CRYSALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 23 July 2015
Accepted 30 July 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; 1,5-diaminopentane; 2-hydroxy-1-naphthaldehyde ; zwitterion; bis-zwitterion; hydrogen bonding

CCDC reference: 1416064
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 1,1'-\{(pentane-1,5-diyl)bis-[(azaniumylylidene)methanylylidene]\}bis-(naphthalen-2-olate)

Kamel Ouari, ${ }^{\text {a* }}$ Moufida Merzougui ${ }^{\text {a }}$ and Lydia Karmazin ${ }^{\text {b }}$

${ }^{\text {a Laboratoire d'lectrochimie, d'Ingénierie Moléculaire et de Catalyse Redox, Faculty of Technology, University of Ferhat }}$ Abbas Sétif-1, 19000 Sétif, Algeria, and ${ }^{\mathbf{b}}$ Service de Radiocristallographie, Institut de Chimie UMR 7177 CNRS-Université de Strasbourg, 1 rue Blaise Pascal, BP296/R8, 67008 Strasbourg Cedex, France. *Correspondence e-mail:
k_ouari@yahoo.fr

The whole molecule of the title compound, $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$, is generated by twofold rotational symmetry, with the central C atom of the pentyl chain located on the twofold rotation axis. The compound crystallizes as a bis-zwitterion, and there are two intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generating $S(6)$ ring motifs. In the crystal, molecules are linked by pairs of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming ribbons propagating along [001], and enclosing $R_{2}^{2}(22)$ ring motifs.

1. Chemical context

Tetradentate NNOO Schiff-bases have been used extensively as supporting ligands in d-block chemistry because of their ability to stabilize metals in various oxidation states (Alaghaz et al., 2014; Kianfar et al., 2015; Mikhalyova et al., 2014; Borthakur et al., 2014; Basumatary et al., 2015). For many years, particular attention has been devoted to imines because of their uses as catalysts in various organic transformations (Khorshidifard et al., 2015), and for their anticancer (Shiju et al., 2015), antifungal (Abo-Aly et al., 2015) and antibacterial (Salehi et al., 2015) properties. They have also been used as sensors (Bandi et al., 2013), corrosion inhibitors (Dasami et al., 2015) and optical and fluorescent probes (Shoora et al., 2015; Prabhakara et al., 2015).

The microwave-assisted synthesis method, in solvent or solvent-free, is efficient and rapid. It gives cleaner reactions, is ease to use, gives higher yields and is a more economical synthetic process for the preparation of Schiff base compounds compared to conventional methods. It has been used to enhance the yield and reduce the time of certain reactions: for example, a one-step synthesis of D-A-D chromophores as active materials for organic solar cells (Jeux et al., 2015), or the synthesis of a series of acyclic Schiff basechromium(III) complexes (Kumar et al., 2015).

In a continuation of our work on Schiff base ligands, we report herein on the crystal structure of the title compound, synthesized using two methods, viz. microwave irradiation and

Figure 1
The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular hydrogen bonds are shown as dashed lines (see Table 1). The unlabelled atoms are related to the labelled atoms by twofold rotational symmetry (atom C14 lies on the twofold axis; symmetry code: $\left.-x, y,-z+\frac{1}{2}\right)$.
conventional, by condensing o-hydroxynaphthaldehyde and 1,5-diaminopentane.

2. Structural commentary

The whole molecule of the title compound, Fig. 1, is generated by twofold rotational symmetry, with the central C atom of the pentyl chain, C14, located on the twofold rotation axis. It crystallizes as a bis-zwitterion, with strong intramolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between the imino N atom N 1 (N 1 '), and the O atom, $\mathrm{O} 1\left(\mathrm{O} 1^{\mathrm{i}}\right)[d(\mathrm{O} \cdots \mathrm{N})=2.5437(17) \AA$; symmetry code: (i) $-x, y,-z+\frac{1}{2}$], forming $S(6)$ ring motifs (Fig. 1 and Table 1). The pentyl chain has an extended conformation with the naphthalene rings inclined to one another by 89.94 (5) ${ }^{\circ}$.

3. Supramolecular features

In the crystal, molecules are linked by pairs of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming ribbons propagating along [001] and enclosing $R_{2}^{2}(22)$ ring motifs (Table 1 and Fig. 2).

Figure 2
Crystal packing of the title compound viewed along the b axis. The hydrogen bonds are shown as dashed lines (see Table 1). For clarity, only the H atoms involved in hydrogen bonding have been included.

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 1$	$0.96(2)$	$1.72(2)$	$2.5437(17)$	$141.3(16)$
$\mathrm{C}^{\mathrm{H}} 2-\mathrm{H} 12 A \cdots \mathrm{O}^{\mathrm{i}}$	0.99	2.45	$3.2871(19)$	142

Symmetry code: (i) $x,-y+1, z+\frac{1}{2}$.

4. Database survey

Recently, our group reported the crystal structures of three new Schiff bases synthesized using conventional or ultrasonic irradiation methods by reacting primary amines and o-hydroxynaphthaldehyde (Ouari et al., 2015a,b,c). They too crystallize as bis-zwitterionic compounds with strong intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds forming $S(6)$ ring motifs.

5. Synthesis and crystallization

Method 1: Microwave synthesis

2-Hydroxy-1-naphthaldehyde $(0.344 \mathrm{~g}, 2 \mathrm{mmol})$, mixed and ground in a mortar, was placed in a reaction flask, and then 1,5-diaminopentane ($0.109 \mathrm{~g}, 1 \mathrm{mmol}$) in 2 ml of methanol was added. The reaction mixture was then irradiated in a microwave oven for 1 min at 600 W . Upon completion, based on TLC analysis (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9.5 / 0.5, v / v$), the product was washed with methanol $(3 \times 3 \mathrm{ml})$ and diethyl ether ($3 \times 3 \mathrm{ml}$) and filtered. Yellow crystals of the title compound, suitable for X-ray diffraction analysis, were obtained after two days by slow evaporation of a solution in DMSO/MeOH (yield: 95\%, m.p.: 438-440 K). Elemental analysis calculated for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 80.00; H, $6.38 ; \mathrm{N}, 6.82 \%$; found: C, $80.42 ; \mathrm{H}, 6.63 ; \mathrm{N}, 6.56 \%$.

Method 2: Conventional synthesis

The title Schiff base was prepared by condensation between 1,5-diaminopentane ($51 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-hydroxy-1naphthaldehyde ($172 \mathrm{mg}, 1 \mathrm{mmol}$) in methanol $(10 \mathrm{ml})$. The mixture was refluxed and stirred under a nitrogen atmosphere for 3 h . The precipitate obtained was filtered, washed with methanol and diethyl ether and dried in vacuum overnight. Yellow single crystals of the title compound were obtained by slow evaporation of a solution in methanol (yield 71%; m.p.: 438-440 K).

As expected, the yield using method 1 (95%) is significantly greater than that using method 2 (71%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The iminium H atom was located from a difference Fourier map and freely refined. C-bound H atoms were included in calculated positions and treated as riding atoms: $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Atom C14 lies on the twofold rotation axis and the H atoms were placed using instruction HFIX 23 (Sheldrick, 2015); the
occupancy of the methylene H atoms were fixed automatically at 0.5 .

Acknowledgements

The authors gratefully acknowledge financial support from the Algerian Ministry of Higher Education and Scientific Research. They also acknowledge the help of Dr Jean Weiss from the CLAC laboratory at the Institut de Chimie, Université de Strasbourg, France.

References

Abo-Aly, M. M., Salem, A. M., Sayed, M. A. \& Abdel Aziz, A. A. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 136, 993-1000.

Alaghaz, A. M. A., Ammar, Y. A., Bayoumi, H. \& Aldhlmani, S. A. (2014). J. Mol. Struct. 1074, 359-375.

Bandi, K. R., Singh, A. K. \& Upadhyay, A. (2013). Electrochim. Acta, 105, 654-664.
Basumatary, D., Lal, R. A. \& Kumar, A. (2015). J. Mol. Struct. 1092, 122-129.
Borthakur, R., Kumar, A. \& Lal, R. A. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 118, 94-101.
Dasami, P. M., Parameswari, K. \& Chitra, S. (2015). Measurement, 69, 195-201.
Jeux, V., Segut, O., Demeter, D., Rousseau, T., Allain, M., Dalinot, C., Sanguinet, L., Leriche, P. \& Roncali, J. (2015). Dyes Pigments, 113, 402-408.
Khorshidifard, M., Rudbari, H. A., Askari, B., Sahihi, M., Farsani, M. R., Jalilian, F. \& Bruno, G. (2015). Polyhedron, 95, 1-13.

Kianfar, A. H., Mahmood, W. A. K., Dinari, M., Farrokhpour, H., Enteshari, M. \& Azarian, M. H. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 136, 1582-1592.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Mikhalyova, E. A., Yakovenko, A. V., Zeller, M., Gavrilenko, K. S., Lofland, S. E., Addison, A. W. \& Pavlishchuk, V. V. (2014). Inorg. Chim. Acta, 414, 97-104.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Ouari, K., Bendia, S., Merzougui, M. \& Bailly, C. (2015b). Acta Cryst. E71, o51-o52.
Ouari, K., Bendia, S., Weiss, J. \& Bailly, C. (2015a). Spectrochim. Acta Part A, 135, 624-631.
Ouari, K., Merzougui, M., Bendia, S. \& Bailly, C. (2015c). Acta Cryst. E71, o351-o352.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{\text {r }}$	410.50
Crystal system, space group	Monoclinic, P2/c
Temperature (K)	173
a, b, c (\AA)	$\begin{aligned} & 20.9080(13), 4.7429(2), \\ & 10.6810(6) \end{aligned}$
$\beta\left({ }^{\circ}\right.$	96.419 (3)
$V\left(\AA^{3}\right)$	1052.54 (10)
Z	2
Radiation type	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	0.08
Crystal size (mm)	$0.45 \times 0.20 \times 0.10$
Data collection	
Diffractometer	Nonius KappaCCD
Absorption correction	Multi-scan (MULSCAN in PLATON; Spek, 2009)
$T_{\text {min }}, T_{\text {max }}$	0.792, 1.000
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	5781, 1958, 1402
$R_{\text {int }}$	0.049
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.606
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.049, 0.120, 1.08
No. of reflections	1958
No. of parameters	146
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.16, -0.14

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski \& Minor, 1997), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Prabhakara, C. T., Patil, S. A., Kulkarni, A. D., Naik, V. A., Manjunatha, M., Kinnal, S. M. \& Badami, P. S. (2015). J. Photochem. Photobiol. B, 148, 322-332.
Kumar, S. P., Suresh, R., Giribabu, K., Manigandan, R., Munusamy, S., Muthamizh, S. \& Narayanan, V. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 139, 431-441.
Salehi, M., Amoozadeh, A., Salamatmanesh, A., Kubicki, M., Dutkiewicz, G., Samiee, S. \& Khaleghian, A. (2015). J. Mol. Struct. 1091, 81-87.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.
Shiju, C., Arish, D., Bhuvanesh, N. \& Kumaresan, S. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 145, 213-222.
Shoora, S. K., Jain, A. K. \& Gupta, V. K. (2015). Sens. Actuators B Chem. 216, 86-104.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2015). E71, 1010-1012 [https://doi.org/10.1107/S2056989015014437]

Crystal structure of 1,1'-\{(pentane-1,5-diyl)bis[(azaniumylylidene)methanylyl-idene]\}bis(naphthalen-2-olate)

Kamel Ouari, Moufida Merzougui and Lydia Karmazin

Computing details

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

1,1'-\{(Pentane-1,5-diyl)bis[(azaniumylylidene)methanylylidene]\}bis(naphthalen-2-olate)

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=410.50$
Monoclinic, $P 2 / c$
$a=20.9080(13) \AA$
$b=4.7429$ (2) \AA
$c=10.6810(6) \AA$
$\beta=96.419$ (3) ${ }^{\circ}$
$V=1052.54(10) \AA^{3}$
$Z=2$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
phi and ω scans
Absorption correction: multi-scan
(MULSCAN in PLATON; Spek, 2009)
$T_{\min }=0.792, T_{\text {max }}=1.000$
5781 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.120$
$S=1.08$
1958 reflections
146 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=436$
$D_{\mathrm{x}}=1.295 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7575 reflections
$\theta=1.0-27.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Plate, yellow
$0.45 \times 0.20 \times 0.10 \mathrm{~mm}$

1958 independent reflections
1402 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.049$
$\theta_{\text {max }}=25.5^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-25 \rightarrow 23$
$k=-5 \rightarrow 5$
$l=-12 \rightarrow 8$

Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0549 P)^{2}+0.0593 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.16$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.14 \mathrm{e}^{-3}$

Extinction correction: SHELXL2014
(Sheldrick, 2015),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.033 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
O1	0.14942 (5)	0.8929 (2)	-0.10611 (10)	0.0508 (4)	
N1	0.13436 (6)	0.5012 (3)	0.05060 (12)	0.0436 (4)	
H1N	0.1201 (8)	0.643 (4)	-0.0110 (19)	0.080 (6)*	
C1	0.21054 (7)	0.8695 (3)	-0.07692 (14)	0.0412 (4)	
C2	0.25371 (8)	1.0411 (3)	-0.13960 (15)	0.0497 (5)	
H2	0.2364	1.1708	-0.2022	0.060*	
C3	0.31790 (9)	1.0235 (3)	-0.11224 (17)	0.0546 (5)	
H3	0.3446	1.1413	-0.1562	0.065*	
C4	0.34731 (8)	0.8329 (3)	-0.01900 (15)	0.0469 (4)	
C5	0.41450 (8)	0.8204 (4)	0.00866 (18)	0.0612 (5)	
H5	0.4407	0.9383	-0.0362	0.073*	
C6	0.44291 (8)	0.6423 (4)	0.09873 (19)	0.0632 (5)	
H6	0.4884	0.6365	0.1169	0.076*	
C7	0.40413 (8)	0.4698 (4)	0.16322 (18)	0.0589 (5)	
H7	0.4235	0.3446	0.2258	0.071*	
C8	0.33846 (7)	0.4769 (3)	0.13821 (16)	0.0508 (5)	
H8	0.3132	0.3566	0.1841	0.061*	
C9	0.30745 (7)	0.6580 (3)	0.04622 (14)	0.0403 (4)	
C10	0.23834 (7)	0.6743 (3)	0.01610 (13)	0.0377 (4)	
C11	0.19669 (7)	0.4956 (3)	0.07450 (14)	0.0405 (4)	
H11	0.2152	0.3635	0.1348	0.049*	
C12	0.09067 (7)	0.3217 (3)	0.11165 (15)	0.0440 (4)	
H12A	0.1159	0.1903	0.1699	0.053*	
H12B	0.0644	0.2083	0.0472	0.053*	
C13	0.04669 (7)	0.4962 (3)	0.18441 (15)	0.0454 (4)	
H13A	0.0219	0.6281	0.1257	0.054*	
H13B	0.0733	0.6100	0.2482	0.054*	
C14	0.0000	0.3185 (4)	0.2500	0.0449 (6)	
H14A	-0.0247	0.1956	0.1871	0.054*	0.5
H14B	0.0247	0.1955	0.3129	0.054*	0.5

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0484(7)$	$0.0583(7)$	$0.0443(7)$	$0.0043(5)$	$-0.0014(5)$	$0.0039(5)$

supporting information

N1	$0.0412(8)$	$0.0500(8)$	$0.0395(8)$	$0.0013(6)$	$0.0038(6)$	$0.0011(6)$
C1	$0.0460(9)$	$0.0454(9)$	$0.0314(8)$	$0.0001(7)$	$0.0015(7)$	$-0.0083(7)$
C2	$0.0615(12)$	$0.0473(9)$	$0.0399(10)$	$-0.0025(8)$	$0.0040(8)$	$0.0025(7)$
C3	$0.0581(11)$	$0.0563(10)$	$0.0504(11)$	$-0.0114(8)$	$0.0112(9)$	$0.0009(8)$
C4	$0.0462(10)$	$0.0501(10)$	$0.0442(10)$	$-0.0049(8)$	$0.0049(7)$	$-0.0107(8)$
C5	$0.0470(11)$	$0.0745(12)$	$0.0629(12)$	$-0.0127(9)$	$0.0096(9)$	$-0.0054(10)$
C6	$0.0395(10)$	$0.0817(13)$	$0.0674(13)$	$-0.0006(9)$	$0.0010(9)$	$-0.0129(11)$
C7	$0.0472(10)$	$0.0683(12)$	$0.0587(12)$	$0.0052(9)$	$-0.0051(9)$	$-0.0027(9)$
C8	$0.0434(10)$	$0.0578(10)$	$0.0501(11)$	$0.0005(8)$	$0.0008(8)$	$-0.0002(8)$
C9	$0.0416(9)$	$0.0435(9)$	$0.0356(9)$	$-0.0006(7)$	$0.0042(7)$	$-0.0103(7)$
C10	$0.0402(8)$	$0.0405(8)$	$0.0322(8)$	$-0.0008(7)$	$0.0038(7)$	$-0.0059(6)$
C11	$0.0407(9)$	$0.0446(9)$	$0.0352(9)$	$0.0049(7)$	$-0.0002(7)$	$-0.0047(7)$
C12	$0.0405(9)$	$0.0463(9)$	$0.0450(10)$	$-0.0027(7)$	$0.0035(7)$	$-0.0002(7)$
C13	$0.0415(9)$	$0.0479(9)$	$0.0467(10)$	$-0.0006(7)$	$0.0049(7)$	$0.0007(7)$
C14	$0.0375(12)$	$0.0466(12)$	$0.0502(14)$	0.000	$0.0023(10)$	0.000

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

O1-C1	1.2858 (17)	C7-C8	1.369 (2)
N1-C11	1.2999 (19)	C7-H7	0.9500
N1-C12	1.4551 (19)	C8-C9	1.408 (2)
N1-H1N	0.96 (2)	C8-H8	0.9500
C1-C10	1.433 (2)	C9-C10	1.447 (2)
$\mathrm{C} 1-\mathrm{C} 2$	1.435 (2)	C10-C11	1.410 (2)
C2-C3	1.344 (2)	C11-H11	0.9500
C2-H2	0.9500	C12-C13	1.515 (2)
C3-C4	1.432 (2)	C12-H12A	0.9900
C3-H3	0.9500	C12-H12B	0.9900
C4-C5	1.404 (2)	C13-C14	1.5191 (18)
C4-C9	1.413 (2)	C13-H13A	0.9900
C5-C6	1.365 (3)	C13-H13B	0.9900
C5-H5	0.9500	C14-C13 ${ }^{\text {i }}$	1.5190 (18)
C6-C7	1.388 (3)	C14-H14A	0.9900
C6-H6	0.9500	C14-H14B	0.9900
C11-N1-C12	124.46 (14)	C8-C9-C4	116.82 (14)
C11-N1-H1N	112.0 (11)	C8-C9-C10	123.95 (14)
C12-N1-H1N	123.5 (11)	C4-C9-C10	119.23 (14)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 10$	122.62 (14)	C11-C10-C1	118.19 (14)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	119.85 (14)	C11-C10-C9	121.36 (14)
C10-C1-C2	117.52 (14)	C1-C10-C9	120.43 (13)
C3-C2-C1	121.89 (16)	N1-C11-C10	123.79 (14)
C3-C2-H2	119.1	N1-C11-H11	118.1
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.1	C10-C11-H11	118.1
C2-C3-C4	122.09 (16)	N1-C12-C13	110.97 (12)
C2-C3-H3	119.0	$\mathrm{N} 1-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	109.4
C4-C3-H3	119.0	C13-C12-H12A	109.4
C5-C4-C9	120.18 (16)	N1-C12-H12B	109.4

$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$120.99(16)$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 3$	$118.83(15)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$121.37(17)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	119.3
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.3
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$118.82(17)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	120.6
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6$	120.6
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$121.16(18)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7$	119.4
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	119.4
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$121.65(16)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	119.2
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8$	119.2
$\mathrm{O} 4-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-179.92(15)$
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.6(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.0(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-179.42(16)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9$	$0.0(2)$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.4(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$179.02(17)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$0.4(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-0.3(3)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$0.2(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 4$	$-0.2(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-179.94(15)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$0.3(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$-179.15(13)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 10$	$-179.95(14)$

$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.4
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	108.0
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$113.06(12)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	109.0
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	109.0
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~B}$	109.0
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~B}$	109.0
$\mathrm{H} 13 \mathrm{~A}-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~B}$	107.8
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 13$	$112.58(17)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	109.1
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	109.1
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B}$	109.1
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B}$	109.1
$\mathrm{H} 14 \mathrm{~A}-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B}$	107.8
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 10$	$0.6(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 11$	$2.0(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 11$	$-177.25(12)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 9$	$-179.47(13)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 9$	$1.2(2)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-3.1(2)$
$\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$177.16(13)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 1$	$178.51(14)$
$\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 1$	$-1.3(2)$
$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 10$	$-178.86(13)$
$\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 11-\mathrm{N} 1$	$-1.3(2)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{N} 1$	$-179.82(13)$
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 13$	$117.93(15)$
$\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$179.96(11)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 13 \mathrm{~S}^{\mathrm{i}}$	$-176.30(15)$

Symmetry code: (i) $-x, y,-z+1 / 2$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 1$	$0.96(2)$	$1.72(2)$	$2.5437(17)$	$141.3(16)$
$\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.99	2.45	$3.2871(19)$	142

Symmetry code: (ii) $x,-y+1, z+1 / 2$.

