{r}=479.84$
Monoclinic, C2/c
$a=13.1434$ (12) \AA
$b=8.9971$ (3) \AA
$c=12.6596(9) \AA$
$\beta=107.955$ (4) ${ }^{\circ}$
$V=1424.12(17) \AA^{3}$
$Z=4$

Data collection

Bruker Kappa APEXII CCD

 diffractometerRadiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 7.50 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\text {min }}=0.106, T_{\text {max }}=0.265$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.038$
$S=1.06$
1721 reflections
71 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=904$
$D_{\mathrm{x}}=2.238 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1556 reflections
$\theta=3.0-28.0^{\circ}$
$\mu=11.45 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Lath, colourless
$0.36 \times 0.18 \times 0.16 \mathrm{~mm}$

12262 measured reflections
1721 independent reflections
1556 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=28.0^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-16 \rightarrow 17$
$k=-11 \rightarrow 11$
$l=-16 \rightarrow 16$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0168 P)^{2}+0.595 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.42$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.32$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
Hg 1	0.5000	$0.37748(2)$	0.7500	$0.04175(6)$
C11	$0.60610(6)$	$0.19941(10)$	$0.66623(6)$	$0.05387(19)$
S1	$0.36846(7)$	$0.51777(8)$	$0.60297(6)$	$0.04873(19)$
N1	$0.40138(19)$	$0.3089(3)$	$0.4670(2)$	$0.0464(6)$
H1	0.4588	0.2910	0.5206	0.056^{*}
N2	$0.24749(19)$	$0.4417(3)$	$0.4042(2)$	$0.0433(5)$
H2	0.2332	0.3894	0.3446	0.052^{*}
C1	$0.3374(2)$	$0.4131(3)$	$0.4824(2)$	$0.0362(6)$
C2	$0.3824(3)$	$0.2226(4)$	$0.3672(3)$	$0.0553(8)$
H2A	0.4381	0.1500	0.3772	0.083^{*}
H2B	0.3819	0.2870	0.3066	0.083^{*}
H2C	0.3146	0.1732	0.3513	0.083^{*}
C3	$0.1704(3)$	$0.5533(4)$	$0.4096(3)$	$0.0580(9)$
H3A	0.1572	0.5471	0.4800	0.087^{*}
H3B	0.1048	0.5371	0.3509	0.087^{*}
H3C	0.1978	0.6501	0.4015	0.087^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	$0.04156(10)$	$0.04908(9)$	$0.02828(9)$	0.000	$0.00146(7)$	0.000
C11	$0.0503(4)$	$0.0684(5)$	$0.0368(4)$	$0.0220(4)$	$0.0044(3)$	$-0.0017(3)$
S1	$0.0591(5)$	$0.0440(4)$	$0.0315(4)$	$0.0151(3)$	$-0.0031(3)$	$-0.0054(3)$
N1	$0.0395(14)$	$0.0570(14)$	$0.0344(13)$	$0.0126(11)$	$-0.0007(11)$	$-0.0056(11)$
N2	$0.0425(14)$	$0.0480(12)$	$0.0308(12)$	$0.0096(11)$	$-0.0011(11)$	$-0.0027(11)$
C1	$0.0366(16)$	$0.0375(13)$	$0.0314(14)$	$0.0001(10)$	$0.0059(12)$	$0.0026(10)$
C2	$0.056(2)$	$0.0626(19)$	$0.0429(18)$	$0.0096(15)$	$0.0091(16)$	$-0.0154(15)$
C3	$0.051(2)$	$0.067(2)$	$0.0443(19)$	$0.0258(17)$	$-0.0017(15)$	$-0.0002(16)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Hg} 1-\mathrm{S} 1$	$2.4622(7)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.444(4)$
$\mathrm{Hg} 1-\mathrm{S} 1^{\mathrm{i}}$	$2.4622(7)$	$\mathrm{N} 2-\mathrm{H} 2$	0.8600
$\mathrm{Hg} 1-\mathrm{Cl1}$	$2.5589(7)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9600
$\mathrm{Hg} 1-\mathrm{Cl1}$	C	$2.5589(7)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$

N1-C1	1.313 (4)	C3-H3A	0.9600
N1-C2	1.438 (4)	С3-H3B	0.9600
N1-H1	0.8600	C3-H3C	0.9600
N2-C1	1.312 (4)		
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 1^{\text {i }}$	118.32 (4)	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$	118.1 (2)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{Cl} 1$	110.67 (2)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	122.1 (2)
$\mathrm{Sl}{ }^{\text {i }}-\mathrm{Hg} 1-\mathrm{Cl} 1$	106.79 (3)	N1-C2-H2A	109.5
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{Cl1}^{\mathrm{i}}$	106.79 (3)	N1-C2-H2B	109.5
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{Cl1}^{\text {i }}$	110.67 (2)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{Cl1}-\mathrm{Hg} 1-\mathrm{Cl}^{\text {i }}$	102.47 (4)	N1-C2-H2C	109.5
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Hg} 1$	107.88 (9)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	124.8 (3)	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
C1-N1-H1	117.6	N2-C3-H3A	109.5
C2-N1-H1	117.6	N2-C3-H3B	109.5
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3$	125.7 (3)	H3A-C3-H3B	109.5
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2$	117.2	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
C3-N2-H2	117.2	H3A-C3-H3C	109.5
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	119.8 (3)	$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
C3-N2-C1-N1	-179.5 (3)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	-177.2 (2)
C3-N2-C1-S1	-0.5 (4)	$\mathrm{Hg} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 2$	159.3 (2)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	1.8 (5)	Hg1-S1-C1-N1	-21.6 (3)

Symmetry code: (i) $-x+1, y,-z+3 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{Cl1}$	0.86	2.37	$3.223(3)$	170
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{Cl}^{1 i}$	0.86	2.49	$3.270(3)$	151

Symmetry code: (ii) $x-1 / 2,-y+1 / 2, z-1 / 2$.

