data reports

open 👌 access

A new polymorph of 1-({[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]iminio}methyl)naphthalen-2-olate

Ailing Guo,^a Shurong Zhang,^a Kun Wang^a and Ruitao Zhu^{b*}

^aSchool of Chinese Materia Medica, Shanxi University of Traditional Chinese Medicine, Taiyuan 030024, People's Republic of China, and ^bDepartment of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China. *Correspondence e-mail: ruitaozhu@126.com

Received 19 July 2015; accepted 18 August 2015

Edited by A. J. Lough, University of Toronto, Canada

The title compound, $C_{15}H_{17}NO_4$, containing two molecules in the asymmetric unit is a polymorph of the crystal structure published by Martínez *et al.* [(2011). *Eur. J. Org. Chem.* pp. 3137-3145] which at 120 K is monoclinic with one molecule in the asymmetric unit. Both molecules in the title compound are in the *trans* form. In the crystal, $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds connect molecules, forming a two-dimensional network parallel to (001).

Keywords: Schiff base; 2-hydroxy-1-naphthaldehyde; O—H···O hydrogen bonding; N—H···O hydrogen bonding; crystal structure.

CCDC reference: 1419383

1. Related literature

For applications of Schiff bases, see: Weber *et al.* (2007); Chen *et al.* (2008); May *et al.* (2004). For background to the potential use of the title compound, see: Dong *et al.* (2014); Liu *et al.* (2014). For the structures of related Schiff bases derived from 2-hydroxynapthaldehyde, see: Wang *et al.* (2011); Kennedy *et al.* (2013); Abu-Dief *et al.* (2015). For the first polymorph, see: Martínez *et al.* (2011).

2. Experimental

2.1. Crystal data

 $\begin{array}{l} C_{15}H_{17}\text{NO}_4 \\ M_r = 275.30 \\ \text{Monoclinic, } P2_1/c \\ a = 9.3540 \ (8) \\ \text{\AA} \\ b = 10.0280 \ (9) \\ \text{\AA} \\ c = 29.036 \ (3) \\ \text{\AA} \\ \beta = 91.559 \ (1)^\circ \end{array}$

$V = 2722.6 \text{ (4) } \text{\AA}^{3}$ Z = 8Mo K\alpha radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K $0.49 \times 0.45 \times 0.44 \text{ mm}$

2.2. Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2002) T_{min} = 0.954, T_{max} = 0.958

2.3. Refinement

```
R[F^2 > 2\sigma(F^2)] = 0.052

wR(F^2) = 0.137

S = 1.05

4775 reflections
```

13224 measured reflections

 $R_{\rm int} = 0.043$

4775 independent reflections

2778 reflections with $I > 2\sigma(I)$

368 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.37$ e Å⁻³ $\Delta \rho_{min} = -0.20$ e Å⁻³

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···O4	0.86	1.91	2.587 (3)	135
$N2 - H2 \cdot \cdot \cdot O8$	0.86	1.89	2.575 (2)	135
$O1-H1C\cdots O5^{i}$	0.82	1.90	2.715 (3)	172
$O2-H2C\cdots O8^{ii}$	0.82	1.77	2.589 (3)	173
O3−H3···O6 ⁱⁱⁱ	0.82	1.91	2.706 (3)	163
O5−H5···O4 ^{iv}	0.82	1.84	2.650 (2)	171
$O6-H6\cdots O2^{v}$	0.82	1.81	2.609 (2)	163
$O7-H7\cdots O3^{vi}$	0.82	2.19	2.972 (2)	159

Symmetry codes: (i) -x + 2, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (iii) x - 1, y, z; (iv) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (v) -x + 2, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (vi) x + 1, y, z.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL*.

Acknowledgements

We gratefully acknowledge the Natural Science Foundation of Shanxi province (grant No. 2015011107), the Research Fund for the Doctoral Program of Shanxi University of Traditional Chinese Medicine (2014) and the College Student's Innovation Traning Project of Shanxi Province (grant No. 2013319).

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5776).

References

Abu-Dief, A. M., Abdelbaky, M. S. M. & Garcia-Granda, S. (2015). *Acta Cryst.* E**71**, 0496–0497.

- Bruker (2002). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171.
- Dong, H. K., Ye, S. I., Hyun, K. & Cheal, K. (2014). *Inorg. Chem. Commun.* 45, 15–19.
- Kennedy, A. R., Akkurt, M., Abdelhamid, A. A., Mohamed, S. K. & Miller, G. J. (2013). Acta Cryst. E69, 0850–0851.
- Liu, Z. C., Li, Y. X., Ding, Y. J., Yang, Z. Y., Wang, B. D., Li, Y., Li, T. R., Luo, W., Zhu, W. P., Xie, J. P. & Wang, C. J. (2014). Sens. Actuators B Chem. 197, 200–205.
- Martínez, R. F., Ávalos, M., Babiano, R., Cintas, P., Jiménez, J. L., Light, M. E. & Palacios, J. C. (2011). *Eur. J. Org. Chem.* pp. 3137–3145.
- May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145–4156.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wang, J., Zhang, J., Yang, P. & Chen, T. (2011). Acta Cryst. E67, 01618.
- Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159-1162.

supporting information

Acta Cryst. (2015). E71, o686–o687 [https://doi.org/10.1107/S205698901501539X]

A new polymorph of 1-({[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]iminio}methyl)naphthalen-2-olate

Ailing Guo, Shurong Zhang, Kun Wang and Ruitao Zhu

S1. Structural commentary

Schiff bases have been receiving considerable attention for many years, mainly due to their importance as ligands in metal complexes with special magnetic (Weber *et al.*, 2007) and selective fluorescence sensor (Dong *et al.*, 2014; Liu *et al.*, 2014), catalytic (Chen *et al.*, 2008) and biological properties (May *et al.*, 2004).

As a part of our studies on the synthesis and structural properties of Schiff bases with naphthaldehyde and methylamine, we have determined the structure of the title compound (Fig. 1). Some examples of related structures already appear in the literature (Wang *et al.*, 2011; Kennedy *et al.*, 2013; Abu-Dief *et al.*, 2015). The structure of the title compound contains two molecules in the asymmetric unit (Fig. 1) in contrast to the polymorph in which there is a single molecule (Martínez *et al.*, 2011). Both molecules in the title compound are in the *trans* form. In the crystal, N—H…O and O—H…O hydrogen bonds connect molecules forming a two-dimensional network parallel to (001) (Fig. 2).

S2. Synthesis and crystallization

An ethanol solution (10 mL) of tris(hydroxymethyl)aminomethane (tris, 0.1 mol, 0.1211g) was added to another ethanol (10mL) containing 2-hydroxy-1-naphthaldehyde (0.1 mol, 0.1728 g), Then the solution was refluxed for 2 h and cooled to room temperature. The mixture was filtered and dried under vacuum. The title compound was crystallized as block crystals from a solution of ethanol by slow evaporation.

S3. Refinement details

All H atoms were visible in differnce Fourier maps and the presence of those bonded bonded to N1 and N2 confirm the enolate form. Utimately, all H atoms were placed in calculated positions with C—H = 0.93–0.97Å, N—H = 0.86Å and O —H = 0.82Å and were included in the refinment in a riding-motion approximation with $U_{iso}(H)=1.2U_{eq}(C,N)$ and $U_{iso}(H)=1.5U_{eq}(O)$.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

Figure 2

Part of the crystal structure with the hydrogen bonds drawn as dashed lines.

1-({[1,3-Dihydroxy-2-(hydroxymethyl)propan-2-yl]iminio}methyl) naphthalen-2-olate

Crystal data	
$C_{15}H_{17}NO_4$	V = 2722.6 (4) Å ³
$M_r = 275.30$	Z = 8
Monoclinic, $P2_1/c$	F(000) = 1168
Hall symbol: -P 2ybc	$D_{\rm x} = 1.343 {\rm ~Mg} {\rm ~m}^{-3}$
a = 9.3540 (8) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 10.0280 (9) Å	Cell parameters from 3152 reflections
c = 29.036 (3) Å	$\theta = 2.5 - 25.6^{\circ}$
$\beta = 91.559 (1)^{\circ}$	$\mu=0.10~\mathrm{mm^{-1}}$

T = 293 KBlock, colorless

Data collection

Bruker SMART CCD area-detector	13224 measured reflections
diffractometer	4//5 independent reflections
Radiation source: fine-focus sealed tube	2778 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.043$
φ and ω scans	$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 2.5^\circ$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Bruker, 2002)	$k = -10 \rightarrow 11$
$T_{\min} = 0.954, \ T_{\max} = 0.958$	$l = -34 \rightarrow 24$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites

neighbouring sites -squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.052$ H-atom parameters constrained $wR(F^2) = 0.137$ $w = 1/[\sigma^2(F_o^2) + (0.0453P)^2 + 1.3323P]$ S = 1.05where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ 4775 reflections $\Delta \rho_{\rm max} = 0.37 \text{ e} \text{ Å}^{-3}$ 368 parameters $\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints Primary atom site location: structure-invariant Extinction correction: SHELXL, $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ direct methods Secondary atom site location: difference Fourier Extinction coefficient: 0.0078 (7) map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

 $0.49 \times 0.45 \times 0.44$ mm

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.4266 (2)	0.5340 (2)	0.65750 (7)	0.0368 (5)	
0.3778	0.4957	0.6784	0.044*	
0.9319 (2)	0.9508 (2)	0.67169 (7)	0.0368 (5)	
0.8792	0.9830	0.6928	0.044*	
0.80392 (19)	0.5859 (2)	0.68816 (8)	0.0621 (6)	
0.8582	0.5347	0.7020	0.093*	
0.49270 (19)	0.54635 (19)	0.74996 (6)	0.0468 (5)	
0.4247	0.5638	0.7662	0.070*	
0.4541 (2)	0.8049 (2)	0.63099 (6)	0.0501 (5)	
0.4281	0.8446	0.6540	0.075*	
0.20984 (19)	0.3874 (2)	0.67796 (6)	0.0510 (5)	
0.9988 (2)	0.93735 (19)	0.76456 (6)	0.0470 (5)	
	x 0.4266 (2) 0.3778 0.9319 (2) 0.8792 0.80392 (19) 0.8582 0.49270 (19) 0.4247 0.4541 (2) 0.4281 0.20984 (19) 0.9988 (2)	xy $0.4266(2)$ $0.5340(2)$ 0.3778 0.4957 $0.9319(2)$ $0.9508(2)$ 0.8792 0.9830 $0.80392(19)$ $0.5859(2)$ 0.8582 0.5347 $0.49270(19)$ $0.54635(19)$ 0.4247 0.5638 $0.4541(2)$ $0.8049(2)$ 0.4281 0.8446 $0.20984(19)$ $0.3874(2)$ $0.9988(2)$ $0.93735(19)$	xyz $0.4266(2)$ $0.5340(2)$ $0.65750(7)$ 0.3778 0.4957 0.6784 $0.9319(2)$ $0.9508(2)$ $0.67169(7)$ 0.8792 0.9830 0.6928 $0.80392(19)$ $0.5859(2)$ $0.68816(8)$ 0.8582 0.5347 0.7020 $0.49270(19)$ $0.54635(19)$ $0.74996(6)$ 0.4247 0.5638 0.7662 $0.4541(2)$ $0.8049(2)$ $0.63099(6)$ 0.4281 0.8446 0.6540 $0.20984(19)$ $0.3874(2)$ $0.67796(6)$ $0.9988(2)$ $0.93735(19)$ $0.76456(6)$	xyz $U_{iso}*/U_{eq}$ 0.4266 (2)0.5340 (2)0.65750 (7)0.0368 (5)0.37780.49570.67840.044*0.9319 (2)0.9508 (2)0.67169 (7)0.0368 (5)0.87920.98300.69280.044*0.80392 (19)0.5859 (2)0.68816 (8)0.0621 (6)0.85820.53470.70200.093*0.49270 (19)0.54635 (19)0.74996 (6)0.0468 (5)0.42470.56380.76620.070*0.4541 (2)0.8049 (2)0.63099 (6)0.0501 (5)0.42810.84460.65400.075*0.20984 (19)0.3874 (2)0.67796 (6)0.0510 (5)0.9988 (2)0.93735 (19)0.76456 (6)0.0470 (5)

Н5	0.9340	0.9140	0.7812	0.071*
06	1.31332 (18)	0.91941 (18)	0.70090 (7)	0.0493 (5)
Н6	1.3611	0.9706	0.7171	0.074*
07	1.1405 (2)	0.7931 (2)	0.61213 (6)	0.0560 (6)
H7	1.2275	0.7836	0.6111	0.084*
08	0.71162 (19)	1.0887 (2)	0.69349 (7)	0.0553 (6)
C1	0.6809 (3)	0.5160 (3)	0.67280 (9)	0.0414 (7)
H1A	0.6645	0.4406	0.6929	0.050*
H1B	0.6943	0.4826	0.6419	0.050*
C2	0.5234 (3)	0.6581 (3)	0.72181 (8)	0.0409 (7)
H2A	0.6065	0.7050	0.7343	0.049*
H2B	0.4430	0.7193	0.7212	0.049*
C3	0.5793 (3)	0.7303 (3)	0.64202 (9)	0.0401 (7)
H3A	0.6485	0.7884	0.6573	0.048*
H3B	0.6206	0.6993	0.6137	0.048*
C4	0.5521 (2)	0.6100 (3)	0.67308 (8)	0.0327 (6)
C5	0.3813 (3)	0.5185 (3)	0.61482 (9)	0.0352 (6)
H5A	0.4329	0.5604	0.5920	0.042*
C6	0.2609 (2)	0.4436 (2)	0.60076 (9)	0.0341 (6)
C7	0.1775 (3)	0.3805 (3)	0.63474 (10)	0.0403 (7)
C8	0.0531 (3)	0.3070 (3)	0.61916 (11)	0.0558 (8)
H8A	-0.0056	0.2676	0.6406	0.067*
C9	0.0206 (3)	0.2948 (3)	0.57391 (12)	0.0593 (9)
Н9	-0.0601	0.2458	0.5652	0.071*
C10	0.1033 (3)	0.3528 (3)	0.53867 (10)	0.0465 (7)
C11	0.2235 (3)	0.4311 (3)	0.55185 (9)	0.0386 (6)
C12	0.2988 (3)	0.4917 (3)	0.51637 (9)	0.0521 (8)
H12	0.3777	0.5446	0.5239	0.063*
C13	0.2595 (3)	0.4752 (4)	0.47095 (11)	0.0626 (9)
H13	0.3120	0.5169	0.4483	0.075*
C14	0.1425 (4)	0.3972 (3)	0.45827 (12)	0.0653 (9)
H14	0.1170	0.3856	0.4274	0.078*
C15	0.0658 (3)	0.3381 (3)	0.49156 (12)	0.0584 (9)
H15	-0.0134	0.2867	0.4831	0.070*
C16	1.0373 (3)	0.8292 (3)	0.73559 (9)	0.0427 (7)
H16A	0.9611	0.7635	0.7346	0.051*
H16B	1.1231	0.7866	0.7480	0.051*
C17	1.1832 (2)	0.9830 (3)	0.68673 (9)	0.0389(7)
H17A	1.1919	1.0195	0.6560	0.047*
H17B	1.1621	1.0556	0.7076	0.047*
C18	1.0944 (3)	0.7591 (3)	0.65660 (9)	0.0421 (7)
H18A	1.1673	0.7048	0.6718	0.051*
H18B	1.0083	0.7056	0.6535	0.051*
C19	1.0635 (2)	0.8799 (3)	0.68711 (8)	0.0340 (6)
C20	0.8883 (3)	0.9693 (3)	0.62907 (8)	0.0343 (6)
H20	0.9424	0.9323	0.6059	0.041*
C21	0.7644 (2)	1.0416 (2)	0.61581 (8)	0.0332 (6)
C22	0.6788 (3)	1.0992 (3)	0.65039 (10)	0.0399 (7)

C23	0.5528 (3)	1.1703 (3)	0.63563 (11)	0.0544 (8)	
H23	0.4930	1.2061	0.6575	0.065*	
C24	0.5195 (3)	1.1862 (3)	0.59069 (12)	0.0601 (9)	
H24	0.4369	1.2330	0.5825	0.072*	
C25	0.6046 (3)	1.1347 (3)	0.55519 (10)	0.0468 (7)	
C26	0.7267 (3)	1.0578 (3)	0.56717 (9)	0.0379 (6)	
C27	0.8045 (3)	1.0038 (3)	0.53105 (9)	0.0499 (8)	
H27	0.8845	0.9517	0.5379	0.060*	
C28	0.7657 (4)	1.0257 (4)	0.48594 (10)	0.0666 (10)	
H28	0.8193	0.9881	0.4627	0.080*	
C29	0.6471 (4)	1.1036 (4)	0.47439 (12)	0.0718 (11)	
H29	0.6221	1.1195	0.4437	0.086*	
C30	0.5683 (4)	1.1560 (3)	0.50842 (12)	0.0660 (10)	
H30	0.4883	1.2072	0.5007	0.079*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0296 (11)	0.0475 (14)	0.0333 (13)	-0.0042 (10)	0.0018 (9)	0.0056 (10)
N2	0.0278 (11)	0.0511 (14)	0.0316 (12)	0.0033 (10)	0.0016 (9)	-0.0024 (10)
01	0.0331 (11)	0.0564 (14)	0.0959 (18)	-0.0041 (10)	-0.0162 (11)	0.0145 (12)
O2	0.0380 (11)	0.0629 (13)	0.0397 (11)	0.0065 (9)	0.0037 (8)	0.0169 (10)
O3	0.0546 (12)	0.0534 (13)	0.0419 (11)	0.0079 (10)	-0.0087 (9)	0.0062 (10)
O4	0.0441 (11)	0.0665 (14)	0.0426 (12)	-0.0097 (10)	0.0063 (9)	0.0055 (10)
O5	0.0437 (11)	0.0620(13)	0.0356 (11)	-0.0067 (10)	0.0048 (8)	-0.0086 (10)
O6	0.0334 (10)	0.0512 (13)	0.0626 (14)	0.0027 (9)	-0.0113 (9)	-0.0158 (10)
O7	0.0493 (12)	0.0768 (15)	0.0420 (12)	0.0052 (12)	0.0060 (9)	-0.0067 (11)
08	0.0439 (12)	0.0816 (16)	0.0407 (12)	0.0112 (11)	0.0049 (9)	-0.0078 (11)
C1	0.0322 (15)	0.0486 (18)	0.0434 (16)	-0.0010 (13)	0.0009 (12)	0.0029 (13)
C2	0.0423 (15)	0.0474 (17)	0.0329 (15)	0.0007 (13)	-0.0015 (12)	0.0015 (13)
C3	0.0341 (14)	0.0450 (17)	0.0411 (16)	-0.0004 (13)	-0.0006 (12)	0.0030 (13)
C4	0.0270 (13)	0.0352 (15)	0.0357 (15)	-0.0040 (11)	-0.0013 (11)	0.0055 (12)
C5	0.0322 (14)	0.0388 (16)	0.0346 (15)	0.0034 (12)	0.0036 (11)	0.0015 (12)
C6	0.0280 (13)	0.0326 (15)	0.0415 (16)	0.0011 (11)	-0.0002 (11)	-0.0022 (12)
C7	0.0343 (15)	0.0380 (16)	0.0486 (18)	0.0026 (12)	0.0038 (13)	0.0031 (13)
C8	0.0478 (18)	0.055 (2)	0.064 (2)	-0.0175 (15)	0.0032 (16)	0.0070 (17)
C9	0.0485 (18)	0.051 (2)	0.078 (3)	-0.0189 (15)	-0.0109 (17)	-0.0016 (18)
C10	0.0438 (17)	0.0383 (17)	0.057 (2)	0.0016 (14)	-0.0068 (14)	-0.0080 (14)
C11	0.0339 (14)	0.0388 (16)	0.0429 (16)	0.0079 (13)	-0.0013 (12)	-0.0037 (13)
C12	0.0437 (17)	0.070 (2)	0.0425 (18)	-0.0051 (15)	-0.0020 (14)	-0.0053 (16)
C13	0.061 (2)	0.083 (3)	0.0440 (19)	0.0016 (19)	-0.0021 (16)	-0.0041 (18)
C14	0.073 (2)	0.074 (2)	0.047 (2)	0.013 (2)	-0.0115 (18)	-0.0167 (18)
C15	0.059 (2)	0.050 (2)	0.065 (2)	0.0017 (16)	-0.0177 (17)	-0.0164 (17)
C16	0.0406 (15)	0.0502 (18)	0.0372 (16)	-0.0016 (14)	0.0004 (12)	0.0007 (14)
C17	0.0316 (14)	0.0442 (17)	0.0409 (16)	0.0006 (12)	-0.0007 (12)	-0.0027 (13)
C18	0.0390 (15)	0.0477 (18)	0.0397 (17)	0.0002 (13)	0.0001 (12)	-0.0054 (13)
C19	0.0274 (13)	0.0444 (16)	0.0299 (14)	0.0012 (12)	-0.0031 (11)	-0.0012 (12)
C20	0.0313 (14)	0.0426 (16)	0.0291 (14)	-0.0034(12)	0.0022 (11)	-0.0030 (12)

supporting information

C21	0.0271 (13)	0.0342 (15)	0.0381 (15)	-0.0039 (11)	-0.0024 (11)	0.0023 (12)
C22	0.0313 (14)	0.0414 (17)	0.0470 (18)	-0.0006 (12)	0.0020 (12)	-0.0042 (13)
C23	0.0475 (18)	0.0482 (19)	0.067 (2)	0.0123 (15)	0.0002 (16)	-0.0088 (16)
C24	0.0533 (19)	0.0450 (19)	0.081 (3)	0.0147 (15)	-0.0151 (18)	0.0043 (17)
C25	0.0475 (17)	0.0376 (17)	0.0546 (19)	-0.0048 (14)	-0.0116 (14)	0.0112 (14)
C26	0.0382 (15)	0.0371 (16)	0.0380 (16)	-0.0084 (13)	-0.0059 (12)	0.0049 (13)
C27	0.0432 (17)	0.066 (2)	0.0402 (17)	-0.0057 (15)	-0.0022 (14)	0.0035 (15)
C28	0.068 (2)	0.094 (3)	0.0384 (18)	-0.017 (2)	-0.0031 (16)	0.0068 (18)
C29	0.080 (3)	0.089 (3)	0.046 (2)	-0.026 (2)	-0.0203 (19)	0.028 (2)
C30	0.065 (2)	0.061 (2)	0.070 (2)	-0.0049 (18)	-0.0240 (19)	0.0281 (19)

Geometric parameters (Å, °)

(4)
(4)
(4)
(4)
C
(4)
C
(4)
C
C
(3)
0
C
(3)
0
0
(3)
C
)
(3)
C
(3)
(3)
(4)
(4)
0
(4)
0
(4)
(4)
(4)
(4)
0
(5)

supporting information

C8—H8A	0.9300	C29—C30	1.355 (5)
C9—C10	1.424 (4)	C29—H29	0.9300
С9—Н9	0.9300	С30—Н30	0.9300
C5—N1—C4	126.3 (2)	C15—C14—C13	119.1 (3)
C5—N1—H1	116.9	C15—C14—H14	120.4
C4—N1—H1	116.9	C13—C14—H14	120.4
C20—N2—C19	126.2 (2)	C14—C15—C10	121.5 (3)
C20—N2—H2	116.9	C14—C15—H15	119.2
C19—N2—H2	116.9	C10—C15—H15	119.2
C1 - O1 - H1C	109.5	05-C16-C19	110.0(2)
$C^2 - O^2 - H^2 C$	109.5	05 - C16 - H16A	109.7
C_{3} C_{3} H_{3}	109.5	C19-C16-H16A	109.7
C16-05-H5	109.5	05-C16-H16B	109.7
C17 O6 H6	109.5	C_{10} C_{16} H_{16}	109.7
$C_{1}^{0} = 00 = 110$	109.5	U16A C16 U16P	109.7
$C_{10} = 0/-H/$	109.5	$\begin{array}{c} \text{HIOA} \\ \text{CIO} \\ \text{HIOB} \\ \text{Of} \\ \text{CI7} \\ \text{CI0} \\ CI$	108.2
01 - 01 - 04	109.2 (2)	00-017-019	108.4 (2)
OI—CI—HIA	109.8	06C1/H1/A	110.0
C4—CI—HIA	109.8	C19 - C17 - H17A	110.0
OI-CI-HIB	109.8	06—C17—H17B	110.0
C4—C1—HIB	109.8	CI9—CI7—HI7B	110.0
H1A—C1—H1B	108.3	H17A—C17—H17B	108.4
O2—C2—C4	109.1 (2)	O7—C18—C19	113.9 (2)
O2—C2—H2A	109.9	O7—C18—H18A	108.8
C4—C2—H2A	109.9	C19—C18—H18A	108.8
O2—C2—H2B	109.9	O7—C18—H18B	108.8
C4—C2—H2B	109.9	C19—C18—H18B	108.8
H2A—C2—H2B	108.3	H18A—C18—H18B	107.7
O3—C3—C4	113.5 (2)	N2-C19-C16	106.65 (19)
O3—C3—H3A	108.9	N2-C19-C17	106.0 (2)
C4—C3—H3A	108.9	C16—C19—C17	111.7 (2)
O3—C3—H3B	108.9	N2-C19-C18	111.9 (2)
C4—C3—H3B	108.9	C16—C19—C18	107.9 (2)
НЗА—СЗ—НЗВ	107.7	C17—C19—C18	112.5 (2)
N1—C4—C2	106.98 (19)	N2-C20-C21	124.3 (2)
N1—C4—C1	107.7 (2)	N2—C20—H20	117.8
C2-C4-C1	111.0(2)	C21—C20—H20	117.8
N1-C4-C3	111.0(2) 111.9(2)	C_{20} C_{21} C_{22}	119.3 (2)
C_{2} C_{4} C_{3}	1095(2)	$C_{20} = C_{21} = C_{26}$	119.8(2)
$C_1 - C_4 - C_3$	109.5(2) 109.8(2)	$C_{22} = C_{21} = C_{26}$	119.0(2) 120.9(2)
N1 C5 C6	109.0(2) 125.1(2)	08 C22 C21	120.9(2) 122.0(2)
N1 = C5 = H5A	123.1 (2)	08 - 022 - 021	122.0(2) 120.3(2)
C_{6} C_{5} H_{5}	117.5	$C_{22} = C_{23}$	120.3(2) 117.7(2)
C_{0}	11/.3 110.1 (2)	C_{21} C_{22} C_{23} C_{24} C_{22} C_{22}	11/./(3) 121.1(2)
$C_{5} = C_{6} = C_{11}$	119.1(2)	C_{24} C_{23} C_{24} C_{23} U_{22}	121.1(3)
$C_{2} = C_{1} = C_{1}$	119.9 (2)	C_{24} C_{23} H_{23}	119.5
	121.0(2)	C_{22} — C_{23} — H_{23}	119.5
U4 - U / - U6	122.3 (2)	C23—C24—C25	123.0 (3)
O4—C7—C8	120.1 (2)	C23—C24—H24	118.5

C6—C7—C8	117.6 (3)	C25—C24—H24	118.5
C9—C8—C7	120.8 (3)	C30—C25—C26	119.5 (3)
С9—С8—Н8А	119.6	C30—C25—C24	121.4 (3)
С7—С8—Н8А	119.6	C26—C25—C24	119.1 (3)
C8—C9—C10	123.5 (3)	C27—C26—C25	117.3 (3)
С8—С9—Н9	118.2	C27—C26—C21	124.5 (2)
С10—С9—Н9	118.2	C25—C26—C21	118.2 (2)
C15-C10-C11	119.7 (3)	C_{28} C_{27} C_{26}	121.7(3)
$C_{15} - C_{10} - C_{9}$	121 9 (3)	C28—C27—H27	119.2
$C_{11} - C_{10} - C_{9}$	1184(3)	С26—С27—Н27	119.2
C_{12} C_{11} C_{10} C_{10}	116.9 (3)	C_{27} C_{28} C_{29}	120.7(3)
C_{12} C_{11} C_{10}	1244(2)	$C_{27} = C_{28} = H_{28}$	119.7
$C_{12} = C_{11} = C_{0}$	124.4(2) 118.6(2)	C_{20} C_{20} H_{20}	110.7
$C_{10} = C_{11} = C_{0}$	110.0(2) 121.0(3)	$C_{20} = C_{20} = C_{120}$	119.7 110.2(3)
$C_{13} = C_{12} = C_{11}$	121.9 (3)	C_{30} C_{29} H_{20}	119.2 (3)
$C_{13} - C_{12} - H_{12}$	119.1	$C_{29} = C_{29} = H_{29}$	120.4
C12 - C12 - H12	119.1	С28—С29—Н29	120.4
C12 - C13 - C14	120.8 (3)	$C_{29} = C_{30} = C_{23}$	121.0 (3)
С12—С13—Н13	119.6	C29—C30—H30	119.2
С14—С13—Н13	119.6	С25—С30—Н30	119.2
C5—N1—C4—C2	152.3 (2)	C20—N2—C19—C16	-154.9 (2)
C5—N1—C4—C1	-88.3 (3)	C20—N2—C19—C17	85.9 (3)
C5—N1—C4—C3	32.4 (3)	C20—N2—C19—C18	-37.1 (3)
O2—C2—C4—N1	56.2 (3)	O5—C16—C19—N2	-55.8 (3)
O2—C2—C4—C1	-60.9 (3)	O5—C16—C19—C17	59.7 (3)
O2—C2—C4—C3	177.73 (19)	O5—C16—C19—C18	-176.2 (2)
O1-C1-C4-N1	-179.4 (2)	O6—C17—C19—N2	-179.39 (19)
O1—C1—C4—C2	-62.6 (3)	O6—C17—C19—C16	64.8 (3)
O1—C1—C4—C3	58.5 (3)	O6—C17—C19—C18	-56.8 (3)
O3—C3—C4—N1	45.6 (3)	O7—C18—C19—N2	71.4 (3)
O3—C3—C4—C2	-72.8 (3)	O7—C18—C19—C16	-171.6 (2)
O3—C3—C4—C1	165.1 (2)	O7—C18—C19—C17	-47.9 (3)
C4—N1—C5—C6	179.3 (2)	C19—N2—C20—C21	-177.7(2)
N1—C5—C6—C7	1.3 (4)	N2—C20—C21—C22	-0.2 (4)
N1-C5-C6-C11	-178.4 (2)	N2-C20-C21-C26	179.0 (2)
C5—C6—C7—O4	-1.3 (4)	C20—C21—C22—O8	0.8 (4)
C11—C6—C7—O4	178.4 (2)	C26—C21—C22—O8	-178.4(2)
C5—C6—C7—C8	178.6 (2)	C_{20} C_{21} C_{22} C_{23}	-179.1(2)
$C_{11} - C_{6} - C_{7} - C_{8}$	-1.6(4)	$C_{26} = C_{21} = C_{22} = C_{23}$	16(4)
04	-177.6(3)	08-C22-C23-C24	177.6(3)
C6-C7-C8-C9	25(4)	C_{21} C_{22} C_{23} C_{24}	-24(4)
$C_{7} - C_{8} - C_{9} - C_{10}$	-0.7(5)	C_{22} C_{23} C_{24} C_{25} C_{24}	2.+(+)
C_{8} C_{9} C_{10} C_{15}	-170.8(3)	$C_{22} = C_{23} = C_{24} = C_{25} = C_{30}$	-1785(3)
$C_{8} = C_{9} = C_{10} = C_{13}$	-20(5)	$C_{23} = C_{24} = C_{25} = C_{30}$	178.3(3)
$C_{15} = C_{10} = C_{11} = C_{12}$	2.0(3)	$C_{23} = C_{24} = C_{23} = C_{20}$	-13(4)
$C_{13} - C_{10} - C_{11} - C_{12}$	-177.2(3)	$C_{20} - C_{20} - C_{20} - C_{27}$	1.3(+) 1772(2)
$C_{2} = C_{10} = C_{11} = C_{12}$	-170 A (2)	$C_{24} = C_{23} = C_{20} = C_{21}$	1778(3)
$C_{1} = C_{1} = C_{1} = C_{1}$	-1/9.4(2)	$C_{20} - C_{20} - C_{20} - C_{21}$	1/1.0(2)
UY-UIU-UII-U0	2.0 (4)	U24-U23-U20-U21	-3.0 (4)

C5-C6-C11-C12	-1.2 (4)	C20-C21-C26-C27	1.2 (4)	
C7—C6—C11—C12	179.0 (3)	C22—C21—C26—C27	-179.6 (3)	
C5—C6—C11—C10	178.7 (2)	C20—C21—C26—C25	-177.9 (2)	
C7—C6—C11—C10	-1.0 (4)	C22—C21—C26—C25	1.4 (4)	
C10-C11-C12-C13	-0.7 (4)	C25—C26—C27—C28	0.9 (4)	
C6-C11-C12-C13	179.3 (3)	C21—C26—C27—C28	-178.2 (3)	
C11—C12—C13—C14	0.0 (5)	C26—C27—C28—C29	0.3 (5)	
C12—C13—C14—C15	0.7 (5)	C27—C28—C29—C30	-1.1 (5)	
C13—C14—C15—C10	-0.8(5)	C28—C29—C30—C25	0.7 (5)	
C11—C10—C15—C14	0.1 (4)	C26—C25—C30—C29	0.5 (5)	
C9-C10-C15-C14	177.9 (3)	C24—C25—C30—C29	-178.0(3)	

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H···A
N1—H1…O4	0.86	1.91	2.587 (3)	135
N2—H2···O8	0.86	1.89	2.575 (2)	135
O1—H1C···O5 ⁱ	0.82	1.90	2.715 (3)	172
O2—H2 <i>C</i> ···O8 ⁱⁱ	0.82	1.77	2.589 (3)	173
O3—H3…O6 ⁱⁱⁱ	0.82	1.91	2.706 (3)	163
O5—H5…O4 ^{iv}	0.82	1.84	2.650(2)	171
O6—H6…O2 ^v	0.82	1.81	2.609 (2)	163
O7—H7···O3 ^{vi}	0.82	2.19	2.972 (2)	159

Symmetry codes: (i) -x+2, y-1/2, -z+3/2; (ii) -x+1, y-1/2, -z+3/2; (iii) x-1, y, z; (iv) -x+1, y+1/2, -z+3/2; (v) -x+2, y+1/2, -z+3/2; (vi) x+1, y, z.