

open 👌 access

Crystal structure of 2,2'-bis[(2-chlorobenzyl)oxy]-1,1'-binaphthalene

Rajamani Raja,^a Mani Jayanthi,^b Perumal Rajakumar^b and A. SubbiahPandi^a*

^aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and ^bDepartment of Organic Chemistry, University of Madras, Guindy, Chennai-25, India. *Correspondence e-mail: raja.13nap@gmail.com

Received 29 July 2015; accepted 29 July 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

In the title binaphthyl compound, $C_{34}H_{24}Cl_2O_2$, the dihedral angle between the two naphthyl ring systems (r.m.s. deviations = 0.016 and 0.035 Å) is 76.33 (8)°. The chlorophenyl rings make dihedral angles of 58.15 (12) and 76.21 (13)° with the naphthyl ring to which they are linked. The dihedral angle between the planes of the two chlorophenyl rings is 27.66 (16)°. In the crystal, $C-H\cdots O$ hydrogen bonds link molecules into chains propagating along [110]. The chains are linked by $C-H\cdots \pi$ interactions, forming a three-dimensional framework.

Keywords: crystal structure; binaphthyl; antimicrobials; antibiotic properties; minimum toxicity; hydrogen bonding.

CCDC reference: 1415827

1. Related literature

For the synthesis and biological activity of naphthalene compounds, see: Upadhayaya *et al.* (2010); Rokade & Sayyed (2009). For the crystal structure of a very similar compound, 4,4'-{[[1,1'-binaphthalene]-2,2'-diylbis(oxy)]bis(methyl-ene)}dibenzonitrile, see: Fu & Zhao (2007).

2. Experimental

2.1. Crystal data

 $\begin{array}{l} C_{34}H_{24}Cl_2O_2\\ M_r = 535.43\\ \text{Monoclinic, C2}\\ a = 11.1983 \text{ (3) Å}\\ b = 14.6094 \text{ (4) Å}\\ c = 16.3263 \text{ (4) Å}\\ \beta = 92.622 \text{ (2)}^\circ\end{array}$

2.2. Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\rm min} = 0.909, T_{\rm max} = 0.921$

 $0.35 \times 0.30 \times 0.25$ mm

 $V = 2668.19 (12) \text{ Å}^3$

Mo $K\alpha$ radiation

 $\mu = 0.27 \text{ mm}^{-1}$

T = 293 K

Z = 4

10688 measured reflections 4153 independent reflections 3804 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.019$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.042$ $\Delta \rho_{max} = 0.35 \text{ e } \text{ Å}^{-3}$ $wR(F^2) = 0.116$ $\Delta \rho_{min} = -0.47 \text{ e } \text{ Å}^{-3}$ S = 1.04Absolute structure: Flack (1983),4153 reflections1709 (76%) Friedel pairs343 parametersAbsolute structure parameter:1 restraint-0.01 (8)

Table 1 Hydrogen-bond geometry (Å, °).

Cg5 is the centroid of the C19-C24 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C22-H22\cdots O1^{i}$ $C4-H4\cdots Cg5^{ii}$ $C33-H33\cdots Cg5^{iii}$	0.93	2.57	3.413 (4)	151
	0.93	2.74	3.433 (4)	132
	0.93	2.92	3.781 (6)	155

Symmetry codes: (i) $x + \frac{1}{2}$, $y + \frac{1}{2}$, z; (ii) -x + 1, y, -z + 2; (iii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, -z + 1.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

Acknowledgements

RR and ASP thank the Department of Chemistry, IIT, Chennai, India, for the X-ray data collection.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5184).

References

- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, 03206.
- Rokade, Y. B. & Sayyed, R. Z. (2009). Rasayan J. Chem. 2, 972-980.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Upadhayaya, R. S., Vandavasi, J. K., Kardile, R. A., Lahore, S. V., Dixit, S. S., Deokar, H. S., Shinde, P. D., Sarmah, M. P. & Chattopadhyaya, J. (2010). *Eur. J. Med. Chem.* **45**, 1854–1867.

supporting information

Acta Cryst. (2015). E71, o637–o638 [https://doi.org/10.1107/S2056989015014322] Crystal structure of 2,2'-bis[(2-chlorobenzyl)oxy]-1,1'-binaphthalene Rajamani Raja, Mani Jayanthi, Perumal Rajakumar and A. SubbiahPandi

S1. Comment

Naphthalene derivatives has been identified as new range of potent antimicrobials effective against a wide range of human pathogens. They occupy a central place among medicinally important compounds due to their diverse and interesting antibiotic properties with minimum toxicity (Rokade & Sayyed, 2009; Upadhayaya *et al.* 2010). Herein, we report on the synthesis and crystal structure of a new binaphthyl derivative.

The molecular structure of the title compound is shown in Fig. 1. The chlorophenyl ring (C1—C6) make a dihedral angle of 58.15 (12) ° with the naphthalene ring system (C8—C17), while the other chlorophenyl ring (C29—C34) makes a dihedral angle of 76.21 (13) ° with the naphthalene ring system (C18—C27). The two naphthalene rings are inclined to one another by 76.33 (8)° and the two chlorophenyl rings by 27.66 (16) °. Atoms O1 and O2 deviate from their respective naphthalene ring by 0.144 and 0.138 Å, respectively. The two naphthalene rings are connected at bond C17—C18, with torsion angle C19—C18—C17—C16 = 75.7 (3) °, indicating a (+) *syn*-clinal conformation for this group.

In the crystal, C—H···O hydrogen bonds link molecules into chains propagating along [110]; Table 1 and Fig. 2. The chains are linked by C—H··· π interactions forming a three-dimensional framework (Table 1 and Fig. 3).

S2. Synthesis and crystallization

The title compound was synthesized by reacting two equivalents of 2-chloro benzylbromide with one equivalent of S-BINOL in dry DMF in the presence of K_2CO_3 at 333 K, which successfully provided the pure title product as a colourless solid. The product was dissolved in chloroform and heated for 2 min. The resulting solution was subjected to crystallization by slow evaporation of the solvent for 18 h resulting in the formation of single crystals.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C - H = 0.93 - 0.97 Å with $U_{iso}(H) = 1.2U_{eq}(C)$.

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The crystal packing of the title compound, viewed along the *a* axis. The intermolecular interactions are shown as dashed lines (see Table 1).

Figure 3

A partial view of the crystal packing of the title compound, showing the C—H $\cdots\pi$ interactions as dashed lines (see Table 1).

2,2'-Bis[(2-chlorobenzyl)oxy]-1,1'-binaphthalene

Crystal data

 $C_{34}H_{24}Cl_2O_2$ $M_r = 535.43$ Monoclinic, C2 Hall symbol: C 2y a = 11.1983 (3) Å b = 14.6094 (4) Å c = 16.3263 (4) Å $\beta = 92.622$ (2)° V = 2668.19 (12) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD	10688 measured reflections
diffractometer	4153 independent reflections
Radiation source: fine-focus sealed tube	3804 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.019$
ω and φ scans	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 1.3^\circ$
Absorption correction: multi-scan	$h = -13 \rightarrow 13$
(SADABS; Bruker, 2008)	$k = -17 \rightarrow 14$
$T_{\min} = 0.909, \ T_{\max} = 0.921$	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.116$	$w = 1/[\sigma^2(F_o^2) + (0.0687P)^2 + 1.4377P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
4153 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
343 parameters	$\Delta \rho_{\rm max} = 0.35 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.47 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1709 (76%) Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: -0.01 (8)
man	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 1112

 $\theta = 1.3 - 25.0^{\circ}$ $\mu = 0.27 \text{ mm}^{-1}$

Colourless, block

 $0.35 \times 0.30 \times 0.25 \text{ mm}$

T = 293 K

 $D_{\rm x} = 1.333 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3804 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.3136 (3)	-0.1616 (2)	1.04240 (18)	0.0530 (8)	
C2	0.2949 (3)	-0.1496 (3)	1.1254 (2)	0.0697 (10)	
H2	0.2774	-0.1995	1.1581	0.084*	

C3	0.3023 (3)	-0.0642 (3)	1.1581 (2)	0.0732 (12)
H3	0.2899	-0.0553	1.2135	0.088*
C4	0.3282 (3)	0.0083 (3)	1.1096 (2)	0.0662 (10)
H4	0.3338	0.0667	1.1321	0.079*
C5	0.3459 (2)	-0.0043 (2)	1.02794 (19)	0.0500(7)
Н5	0.3620	0.0464	0.9958	0.060*
C6	0.3408 (2)	-0.0892(2)	0.99204 (15)	0.0375 (6)
C7	0.3671 (2)	-0.1012 (2)	0.90297 (15)	0.0420 (6)
H7A	0.4083	-0.0471	0.8845	0.050*
H7B	0.4204	-0.1529	0.8978	0.050*
C8	0.1865 (2)	-0.04007 (18)	0.84115 (14)	0.0317 (5)
C9	0.0865 (2)	-0.0367 (2)	0.88989 (15)	0.0419 (6)
H9	0.0759	-0.0815	0.9294	0.050*
C10	0.0050 (2)	0.0319(2)	0.87954 (17)	0.0460 (7)
H10	-0.0599	0.0345	0.9131	0.055*
C11	0.0178 (2)	0.0992 (2)	0.81855 (16)	0.0399 (6)
C12	-0.0668(3)	0.1700 (3)	0.80425 (19)	0.0544 (8)
H12	-0.1330	0.1731	0.8364	0.065*
C13	-0.0536(3)	0.2330 (3)	0.7451 (2)	0.0618 (9)
H13	-0.1108	0.2786	0.7367	0.074*
C14	0.0464 (3)	0.2302 (2)	0.6959 (2)	0.0574 (8)
H14	0.0555	0.2741	0.6554	0.069*
C15	0.1301 (2)	0.1626 (2)	0.70786 (16)	0.0459 (7)
H15	0.1953	0.1607	0.6746	0.055*
C16	0.1197 (2)	0.09592 (18)	0.76940 (15)	0.0338 (6)
C17	0.20583 (19)	0.02472 (17)	0.78207 (13)	0.0297 (5)
C18	0.3126 (2)	0.02111 (17)	0.73118 (14)	0.0306 (5)
C19	0.4102 (2)	0.08223 (17)	0.74544 (14)	0.0312 (5)
C20	0.4120 (2)	0.14841 (19)	0.80899 (16)	0.0394 (6)
H20	0.3495	0.1504	0.8446	0.047*
C21	0.5042 (3)	0.2092 (2)	0.81876 (19)	0.0498 (7)
H21	0.5031	0.2525	0.8604	0.060*
C22	0.6005 (3)	0.2072 (2)	0.76682 (19)	0.0514 (8)
H22	0.6619	0.2498	0.7734	0.062*
C23	0.6040 (2)	0.1433 (2)	0.70721 (19)	0.0467 (7)
H23	0.6694	0.1412	0.6741	0.056*
C24	0.5096 (2)	0.07932 (18)	0.69410 (15)	0.0352 (6)
C25	0.5086 (2)	0.0147 (2)	0.62965 (16)	0.0415 (6)
H25	0.5737	0.0111	0.5964	0.050*
C26	0.4138 (2)	-0.0424(2)	0.61550 (15)	0.0405 (6)
H26	0.4142	-0.0840	0.5725	0.049*
C27	0.3146 (2)	-0.03851 (18)	0.66597 (14)	0.0329 (5)
C28	0.2062 (3)	-0.15760 (19)	0.59124 (15)	0.0439 (6)
H28A	0.1470	-0.2029	0.6049	0.053*
H28B	0.2826	-0.1886	0.5894	0.053*
C29	0.1738 (2)	-0.1202 (2)	0.50774 (15)	0.0439 (7)
C30	0.1581 (3)	-0.0283 (3)	0.4912 (2)	0.0627 (9)
H30	0.1699	0.0149	0.5326	0.075*
			· · ·	· · · · ·

C31	0.1242 (3)	-0.0006 (4)	0.4110 (3)	0.0882 (14)	
H31	0.1137	0.0613	0.3996	0.106*	
C32	0.1067 (4)	-0.0627 (5)	0.3502 (3)	0.1013 (19)	
H32	0.0845	-0.0429	0.2975	0.122*	
C33	0.1212 (4)	-0.1552 (5)	0.3653 (2)	0.0944 (17)	
H33	0.1088	-0.1978	0.3234	0.113*	
C34	0.1541 (3)	-0.1829 (3)	0.44307 (18)	0.0650 (10)	
01	0.26269 (16)	-0.11565 (12)	0.85074 (10)	0.0398 (4)	
O2	0.21372 (16)	-0.09115 (14)	0.65440 (10)	0.0453 (5)	
Cl1	0.30029 (15)	-0.27265 (8)	1.00356 (7)	0.1030 (4)	
Cl2	0.16806 (12)	-0.29928 (8)	0.46325 (7)	0.0972 (4)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0660 (18)	0.048 (2)	0.0444 (16)	-0.0107 (15)	-0.0038 (13)	0.0004 (14)
C2	0.076 (2)	0.091 (3)	0.0419 (17)	-0.019 (2)	0.0022 (15)	0.0106 (19)
C3	0.061 (2)	0.113 (4)	0.0459 (18)	-0.014 (2)	0.0050 (14)	-0.023 (2)
C4	0.0537 (17)	0.075 (3)	0.069 (2)	0.0005 (18)	-0.0026 (15)	-0.036 (2)
C5	0.0454 (15)	0.0470 (19)	0.0571 (17)	0.0010 (13)	-0.0038 (12)	-0.0084 (15)
C6	0.0331 (12)	0.0399 (16)	0.0389 (13)	0.0002 (11)	-0.0036 (9)	-0.0021 (12)
C7	0.0380 (13)	0.0483 (17)	0.0395 (13)	0.0013 (12)	-0.0008 (10)	0.0018 (13)
C8	0.0338 (12)	0.0331 (14)	0.0278 (11)	-0.0012 (10)	-0.0017 (9)	-0.0067 (11)
C9	0.0405 (14)	0.0537 (18)	0.0318 (12)	-0.0075 (13)	0.0040 (10)	0.0044 (13)
C10	0.0367 (13)	0.062 (2)	0.0399 (14)	-0.0019 (13)	0.0095 (11)	-0.0062 (14)
C11	0.0352 (12)	0.0509 (18)	0.0335 (13)	0.0045 (12)	-0.0001 (10)	-0.0082 (13)
C12	0.0400 (14)	0.070 (2)	0.0526 (17)	0.0163 (15)	0.0014 (12)	-0.0112 (18)
C13	0.0600 (19)	0.065 (2)	0.0600 (19)	0.0313 (17)	-0.0033 (14)	-0.0035 (18)
C14	0.0631 (19)	0.053 (2)	0.0561 (17)	0.0161 (16)	-0.0010 (14)	0.0084 (17)
C15	0.0478 (15)	0.0485 (17)	0.0416 (14)	0.0065 (13)	0.0038 (11)	0.0011 (14)
C16	0.0337 (12)	0.0377 (15)	0.0298 (12)	0.0013 (11)	-0.0016 (9)	-0.0073 (11)
C17	0.0312 (11)	0.0330 (14)	0.0246 (11)	-0.0028 (10)	-0.0012 (9)	-0.0065 (10)
C18	0.0340 (11)	0.0318 (14)	0.0259 (11)	0.0039 (10)	0.0008 (9)	0.0012 (10)
C19	0.0314 (11)	0.0304 (13)	0.0314 (12)	0.0008 (10)	-0.0014 (9)	0.0079 (11)
C20	0.0393 (13)	0.0381 (16)	0.0406 (13)	0.0018 (12)	0.0000 (10)	-0.0040 (12)
C21	0.0559 (17)	0.0396 (18)	0.0530 (16)	-0.0059 (13)	-0.0072 (13)	-0.0036 (14)
C22	0.0457 (15)	0.0444 (19)	0.0631 (18)	-0.0149 (13)	-0.0096 (13)	0.0092 (16)
C23	0.0364 (14)	0.0491 (18)	0.0545 (17)	-0.0068 (12)	0.0020 (11)	0.0156 (15)
C24	0.0360 (12)	0.0356 (14)	0.0340 (12)	0.0019 (11)	0.0008 (10)	0.0083 (11)
C25	0.0388 (13)	0.0454 (16)	0.0413 (14)	0.0044 (12)	0.0115 (10)	0.0063 (13)
C26	0.0523 (15)	0.0406 (16)	0.0291 (12)	0.0056 (13)	0.0073 (11)	-0.0045 (12)
C27	0.0373 (12)	0.0325 (14)	0.0288 (11)	-0.0028 (11)	0.0003 (9)	-0.0009 (11)
C28	0.0578 (16)	0.0390 (17)	0.0348 (13)	-0.0113 (13)	0.0007 (11)	-0.0080 (12)
C29	0.0383 (13)	0.059 (2)	0.0348 (13)	-0.0060 (12)	0.0038 (10)	-0.0006 (13)
C30	0.0557 (18)	0.068 (3)	0.064 (2)	0.0025 (16)	0.0019 (14)	0.0148 (19)
C31	0.069 (2)	0.108 (4)	0.088 (3)	0.017 (2)	0.007 (2)	0.043 (3)
C32	0.068 (2)	0.186 (6)	0.050 (2)	0.020 (3)	0.0014 (17)	0.028 (3)
C33	0.075 (2)	0.172 (6)	0.0352 (18)	-0.004(3)	-0.0038(16)	-0.014 (3)

supporting information

C34	0.0510 (17)	0.105 (3)	0.0391 (15)	-0.0080 (18)	0.0078 (13)	-0.0074 (19)
01	0.0474 (10)	0.0351 (11)	0.0365 (9)	0.0011 (8)	-0.0036 (7)	-0.0017 (8)
O2	0.0516 (10)	0.0506 (12)	0.0342 (9)	-0.0143 (9)	0.0077 (7)	-0.0180 (9)
Cl1	0.1870 (13)	0.0508 (6)	0.0725 (6)	-0.0226 (7)	0.0191 (7)	0.0005 (5)
Cl2	0.1348 (10)	0.0795 (8)	0.0790 (6)	-0.0275 (6)	0.0244 (6)	-0.0426 (6)

Geometric parameters (Å, °)

C1—C6	1.382 (4)	C18—C27	1.377 (3)	
C1—C2	1.392 (4)	C18—C19	1.422 (3)	
C1—Cl1	1.746 (3)	C19—C20	1.418 (4)	
C2—C3	1.357 (6)	C19—C24	1.424 (3)	
C2—H2	0.9300	C20—C21	1.365 (4)	
C3—C4	1.362 (6)	C20—H20	0.9300	
С3—Н3	0.9300	C21—C22	1.403 (4)	
C4—C5	1.370 (5)	C21—H21	0.9300	
C4—H4	0.9300	C22—C23	1.350 (4)	
С5—С6	1.372 (4)	C22—H22	0.9300	
С5—Н5	0.9300	C23—C24	1.421 (4)	
С6—С7	1.507 (3)	C23—H23	0.9300	
C7—O1	1.431 (3)	C24—C25	1.413 (4)	
С7—Н7А	0.9700	C25—C26	1.361 (4)	
С7—Н7В	0.9700	C25—H25	0.9300	
C8—C17	1.376 (3)	C26—C27	1.414 (3)	
C8—O1	1.400 (3)	C26—H26	0.9300	
С8—С9	1.404 (3)	С27—О2	1.373 (3)	
C9—C10	1.361 (4)	C28—O2	1.416 (3)	
С9—Н9	0.9300	C28—C29	1.498 (4)	
C10-C11	1.411 (4)	C28—H28A	0.9700	
С10—Н10	0.9300	C28—H28B	0.9700	
C11—C12	1.414 (4)	C29—C30	1.379 (5)	
C11—C16	1.426 (3)	C29—C34	1.408 (5)	
C12—C13	1.348 (5)	C30—C31	1.405 (6)	
С12—Н12	0.9300	С30—Н30	0.9300	
C13—C14	1.408 (4)	C31—C32	1.353 (8)	
С13—Н13	0.9300	C31—H31	0.9300	
C14—C15	1.369 (4)	C32—C33	1.382 (8)	
C14—H14	0.9300	С32—Н32	0.9300	
C15—C16	1.408 (4)	C33—C34	1.367 (6)	
С15—Н15	0.9300	С33—Н33	0.9300	
C16—C17	1.427 (3)	C34—Cl2	1.737 (4)	
C17—C18	1.488 (3)			
C6—C1—C2	122.0 (3)	C27—C18—C17	119.7 (2)	
C6—C1—Cl1	120.8 (2)	C19—C18—C17	121.2 (2)	
C2—C1—Cl1	117.2 (3)	C20—C19—C18	122.2 (2)	
C3—C2—C1	119.4 (4)	C20—C19—C24	117.7 (2)	
С3—С2—Н2	120.3	C18—C19—C24	120.0 (2)	

C1—C2—H2	120.3	C21—C20—C19	121.0 (2)
C2—C3—C4	119.7 (3)	C21—C20—H20	119.5
С2—С3—Н3	120.1	C19—C20—H20	119.5
С4—С3—Н3	120.1	C20—C21—C22	120.9 (3)
C3—C4—C5	120.4 (4)	C20—C21—H21	119.5
C3—C4—H4	119.8	C22—C21—H21	119.5
C5-C4-H4	119.8	C^{23} C^{22} C^{21}	119.9 (3)
C4-C5-C6	122 1 (3)	C^{23} C^{22} H^{22}	120.0
C4-C5-H5	118.9	C_{21} C_{22} H_{22}	120.0
C6-C5-H5	118.9	$C^{22} - C^{23} - C^{24}$	120.0 121.2(3)
C_{0}	116.3(2)	$C_{22} = C_{23} = C_{24}$	121.2 (5)
$C_{5} = C_{6} = C_{7}$	110.3(2) 120.7(3)	$C_{22} = C_{23} = H_{23}$	119.4
$C_{1} = C_{0} = C_{7}$	120.7(3)	$C_{24} = C_{23} = 1123$	119.7
C1 - C0 - C7	122.9(3)	$C_{23} - C_{24} - C_{23}$	122.2(2)
01 - 07 - 00	113./1 (19)	$C_{23} = C_{24} = C_{19}$	110.0(2)
OI - C / - H / A	108.8	$C_{23} - C_{24} - C_{19}$	119.2(2)
$C_0 - C_1 - H_1 A$	108.8	$C_{20} = C_{23} = C_{24}$	121.0 (2)
	108.8	C26—C25—H25	119.5
	108.8	C24—C25—H25	119.5
H/A—C/—H/B	107.7	C25—C26—C27	120.3 (2)
C17—C8—O1	120.42 (19)	C25—C26—H26	119.9
C17—C8—C9	121.9 (2)	C27—C26—H26	119.9
O1—C8—C9	117.5 (2)	O2—C27—C18	114.76 (19)
C10—C9—C8	120.2 (2)	O2—C27—C26	124.1 (2)
С10—С9—Н9	119.9	C18—C27—C26	121.1 (2)
С8—С9—Н9	119.9	O2—C28—C29	114.6 (2)
C9—C10—C11	120.8 (2)	O2—C28—H28A	108.6
C9—C10—H10	119.6	C29—C28—H28A	108.6
C11—C10—H10	119.6	O2—C28—H28B	108.6
C10-C11-C12	122.5 (2)	C29—C28—H28B	108.6
C10-C11-C16	118.9 (2)	H28A—C28—H28B	107.6
C12—C11—C16	118.6 (3)	C30—C29—C34	118.2 (3)
C13—C12—C11	121.6 (3)	C30—C29—C28	123.9 (3)
C13—C12—H12	119.2	C34—C29—C28	117.9 (3)
C11—C12—H12	119.2	C29—C30—C31	119.3 (4)
C12—C13—C14	120.3 (3)	C29—C30—H30	120.3
C12—C13—H13	119.8	C31—C30—H30	120.3
C14—C13—H13	119.8	C32—C31—C30	120.9 (5)
C15—C14—C13	119.8 (3)	C32—C31—H31	119.5
C15—C14—H14	120.1	C30—C31—H31	119.5
C13—C14—H14	120.1	$C_{31} - C_{32} - C_{33}$	120.9 (4)
C14-C15-C16	121.5 (3)	$C_{31} - C_{32} - H_{32}$	119.6
C14-C15-H15	119.3	C_{33} C_{32} H_{32}	119.6
C_{16} C_{15} H_{15}	119.3	C_{34} C_{33} C_{32}	119.0 118.7(5)
C_{15} C_{16} C_{11}	119.5	C34—C33—H33	120.7
C15 - C16 - C17	122 (2)	C32_C33_H33	120.7
C11 - C16 - C17	122.0(2) 1107(2)	C_{32} C_{33} C_{34} C_{29}	120.7
C8 C17 C16	119.7(2) 118.4(2)	$C_{33} C_{34} C_{12}$	122.0(3) 118.0(A)
C_{0} C_{17} C_{10}	110.4(2)	$C_{33} - C_{34} - C_{12}$	110.7(4)
0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	121.0(2)	U27-U34-UIZ	119.0(2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—C17—C18	120.0 (2)	C8—O1—C7	115.3 (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C27—C18—C19	119.0 (2)	C27—O2—C28	120.38 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C1—C2—C3	0.6 (5)	C17—C18—C19—C20	1.0 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl1—C1—C2—C3	-179.0 (3)	C27—C18—C19—C24	-1.8 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—C3—C4	-0.1 (5)	C17—C18—C19—C24	-177.9 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—C4—C5	0.4 (5)	C18—C19—C20—C21	-176.8 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4—C5—C6	-1.2 (5)	C24—C19—C20—C21	2.1 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—C6—C1	1.6 (4)	C19—C20—C21—C22	-0.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—C6—C7	-176.8 (3)	C20—C21—C22—C23	-1.3 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C1-C6-C5	-1.3 (4)	C21—C22—C23—C24	2.0 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl1—C1—C6—C5	178.3 (2)	C22—C23—C24—C25	176.9 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C1-C6-C7	177.0 (3)	C22—C23—C24—C19	-0.6 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl1—C1—C6—C7	-3.4 (4)	C20—C19—C24—C25	-179.1 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5-C6-C7-O1	-104.8 (3)	C18—C19—C24—C25	-0.2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-C6-C7-O1	77.0 (3)	C20—C19—C24—C23	-1.4(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17—C8—C9—C10	0.0 (4)	C18—C19—C24—C23	177.5 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—C8—C9—C10	-175.7 (2)	C23—C24—C25—C26	-176.2 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C9—C10—C11	1.7 (4)	C19—C24—C25—C26	1.4 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10—C11—C12	178.1 (3)	C24—C25—C26—C27	-0.7 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10—C11—C16	-1.9 (4)	C19—C18—C27—O2	-176.5 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-C12-C13	-179.2 (3)	C17—C18—C27—O2	-0.4 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—C11—C12—C13	0.8 (4)	C19—C18—C27—C26	2.7 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C12—C13—C14	-0.4 (5)	C17—C18—C27—C26	178.8 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C13—C14—C15	0.5 (5)	C25—C26—C27—O2	177.7 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—C14—C15—C16	-0.9 (5)	C25—C26—C27—C18	-1.4 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—C15—C16—C11	1.2 (4)	O2—C28—C29—C30	3.2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—C15—C16—C17	179.5 (3)	O2—C28—C29—C34	-174.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-C16-C15	178.9 (3)	C34—C29—C30—C31	-0.5 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C11—C16—C15	-1.1 (4)	C28—C29—C30—C31	-178.1 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-C16-C17	0.6 (4)	C29—C30—C31—C32	0.1 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C11—C16—C17	-179.4 (2)	C30—C31—C32—C33	0.2 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—C8—C17—C16	174.3 (2)	C31—C32—C33—C34	-0.2 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C8—C17—C16	-1.4 (3)	C32—C33—C34—C29	-0.2 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—C8—C17—C18	-4.9 (3)	C32—C33—C34—Cl2	178.0 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C8—C17—C18	179.4 (2)	C30—C29—C34—C33	0.5 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—C16—C17—C8	-177.2 (2)	C28—C29—C34—C33	178.3 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C16—C17—C8	1.0 (3)	C30—C29—C34—Cl2	-177.7 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—C16—C17—C18	2.0 (3)	C28—C29—C34—Cl2	0.1 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C16—C17—C18	-179.8 (2)	C17—C8—O1—C7	86.3 (3)
C16—C17—C18—C27 -100.4 (3) C6—C7—O1—C8 68.7 (3) C8—C17—C18—C19 -105.2 (3) C18—C27—O2—C28 -177.7 (2) C16—C17—C18—C19 75.6 (3) C26—C27—O2—C28 3.2 (4) C27—C18—C19—C20 177.0 (2) C29—C28—O2—C27 -80.7 (3)	C8—C17—C18—C27	78.8 (3)	C9—C8—O1—C7	-97.9 (3)
C8-C17-C18-C19 -105.2 (3) C18-C27-O2-C28 -177.7 (2) C16-C17-C18-C19 75.6 (3) C26-C27-O2-C28 3.2 (4) C27-C18-C19-C20 177.0 (2) C29-C28-O2-C27 -80.7 (3)	C16—C17—C18—C27	-100.4 (3)	C6—C7—O1—C8	68.7 (3)
C16—C17—C18—C19 75.6 (3) C26—C27—O2—C28 3.2 (4) C27—C18—C19—C20 177.0 (2) C29—C28—O2—C27 -80.7 (3)	C8—C17—C18—C19	-105.2 (3)	C18—C27—O2—C28	-177.7 (2)
C27—C18—C19—C20 177.0 (2) C29—C28—O2—C27 -80.7 (3)	C16—C17—C18—C19	75.6 (3)	C26—C27—O2—C28	3.2 (4)
	C27—C18—C19—C20	177.0 (2)	C29—C28—O2—C27	-80.7 (3)

Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C19–C24 ring.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C22—H22…O1 ⁱ	0.93	2.57	3.413 (4)	151
C4—H4····Cg5 ⁱⁱ	0.93	2.74	3.433 (4)	132
С33—Н33…Сg5ііі	0.93	2.92	3.781 (6)	155

Symmetry codes: (i) *x*+1/2, *y*+1/2, *z*; (ii) -*x*+1, *y*, -*z*+2; (iii) -*x*+1/2, *y*-1/2, -*z*+1.