

Received 7 August 2015 Accepted 19 August 2015

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; polynaphthoxazine materials; oxazine; intramolecular hydrogen bond; C—H \cdots *π* interactions; *π*–*π* interaction

CCDC reference: 1419687 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 1-[(2,3-dihydro-1*H*-naphtho-[1,2-e][1,3]oxazin-2-yl)methyl]naphthalen-2-ol: a possible candidate for new polynaphthoxazine materials

Augusto Rivera,^a* Jicli José Rojas,^a Jaime Ríos-Motta^a and Michael Bolte^b

^aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, and ^bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von Laue-Str. 7, 60438 Frankfurt/Main, Germany. *Correspondence e-mail: ariverau@unal.edu.co

In the title compound, $C_{23}H_{19}NO_2$, an oxazine Mannich base derivative, the oxazine ring has a half-chair conformation. The 2-hydroxynaphthalen-1-yl substituent is placed in an axial position. There is an intramolecular $O-H\cdots N$ hydrogen bond, forming an S(6) graph-set motif. In the crystal, molecules are connected by a pair of $C-H\cdots \pi$ interactions into an inversion dimer, which is reinforced by another pair of weak $C-H\cdots \pi$ interactions. The dimers are linked by a $\pi-\pi$ interaction [centroid-centroid distance = 3.6268 (17) Å], consolidating a column along the *a* axis. Furthermore, the columns interact with each other by a weak $C-H\cdots \pi$ interaction, generating a three-dimensional network.

1. Chemical context

Benzoxazines and naphthoxazines have been shown to polymerize via a thermally induced ring-opening reaction of the oxazine ring to form a phenolic structure associated with traditional phenolic resins (Ishida & Sanders, 2001). Polybenzoxazines, polynaphthoxazines and their derivatives are a class of phenolic resins which are alternative to the traditional resins (Yildirim et al., 2006). So far the main contribution to the chemistry of these compounds has been the work of Burke (Burke, 1949; Burke et al., 1952), who was the first to show that aromatic oxazines could be obtained via Mannich-type condensation-cyclization reactions of certain phenols or naphtols with formaldehyde and primary amines in the molar ratio of 1:2:1. Various methods have been reported for the synthesis of dihydro-1,3-oxazines including the reaction under neat conditions via Mannich-type condensation-cyclization reaction of phenols or naphthols with formaldehyde and primary amines (Mathew et al., 2010). Our current research includes synthesis and characterization of monofunctional benzoxazines using aminals as performed Mannich electrophiles instead of formaldehyde and primary amines. Earlier (Rivera et al., 2005), we have reported an interesting behaviour of the macrocyclic aminal 1,3,6,8-tetraazatricyclo-[4.4.1.1^{3,8}]dodecane (TATD) with hindered meta-disubstituted phenols affording 3,3-ethylene-bis(3,4-dihydro-2H-1,3-benzoxazines) with good yields by a Mannich-type reaction in basic media. Recently, we synthesized the title compound by a reaction between the cyclic aminal 1,3,6,8-tetraazatricyclo[4.3.1.1.3,8]undecane (TATU) with 2-naphthol solventfree at low temperature. Because a wide range of cured properties can be obtained (Uyar et al., 2008) depending on the structure of aryloxazine monomers, initiators and the

research communications

curing conditions, the title compound is a very good candidate as a monomer for the investigation of the polymerization of this class of compounds.

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1. The six-membered oxazine ring adopts a half-chair conformation with atoms N1 and C1 displaced by 0.323 (2) and 0.292 (3) Å, respectively, from the mean plane composed of atoms O1, C11, C12 and C2. The puckering parameters are Q = 0.479 (3) Å, $\theta = 50.0$ (3)° and $\varphi = 98.3$ (4)° for the ring O1/C1/N1/C2/C12/C11. The (2-hydroxynaphthalen-1-yl)methyl group bonded to atom N1 of the oxazine ring is placed in an axial position. The pendant naphthyl group (C21–C30) makes

Figure 1

The molecular structure of the title compound, Displacement ellipsoids are drawn at the 50% probability level. The hydrogen bond is shown as a dashed line.

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg2, Cg3 and Cg5 are the centroids of the C11–C13/C18–C20, C13–C18 and C25–C30 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots N1$	0.84	1.88	2.627 (2)	147
$C1-H1A\cdots Cg3^{i}$	0.99	2.53	3.501 (3)	169
$C2-H2B\cdots Cg2^{i}$	0.99	2.86	3.743 (3)	149
$C14-H14\cdots Cg5^{ii}$	0.99	2.87	3.723 (3)	150

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

a dihedral angle of 59.94 (4)° with the oxazine ring plane defined by atoms C11, C12 and O1. The bond lengths, N1–C1 and O1–C1, are normal and comparable to the corresponding values observed in the related structure of 6-bromo-2,4-bis(3-methoxy-phenyl)-3,4-dihydro-2*H*-1,3-naphthoxazine (Sarojini *et al.*, 2007). There is an intramolecular O–H···N hydrogen bond (Table 1), forming an *S*(6) graph-set motif, where the N···O distance is longer by about 0.04 and 0.03 Å, respectively, than the observed values in related structures of 1-(piperidin-1-ylmethyl)-2-naphthol (Liu *et al.*, 2005) and 1-morpholinomethyl-2-naphthol (Ma *et al.*, 2005).

3. Supramolecular features

The crystal packing organization is essentially the result of two different types of interactions involving inversion-related molecules. Based on the distance criteria employed in *PLATON* (Spek, 2009), the most notable intermolecular contact is a $C-H\cdots\pi$ interaction ($C1-H1A\cdots Cg3^{i}$; Table 1), so that an inversion dimer is formed (Fig. 2). In addition, there is another $C-H\cdots\pi$ interaction ($C2-H2B\cdots Cg2^{i}$; Table 1) in the dimer. A column of alternating inversion dimers extending along the *a* axis results from a $\pi-\pi$ stacking interaction (Fig. 3) between adjacent 2,3-dihydro-1*H*-naphtho[1,2-*e*][1,3]oxazine ring systems with a centroid–centroid distance of 3.6268 (17) Å [$Cg3\cdots Cg3^{iii}$; symmetry code: (iii) = -x, -y + 1, -z + 1]. Neighboring columns are connected by a weak $C-H\cdots\pi$ interaction ($C14-H14A\cdots Cg5^{ii}$; Table 1), generating a

Figure 3

The view of the column structure along the *a* axis, showing the π - π stacking interactions (dashed lines).

three-dimensional network. The unit-cell packing is shown in Fig. 4.

4. Database survey

The 2,3-dihydro-1*H*-naphtho[1,2-*e*][1,3]oxazine fragment is a quite rigid moiety. A search in the CSD (Groom & Allen, 2014) for this fragment gave 22 hits with 24 fragments. The torsion angles in the heterocycle show broadly consistent values. Their absolute values are in the following ranges: O-

Figure 4

Packing diagram of the title compound. C-bound H atoms have been omitted for clarity.

Experimental details.	
Crystal data	
Chemical formula	$C_{23}H_{19}NO_2$
M _r	341.39
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	173
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.6570 (12), 9.7609 (7), 18.790 (2)
β (°)	102.331 (10)
$V(Å^3)$	1730.3 (3)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.08
Crystal size (mm)	$0.31\times0.11\times0.11$
Data collection	
Diffractometer	STOE IPDS II two-circle
Absorption correction	Multi-scan (X-AREA; Stoe & Cie, 2001)
T_{\min}, T_{\max}	0.300, 0.991
No. of measured, independent and	8807, 3222, 2069
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.051
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.608
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.053, 0.135, 0.96
No. of reflections	3222
No. of parameters	237
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.57, -0.24

Table 2

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97, XP in SHELXTL-Plus and SHELXL97 (Sheldrick, 2008), SHELXL2014/6 (Sheldrick, 2015).

C-N-C 56.0-69.7°, C-N-C-C 37.7-53.8°, N-C-C-C 3.7-24.2°, C-C-C-O 0.1-6.3°, C-C-O-C 1.0-21.6° and C-O-C-N 28.8-56.1°. Thus, it can be concluded that the conformation of this heterocycle is the same in all fragments. The values of the title compound fit very well into these O1-C1-N1-C2 64.2 (3)°, C1-N1-C2ranges: C12 - 48.9 (3)°, N1-C2-C12-C11 19.3 (3)°, C2-C12- $O1 - C1 - N1 - 45.3 (3)^{\circ}$.

5. Synthesis and crystallization

2-Naphthol (144 mg, 1 mmol) and 1,3,6,8-tetraazatricyclo-[4.3.1.1^{3,8}]undecane (TATU) (154 mg, 1 mmol) were manually ground together, heated to 313 K and stirred for 12 h under solvent-free conditions. Progress of the reaction was determined by TLC monitoring. After completion of the reaction, the mixture was cooled to room temperature and the solid residue was purified by silica gel column chromatography with benzene-ethyl acetate (4:1) as the eluent to give 1-{[1Hnaphtho[1,2-e][1,3]oxazin-2(3H)-yl]methyl}naphthalen-2-ol as a brown solid in 28% yield. This compound was obtained in its crystalline form by recrystallization from an absolute ethanol solution (m.p. 443 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were located in a difference electron-density map. The hydroxyl H atom was refined using a riding-model approximation with O-H =0.84 Å. The $U_{iso}(H)$ value and the C-C-O-H torsion angle were refined. C-bound H atoms were fixed geometrically (C-H = 0.95 or 0.99 Å) and treated as riding with $U_{iso}(H) =$ 1.2 $U_{eq}(C)$.

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work (research project No. 28427). JJR thanks COLCIENCIAS for a fellowship.

References

Burke, W. J. (1949). J. Am. Chem. Soc. 71, 609-612.

Burke, W. J., Kolbezen, M. J. & Stephens, C. W. (1952). J. Am. Chem. Soc. 74, 3601–3605.

- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Ishida, H. & Sanders, D. P. (2001). Polymer, 42, 3115-3125.
- Liu, Q.-W., Zhang, M.-J., Wang, X.-Q. & Ma, P.-G. (2005). *Acta Cryst.* E**61**, 04285–04286.
- Ma, S.-S., Zhang, M.-J., Yuan, D.-Y. & Qi, Z.-B. (2005). Acta Cryst. E61, 01370–01371.
- Mathew, B. P., Kumar, A., Sharma, S., Shukla, P. K. & Nath, M. (2010). *Eur. J. Med. Chem.* **45**, 1502–1507.
- Rivera, A., Ríos, J., Quevedo, R. & Joseph-Nathan, P. (2005). *Rev. Colomb. Quim.* 34, 105–115.
- Sarojini, B. K., Narayana, B., Mayekar, A. N., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, 04739.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Uyar, T., Koyuncu, Z., Ishida, H. & Hacaloglu, J. (2008). Polym. Degrad. Stab. 93, 2096–2103.
- Yildirim, A., Kiskan, B., Demirel, A. L. & Yagci, Y. (2006). Eur. Polym. J. 42, 3006–3014.

Acta Cryst. (2015). E71, 1089-1092 [https://doi.org/10.1107/S2056989015015583]

Crystal structure of 1-[(2,3-dihydro-1*H*-naphtho[1,2-e][1,3]oxazin-2-yl)methyl]naphthalen-2-ol: a possible candidate for new polynaphthoxazine materials

Augusto Rivera, Jicli José Rojas, Jaime Ríos-Motta and Michael Bolte

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2001); cell refinement: *X-AREA* (Stoe & Cie, 2001); data reduction: *X-AREA* (Stoe & Cie, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014*/6 (Sheldrick, 2015); molecular graphics: *XP* in *SHELXTL-Plus* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

1-[(2,3-Dihydro-1H-naphtho[1,2-e][1,3]oxazin-2-yl)methyl]naphthalen-2-ol

Crystal data

 $C_{23}H_{19}NO_2$ $M_r = 341.39$ Monoclinic, $P2_1/n$ a = 9.6570 (12) Å b = 9.7609 (7) Å c = 18.790 (2) Å $\beta = 102.331$ (10)° V = 1730.3 (3) Å³ Z = 4

Data collection

STOE IPDS II two-circle-
diffractometer
Radiation source: Genix 3D IµS microfocus X-
ray source
ω scans
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
$T_{\min} = 0.300, \ T_{\max} = 0.991$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.135$ S = 0.963222 reflections 237 parameters 0 restraints F(000) = 720 $D_x = 1.310 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5838 reflections $\theta = 3.4-25.8^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 173 KNeedle, colourless $0.31 \times 0.11 \times 0.11 \text{ mm}$

8807 measured reflections 3222 independent reflections 2069 reflections with $I > 2\sigma(I)$ $R_{int} = 0.051$ $\theta_{max} = 25.6^\circ, \ \theta_{min} = 3.4^\circ$ $h = -9 \rightarrow 11$ $k = -10 \rightarrow 11$ $l = -22 \rightarrow 22$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0738P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.57$ e Å⁻³ $\Delta\rho_{min} = -0.24$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.5357 (2)	0.80192 (19)	0.57257 (9)	0.0422 (5)
02	0.67542 (18)	0.5355 (2)	0.80171 (9)	0.0428 (5)
H2	0.6763	0.5678	0.7604	0.039 (8)*
N1	0.5689 (2)	0.6438 (2)	0.67377 (9)	0.0332 (5)
C1	0.6360 (3)	0.7296 (3)	0.62925 (13)	0.0427 (6)
H1A	0.6988	0.6725	0.6060	0.051*
H1B	0.6961	0.7976	0.6607	0.051*
C2	0.4914 (3)	0.5345 (3)	0.62777 (10)	0.0336 (6)
H2A	0.4305	0.4846	0.6553	0.040*
H2B	0.5598	0.4684	0.6149	0.040*
C3	0.4775 (3)	0.7190 (3)	0.71422 (11)	0.0326 (5)
H3A	0.3892	0.7470	0.6801	0.039*
H3B	0.5269	0.8031	0.7356	0.039*
C11	0.4279 (3)	0.7211 (3)	0.53568 (11)	0.0346 (6)
C12	0.4002 (2)	0.5935 (2)	0.55868 (10)	0.0293 (5)
C13	0.2837 (2)	0.5172 (3)	0.51787 (10)	0.0292 (5)
C14	0.2464 (3)	0.3851 (3)	0.53810 (10)	0.0328 (6)
H14	0.3030	0.3424	0.5798	0.039*
C15	0.1310 (3)	0.3174 (3)	0.49924 (11)	0.0381 (6)
H15	0.1076	0.2294	0.5148	0.046*
C16	0.0471 (3)	0.3762 (3)	0.43679 (11)	0.0407 (6)
H16	-0.0330	0.3284	0.4100	0.049*
C17	0.0809 (3)	0.5027 (3)	0.41453 (11)	0.0388 (7)
H17	0.0246	0.5414	0.3716	0.047*
C18	0.1980 (3)	0.5774 (3)	0.45412 (10)	0.0336 (6)
C19	0.2309 (3)	0.7106 (3)	0.43329 (11)	0.0384 (6)
H19	0.1742	0.7510	0.3909	0.046*
C20	0.3419 (3)	0.7818 (3)	0.47263 (11)	0.0418 (7)
H20	0.3620	0.8716	0.4582	0.050*
C21	0.4405 (2)	0.6320 (2)	0.77453 (10)	0.0272 (5)
C22	0.5430 (2)	0.5495 (3)	0.81558 (11)	0.0311 (5)
C23	0.5180 (3)	0.4759 (3)	0.87625 (11)	0.0370 (6)
H23	0.5917	0.4229	0.9050	0.044*
C24	0.3891 (3)	0.4808 (3)	0.89361 (11)	0.0360 (6)
H24	0.3736	0.4314	0.9348	0.043*
C25	0.2767 (3)	0.5584 (2)	0.85145 (10)	0.0298 (5)
C26	0.1401 (3)	0.5588 (3)	0.86679 (11)	0.0365 (6)
H26	0.1231	0.5070	0.9069	0.044*
C27	0.0318 (3)	0.6318 (3)	0.82539 (12)	0.0406 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H27	-0.0603	0.6286	0.8357	0.049*
C28	0.0574 (3)	0.7115 (3)	0.76759 (12)	0.0392 (6)
H28	-0.0175	0.7637	0.7392	0.047*
C29	0.1886 (2)	0.7151 (3)	0.75153 (10)	0.0326 (6)
H29	0.2037	0.7713	0.7126	0.039*
C30	0.3031 (2)	0.6371 (2)	0.79162 (9)	0.0257 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0455 (11)	0.0355 (11)	0.0494 (9)	-0.0013 (9)	0.0184 (8)	-0.0046 (7)
O2	0.0317 (9)	0.0460 (12)	0.0510 (10)	0.0000 (9)	0.0094 (7)	-0.0033 (8)
N1	0.0275 (10)	0.0433 (13)	0.0306 (8)	-0.0053 (10)	0.0104 (7)	-0.0037 (8)
C1	0.0414 (15)	0.0423 (17)	0.0485 (13)	-0.0026 (14)	0.0192 (11)	-0.0015 (11)
C2	0.0348 (13)	0.0365 (15)	0.0293 (10)	0.0095 (12)	0.0061 (9)	-0.0027 (9)
C3	0.0407 (14)	0.0279 (13)	0.0334 (10)	-0.0053 (12)	0.0176 (9)	-0.0032 (9)
C11	0.0358 (13)	0.0375 (15)	0.0345 (10)	0.0053 (13)	0.0164 (9)	-0.0074 (10)
C12	0.0332 (13)	0.0302 (14)	0.0269 (9)	0.0099 (11)	0.0117 (9)	0.0005 (8)
C13	0.0315 (12)	0.0341 (14)	0.0238 (9)	0.0110 (11)	0.0102 (8)	-0.0004 (8)
C14	0.0400 (14)	0.0332 (14)	0.0263 (9)	0.0112 (12)	0.0095 (9)	0.0018 (9)
C15	0.0448 (15)	0.0362 (15)	0.0349 (11)	0.0028 (13)	0.0123 (10)	-0.0023 (10)
C16	0.0379 (14)	0.0501 (18)	0.0335 (11)	0.0070 (14)	0.0064 (10)	-0.0089 (11)
C17	0.0374 (14)	0.0524 (19)	0.0260 (10)	0.0163 (13)	0.0052 (9)	-0.0009 (10)
C18	0.0387 (14)	0.0398 (15)	0.0246 (9)	0.0166 (12)	0.0118 (9)	0.0034 (9)
C19	0.0486 (15)	0.0387 (15)	0.0283 (10)	0.0165 (14)	0.0092 (10)	0.0070 (10)
C20	0.0623 (18)	0.0313 (15)	0.0382 (11)	0.0129 (14)	0.0252 (11)	0.0062 (10)
C21	0.0310 (12)	0.0256 (12)	0.0258 (9)	-0.0078 (11)	0.0077 (8)	-0.0066 (8)
C22	0.0284 (12)	0.0302 (14)	0.0341 (10)	-0.0033 (11)	0.0052 (9)	-0.0087 (9)
C23	0.0418 (15)	0.0288 (14)	0.0360 (11)	0.0030 (12)	-0.0014 (10)	-0.0002 (9)
C24	0.0515 (16)	0.0279 (13)	0.0282 (10)	-0.0035 (13)	0.0077 (10)	0.0029 (9)
C25	0.0405 (14)	0.0245 (13)	0.0257 (9)	-0.0071 (11)	0.0099 (9)	-0.0045 (8)
C26	0.0453 (15)	0.0343 (15)	0.0349 (11)	-0.0123 (13)	0.0193 (10)	-0.0028 (10)
C27	0.0354 (14)	0.0432 (17)	0.0475 (12)	-0.0084 (13)	0.0188 (10)	-0.0115 (11)
C28	0.0335 (13)	0.0420 (16)	0.0416 (11)	0.0011 (13)	0.0070 (10)	-0.0017 (11)
C29	0.0349 (13)	0.0338 (14)	0.0293 (10)	-0.0022 (12)	0.0075 (9)	0.0029 (9)
C30	0.0308 (12)	0.0239 (12)	0.0228 (8)	-0.0061 (10)	0.0064 (8)	-0.0038 (8)

Geometric parameters (Å, °)

01—C11	1.370 (3)	C16—H16	0.9500
01—C1	1.460 (3)	C17—C18	1.416 (4)
O2—C22	1.366 (3)	C17—H17	0.9500
O2—H2	0.8400	C18—C19	1.413 (4)
N1-C1	1.433 (3)	C19—C20	1.357 (4)
N1—C2	1.473 (3)	C19—H19	0.9500
N1—C3	1.477 (3)	C20—H20	0.9500
C1—H1A	0.9900	C21—C22	1.377 (3)
C1—H1B	0.9900	C21—C30	1.431 (3)

C2—C12	1.518 (3)	C22—C23	1.411 (4)
C2—H2A	0.9900	C23—C24	1.353 (4)
C2—H2B	0.9900	С23—Н23	0.9500
C3—C21	1.518 (3)	C24—C25	1.418 (3)
С3—НЗА	0.9900	C24—H24	0.9500
С3—Н3В	0.9900	C25—C26	1.409 (3)
C11—C12	1.363 (4)	C25—C30	1.429 (3)
C11—C20	1.423 (3)	C26—C27	1.364 (4)
C12—C13	1.429 (3)	C26—H26	0.9500
C13—C14	1.412 (4)	C27—C28	1.400 (4)
C13—C18	1.429 (3)	С27—Н27	0.9500
C14—C15	1.365 (4)	C28—C29	1.364 (3)
C14—H14	0.9500	C28—H28	0.9500
C15—C16	1.399 (3)	C29—C30	1.420 (3)
С15—Н15	0.9500	С29—Н29	0.9500
C16—C17	1.365 (4)		
C11—O1—C1	113.9 (2)	С16—С17—Н17	119.3
$C^{22} = 0^2 = H^2$	109 5	C18—C17—H17	119.3
C1 - N1 - C2	108 51 (17)	C19 - C18 - C17	122.0(2)
C1 - N1 - C3	113.9(2)	C19 - C18 - C13	122.0(2) 1191(2)
$C_2 - N_1 - C_3$	112 13 (18)	C17 - C18 - C13	119.1(2) 118.9(2)
$N_1 - C_1 - O_1$	113 3 (2)	C_{20} C_{19} C_{18}	121.2(2)
N1—C1—H1A	108.9	C_{20} C_{19} H_{19}	119.4
$\Omega_1 - C_1 - H_1 A$	108.9	C_{18} C_{19} H_{19}	119.4
N1_C1_H1B	108.9	C19 - C20 - C11	119.5 (3)
$\Omega_1 = C_1 = H_1 B$	108.9	$C_{19} = C_{20} = C_{11}$	119.5 (5)
$H_1 A - C_1 - H_1 B$	107.7	$C_{11} = C_{20} = H_{20}$	120.2
MA = C1 = MB	107.7 110.9(2)	$C_{22} = C_{21} = C_{30}$	120.2 118.0(2)
N1 = C2 = C12 N1 = C2 = H2A	100.5	$C_{22} = C_{21} = C_{30}$	110.9(2) 110.3(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$C_{22} = C_{21} = C_{3}$	119.3(2) 121.7(2)
N1 C2 H2P	109.5	$C_{30} = C_{21} = C_{3}$	121.7(2) 122.8(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	02 - 022 - 021	122.0(2) 115.6(2)
$U_2 = U_2 = H_2 B$	109.5	02 - 022 - 023	113.0(2)
$H_{2}A - C_{2} - H_{2}B$	106.1	$C_{21} = C_{22} = C_{23}$	121.0(2) 120.1(2)
N1 = C2 = U2A	111.0 (2)	$C_{24} = C_{23} = C_{22}$	120.1(2)
N1 - C3 - H3A	109.5	$C_{24} = C_{23} = H_{23}$	119.9
C2I—C3—H3A	109.5	C22—C23—H23	119.9
$NI = C_3 = H_3B$	109.5	$C_{23} = C_{24} = C_{23}$	121.2(2)
$C_2 I = C_3 = H_3 B$	109.3	C23—C24—H24	119.4
$H_3A - C_3 - H_3B$	108.0	C25—C24—H24	119.4
	123.0 (2)	$C_{26} = C_{25} = C_{24}$	121.7(2)
C12— $C11$ — $C20$	121.7 (2)	$C_{20} - C_{20} - C_{30}$	119.5 (2)
O1 - C11 - C20	115.2 (2)	C24—C25—C30	118.9 (2)
C11—C12—C13	119.45 (19)	C27—C26—C25	121.5 (2)
C11—C12—C2	120.0 (2)	C27—C26—H26	119.3
C13—C12—C2	120.5 (2)	C25—C26—H26	119.3
C14—C13—C12	123.26 (18)	C26—C27—C28	119.5 (2)
C14—C13—C18	117.8 (2)	С26—С27—Н27	120.3

C12—C13—C18	119.0 (2)	C28—C27—H27	120.3
C15—C14—C13	121.6 (2)	C29—C28—C27	120.8 (2)
C15—C14—H14	119.2	C29—C28—H28	119.6
C13—C14—H14	119.2	C27—C28—H28	119.6
C14—C15—C16	120.7 (3)	C28—C29—C30	121.6 (2)
C14—C15—H15	119.7	C28—C29—H29	119.2
С16—С15—Н15	119.7	C30—C29—H29	119.2
C17—C16—C15	119.6 (2)	C29—C30—C25	117.2 (2)
С17—С16—Н16	120.2	C29—C30—C21	123.63 (19)
C15—C16—H16	120.2	C25—C30—C21	119.2 (2)
C16—C17—C18	121.4 (2)		
C2—N1—C1—O1	64.2 (3)	C13—C18—C19—C20	0.0 (4)
C3—N1—C1—O1	-61.4 (3)	C18—C19—C20—C11	0.6 (4)
C11—O1—C1—N1	-45.3 (3)	C12—C11—C20—C19	-1.3 (4)
C1—N1—C2—C12	-48.9 (3)	O1—C11—C20—C19	-178.8 (2)
C3—N1—C2—C12	77.7 (2)	N1—C3—C21—C22	40.2 (3)
C1—N1—C3—C21	-165.05 (18)	N1—C3—C21—C30	-142.0(2)
C2—N1—C3—C21	71.3 (2)	C30—C21—C22—O2	178.02 (19)
C1-01-C11-C12	12.4 (3)	C3—C21—C22—O2	-4.1 (3)
C1-01-C11-C20	-170.1 (2)	C30-C21-C22-C23	-3.5(3)
O1—C11—C12—C13	178.6 (2)	C3—C21—C22—C23	174.4 (2)
C20—C11—C12—C13	1.3 (3)	O2—C22—C23—C24	-178.6 (2)
O1—C11—C12—C2	-0.5 (3)	C21—C22—C23—C24	2.8 (4)
C20—C11—C12—C2	-177.8 (2)	C22—C23—C24—C25	0.4 (4)
N1-C2-C12-C11	19.3 (3)	C23—C24—C25—C26	176.7 (2)
N1—C2—C12—C13	-159.8 (2)	C23—C24—C25—C30	-2.7(3)
C11—C12—C13—C14	-179.3 (2)	C24—C25—C26—C27	-178.9 (2)
C2-C12-C13-C14	-0.3 (3)	C30—C25—C26—C27	0.5 (3)
C11—C12—C13—C18	-0.6 (3)	C25—C26—C27—C28	-1.9(4)
C2—C12—C13—C18	178.4 (2)	C26—C27—C28—C29	1.1 (4)
C12—C13—C14—C15	177.5 (2)	C27—C28—C29—C30	1.1 (4)
C18—C13—C14—C15	-1.2 (3)	C28—C29—C30—C25	-2.4(3)
C13—C14—C15—C16	1.3 (4)	C28-C29-C30-C21	176.7 (2)
C14—C15—C16—C17	0.0 (4)	C26—C25—C30—C29	1.6 (3)
C15—C16—C17—C18	-1.2 (4)	C24—C25—C30—C29	-179.0 (2)
C16—C17—C18—C19	-177.5 (2)	C26—C25—C30—C21	-177.5 (2)
C16—C17—C18—C13	1.2 (4)	C24—C25—C30—C21	1.9 (3)
C14—C13—C18—C19	178.7 (2)	C22—C21—C30—C29	-177.9 (2)
C12—C13—C18—C19	0.0 (3)	C3—C21—C30—C29	4.3 (3)
C14—C13—C18—C17	0.0 (3)	C22—C21—C30—C25	1.1 (3)
C12—C13—C18—C17	-178.8 (2)	C3—C21—C30—C25	-176.70 (19)
C17—C18—C19—C20	178.7 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
02—H2…N1	0.84	1.88	2.627 (2)	147
C1—H1 A ··· $Cg3^{i}$	0.99	2.53	3.501 (3)	169
C2—H2 B ···Cg2 ⁱ	0.99	2.86	3.743 (3)	149
C14—H14…Cg5 ⁱⁱ	0.99	2.87	3.723 (3)	150

Cg2, Cg3 and Cg5 are the centroids of the C11–C13/C18–C20, C13–C18 and C25–C30 rings, respectively.

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1/2, y-1/2, -z+3/2.