## data reports





open 🖯 access

## Crystal structure of 4-(6-bromo-4-oxo-4*H*-chromen-3-yl)-2-methylamino-3nitropyrano[3,2-c]chromen-5(4*H*)-one chloroform monosolvate

#### Rajamani Raja,<sup>a</sup> Subramani Kandhasamy,<sup>b</sup> Paramasivam T. Perumal<sup>b</sup> and A. SubbiahPandi<sup>a</sup>\*

<sup>a</sup>Department of Physics, Presidency College (Autonomous), Chennai 600 005, India, and <sup>b</sup>Organic Chemistry Division, CSIR Central Leather Research Institute, Chennai 600 020, India. \*Correspondence e-mail: raja.13nap@gmail.com

Received 27 July 2015; accepted 2 August 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound,  $C_{22}H_{13}BrN_2O_7 \cdot CHCl_3$ , the pyran ring adopts a shallow sofa conformation with the C atom bearing the bromochromene system as the flap [deviation = 0.291 (3) Å]. The dihedral angle between the pyran fusedring system (all atoms; r.m.s. deviation = 0.032 Å) and the bromochromene ring system (r.m.s. deviation = 0.027 Å) is 87.56 (9)°. An intramolecular N-H···O hydrogen bond closes an S(6) ring. The Cl atoms of the solvent molecule are disordered over two sets of sites in a 0.515 (6):0.485 (6) ratio. In the crystal, inversion dimers linked by pairs of N-H···O hydrogen bonds generate  $R_2^2(12)$  loops. The packing also features C-H···O and very weak  $\pi$ - $\pi$  [centroidcentroid separation = 3.960 (2) Å] interactions, which link the dimers into a three-dimensional network.

Keywords: crystal structure; chromenone; hydrogen bonding.

CCDC reference: 1416576

#### 1. Related literature

For background to chromene derivatives, see: Ercole *et al.* (2009); Geen *et al.* (1996) Khan *et al.* (2010); Raj *et al.* (2010). For a related structure, see: Raja *et al.* (2015).



 $\gamma = 70.735 \ (1)^{\circ}$ 

Z = 2

V = 1246.36 (5) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.35 \times 0.30 \times 0.25 \ \text{mm}$ 

17277 measured reflections

4389 independent reflections

3672 reflections with  $I > 2\sigma(I)$ 

 $\mu = 2.02 \text{ mm}^{-1}$ 

T = 293 K

 $R_{\rm int} = 0.019$ 

#### 2. Experimental

2.1. Crystal data

 $C_{22}H_{13}BrN_2O_7 \cdot CHCl_3$   $M_r = 616.62$ Triclinic,  $P\overline{1}$  a = 9.8816 (2) Å b = 11.9237 (3) Å c = 12.0616 (3) Å  $\alpha = 80.804$  (1)°  $\beta = 68.422$  (1)°

2.2. Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2008)  $T_{\rm min} = 0.539, T_{\rm max} = 0.632$ 

2.3. Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.043$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.120$               | independent and constrained                                |
| S = 1.04                        | refinement                                                 |
| 1389 reflections                | $\Delta \rho_{\rm max} = 0.63 \text{ e } \text{\AA}^{-3}$  |
| 353 parameters                  | $\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$ |
| 114 restraints                  |                                                            |

Table 1Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$      | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------|------|-------------------------|--------------|--------------------------------------|
| N2-H2···O5                       | 0.86 | 2.00                    | 2.622 (5)    | 128                                  |
| $N2-H2 \cdot \cdot \cdot O5^{i}$ | 0.86 | 2.37                    | 3.063 (5)    | 138                                  |
| C4-H4···O7 <sup>ii</sup>         | 0.93 | 2.59                    | 3.383 (6)    | 144                                  |
| $C15-H15\cdots O4^{iii}$         | 0.93 | 2.36                    | 3.221 (4)    | 153                                  |

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x, y, z - 1; (iii) -x + 1, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

#### **Acknowledgements**

The authors the thank Department of Chemistry, IIT, Chennai, India, for the data collection.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7473).

#### References

- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ercole, F., Davis, T. P. & Evans, R. A. (2009). *Macromolecules*, **42**, 1500–1511. Farrugia, L. J. (2012). *J. Appl. Cryst.* **45**, 849–854.
- Geen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katrizky, Vol. 3, pp. 469–500. New York: Pergamon.
- Khan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058–4064.
- Raja, R., Suresh, M., Raghunathan, R. & SubbiahPandi, A. (2015). Acta Cryst. E71, 574–577.
- Raj, T., Bhatia, R. K., kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). Eur. J. Med. Chem. 45, 790–794.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

#### *Acta Cryst.* (2015). E71, o648–o649 [https://doi.org/10.1107/S2056989015014553]

# Crystal structure of 4-(6-bromo-4-oxo-4*H*-chromen-3-yl)-2-methylamino-3nitropyrano[3,2-c]chromen-5(4*H*)-one chloroform monosolvate

### Rajamani Raja, Subramani Kandhasamy, Paramasivam T. Perumal and A. SubbiahPandi

#### S1. Comment

Chromene derivatives are heterocyclic compounds that have a variety of industrial, biological and chemical synthesis applications (Geen *et al.*, 1996; Ercole *et al.*, 2009). They exhibit a number of pharmacological activities such as anti-HIV, anti-inflammatory, anti-bacterial, anti-allergic, anti-cancer, *etc.* (Khan *et al.*, 2010; Raj *et al.*, 2010). Against this background an X-ray diffraction study of the title compound and its structural aspects are presented herein.

The asymmetric unit of the title compound is shown in Fig.1. The six-membered central pyran ring is very similar to a screw boat conformation as evidenced by the puckering parameters  $q_2 = 0.204$  (4) Å,  $\theta = 112.7$  (11) and  $\varphi = 6.7$  (12)°, respectively. The atoms C10 and O3 are deviating from the mean plane of C8—C9—C11—C12 by -0.266 and -0.644 Å, respectively. The chromene ring (O2/C1—C9) and (O7/C14—C22) are almost planar and normal to one another with a dihedral angle of 88.20 (2)° between their mean planes. The nitro group is bonded to the pyran ring at CC with the torsion angle C12—C11—N1—O5 of 3.5 (5)°, indicating a (+) *syn*-periplanar conformation for this group. The chromene ring attached to the pyran ring at C10 with torsion angle C11—C10—C14—C15 of 117.6 (4)°, indicating a (+) anti-clinal conformation for this group. The title compound exhibits structural similarities with already reported related structure (Raja *et al.*, 2015).

In the crystal structure, the molecules are linked to form an infinite chain along [100], through N2—H···O5 hydrogen bonds, generating graph set motifs  $R_2^2(12)$  (Fig.2). In addition, there is a N—H···O intramolecular interaction.

#### **S2. Experimental**

4-Hydroxycoumarin (0.81 g, 5 mmol), 6-bromo-4-oxo-4*H*-chromene-3-carbaldehyde (0.78 g, 5 mmol) and NMSM (0.74 g, 5 mmol) were mixed in ethanol at room temperature (3 h) in the presence of TEA (triethylamine 0.1 eq), as a catalyst. Upon completion of the reaction, the mixture was filtered, and washed with ethanol to obtained desired white product in 93% yield. Colourless blocks of the title compound were recrystallised from chloroform solution.

#### S3. Refinement

N and C-bound H atoms were positioned geometrically (C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with  $U_{iso}(H) = 1.5U_{eq}(C)$  for methyl H atoms and  $1.2U_{eq}(C)$  for all other H atoms.



## Figure 1

The molecular structure of the title molecule, with displacement ellipsoids drawn at 30% probability level. The intramolecular hydrogen bond, which generates an S(6) ring motif, is shown as a dashed line.



### Figure 2

Packing diagram showing the chain motif  $R_2^2(12)$  along the [100] direction.

4-(6-Bromo-4-oxo-4*H*-chromen-3-yl)-2-methylamino-3-nitropyrano[3,2-c]chromen-5(4*H*)-one chloroform monosolvate

### Crystal data

| $C_{22}H_{13}BrN_2O_7$ ·CHCl <sub>3</sub> | Z = 2                                                              |
|-------------------------------------------|--------------------------------------------------------------------|
| $M_r = 616.62$                            | F(000) = 616                                                       |
| Triclinic, $P\overline{1}$                | $D_{\rm x} = 1.643 {\rm ~Mg} {\rm ~m}^{-3}$                        |
| Hall symbol: -P 1                         | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å              |
| a = 9.8816 (2) Å                          | Cell parameters from 3672 reflections                              |
| b = 11.9237 (3) Å                         | $\theta = 1.8 - 25.0^{\circ}$                                      |
| c = 12.0616 (3) Å                         | $\mu = 2.02 \text{ mm}^{-1}$                                       |
| $\alpha = 80.804 \ (1)^{\circ}$           | T = 293  K                                                         |
| $\beta = 68.422 \ (1)^{\circ}$            | Colourless, block                                                  |
| $\gamma = 70.735 \ (1)^{\circ}$           | $0.35 \times 0.30 \times 0.25 \text{ mm}$                          |
| $V = 1246.36(5) \text{ Å}^3$              |                                                                    |
| Data collection                           |                                                                    |
| Bruker SMART APEXII CCD                   | 17277 measured reflections                                         |
| diffractometer                            | 4389 independent reflections                                       |
| Radiation source: fine-focus sealed tube  | 3672 reflections with $I > 2\sigma(I)$                             |
| Graphite monochromator                    | $R_{\rm int} = 0.019$                                              |
| $\omega$ and $\varphi$ scans              | $\theta_{\rm max} = 25.0^{\circ},  \theta_{\rm min} = 1.8^{\circ}$ |
| Absorption correction: multi-scan         | $h = -11 \rightarrow 10$                                           |
| (SADABS; Bruker, 2008)                    | $k = -14 \rightarrow 14$                                           |
| $T_{\min} = 0.539, \ T_{\max} = 0.632$    | $l = -14 \rightarrow 14$                                           |
|                                           |                                                                    |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier         |
|-------------------------------------------------|----------------------------------------------------------|
| Least-squares matrix: full                      | map                                                      |
| $R[F^2 > 2\sigma(F^2)] = 0.043$                 | Hydrogen site location: inferred from                    |
| $wR(F^2) = 0.120$                               | neighbouring sites                                       |
| S = 1.04                                        | H atoms treated by a mixture of independent              |
| 4389 reflections                                | and constrained refinement                               |
| 353 parameters                                  | $w = 1/[\sigma^2(F_o^2) + (0.0626P)^2 + 1.1978P]$        |
| 114 restraints                                  | where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                   |
| Primary atom site location: structure-invariant | $(\Delta/\sigma)_{\rm max} < 0.001$                      |
| direct methods                                  | $\Delta  ho_{ m max} = 0.63 \ { m e} \ { m \AA}^{-3}$    |
|                                                 | $\Delta \rho_{\rm min} = -0.53 \text{ e} \text{ Å}^{-3}$ |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ ,

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x           | У          | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|-------------|------------|-------------|-----------------------------|-----------|
| C1   | 0.6175 (4)  | 0.6474 (3) | 0.0736 (4)  | 0.0442 (9)                  |           |
| C2   | 0.5491 (5)  | 0.6922 (3) | -0.1038 (3) | 0.0447 (9)                  |           |
| C3   | 0.5920 (6)  | 0.7284 (4) | -0.2223 (4) | 0.0592 (11)                 |           |
| Н3   | 0.6853      | 0.7436     | -0.2601     | 0.071*                      |           |
| C4   | 0.4958 (6)  | 0.7418 (5) | -0.2839 (4) | 0.0678 (13)                 |           |
| H4   | 0.5237      | 0.7667     | -0.3640     | 0.081*                      |           |
| C5   | 0.3578 (6)  | 0.7189 (5) | -0.2288 (4) | 0.0675 (13)                 |           |
| Н5   | 0.2936      | 0.7283     | -0.2721     | 0.081*                      |           |
| C6   | 0.3140 (5)  | 0.6820 (4) | -0.1098 (4) | 0.0545 (11)                 |           |
| H6   | 0.2211      | 0.6660     | -0.0732     | 0.065*                      |           |
| C7   | 0.4101 (4)  | 0.6691 (3) | -0.0449 (3) | 0.0402 (8)                  |           |
| C8   | 0.3759 (4)  | 0.6353 (3) | 0.0800 (3)  | 0.0351 (8)                  |           |
| C9   | 0.4701 (4)  | 0.6296 (3) | 0.1389 (3)  | 0.0355 (8)                  |           |
| C10  | 0.4260 (4)  | 0.6090 (3) | 0.2719 (3)  | 0.0341 (8)                  |           |
| H10  | 0.5132      | 0.5529     | 0.2910      | 0.041*                      |           |
| C11  | 0.2968 (4)  | 0.5549 (3) | 0.3146 (3)  | 0.0362 (8)                  |           |
| C12  | 0.2024 (4)  | 0.5667 (3) | 0.2490 (3)  | 0.0395 (8)                  |           |
| C13  | -0.0189 (6) | 0.5523 (5) | 0.2111 (5)  | 0.0758 (16)                 |           |
| H13A | -0.1049     | 0.5241     | 0.2563      | 0.114*                      |           |
| H13B | 0.0393      | 0.5076     | 0.1405      | 0.114*                      |           |
| H13C | -0.0538     | 0.6349     | 0.1888      | 0.114*                      |           |
| C14  | 0.3830 (4)  | 0.7256 (3) | 0.3303 (3)  | 0.0344 (8)                  |           |
| C15  | 0.4574 (4)  | 0.7360 (3) | 0.3991 (3)  | 0.0415 (8)                  |           |
| H15  | 0.5365      | 0.6704     | 0.4080      | 0.050*                      |           |

| C16  | 0.3129 (4)   | 0.9334 (3)  | 0.4428 (3)  | 0.0406 (8)   |           |
|------|--------------|-------------|-------------|--------------|-----------|
| C17  | 0.2842 (5)   | 1.0337 (4)  | 0.5026 (4)  | 0.0530 (10)  |           |
| H17  | 0.3397       | 1.0319      | 0.5509      | 0.064*       |           |
| C18  | 0.1736 (5)   | 1.1350 (4)  | 0.4898 (4)  | 0.0528 (10)  |           |
| H18  | 0.1529       | 1.2026      | 0.5296      | 0.063*       |           |
| C19  | 0.0923 (4)   | 1.1360 (3)  | 0.4165 (3)  | 0.0423 (9)   |           |
| C20  | 0.1176 (4)   | 1.0372 (3)  | 0.3593 (3)  | 0.0396 (8)   |           |
| H20  | 0.0607       | 1.0391      | 0.3120      | 0.047*       |           |
| C21  | 0.2297 (4)   | 0.9331 (3)  | 0.3724 (3)  | 0.0362 (8)   |           |
| C22  | 0.2577 (4)   | 0.8247 (3)  | 0.3136 (3)  | 0.0368 (8)   |           |
| N1   | 0.2703 (4)   | 0.4975 (3)  | 0.4251 (3)  | 0.0405 (7)   |           |
| N2   | 0.0763 (4)   | 0.5375 (3)  | 0.2832 (3)  | 0.0519 (9)   |           |
| H2   | 0.0471       | 0.5069      | 0.3543      | 0.062*       |           |
| 01   | 0.7135 (3)   | 0.6371 (3)  | 0.1160 (3)  | 0.0648 (9)   |           |
| O2   | 0.6502 (3)   | 0.6786 (3)  | -0.0456 (2) | 0.0533 (7)   |           |
| O3   | 0.2394 (3)   | 0.6112 (2)  | 0.1340 (2)  | 0.0408 (6)   |           |
| O4   | 0.3527 (3)   | 0.4944 (2)  | 0.4837 (2)  | 0.0506 (7)   |           |
| O5   | 0.1646 (3)   | 0.4491 (3)  | 0.4673 (3)  | 0.0514 (7)   |           |
| O6   | 0.1798 (3)   | 0.8194 (2)  | 0.2569 (3)  | 0.0525 (7)   |           |
| O7   | 0.4263 (3)   | 0.8351 (2)  | 0.4569 (2)  | 0.0498 (7)   |           |
| Br1  | -0.05894 (5) | 1.27713 (4) | 0.39770 (4) | 0.05830 (19) |           |
| C23  | 0.7698 (6)   | 0.9052 (8)  | 0.0829 (5)  | 0.146 (3)    |           |
| H23A | 0.7777       | 0.8283      | 0.0580      | 0.175*       | 0.515 (6) |
| H23B | 0.7592       | 0.8259      | 0.1122      | 0.175*       | 0.485 (6) |
| Cl1  | 0.9143 (5)   | 0.8826 (4)  | 0.1496 (4)  | 0.1075 (15)  | 0.515 (6) |
| C12  | 0.5958 (5)   | 0.9568 (5)  | 0.1863 (5)  | 0.140 (2)    | 0.515 (6) |
| C13  | 0.8013 (6)   | 0.9975 (5)  | -0.0393 (3) | 0.131 (2)    | 0.515 (6) |
| Cl1′ | 0.8251 (14)  | 0.9193 (11) | 0.1864 (7)  | 0.260 (6)    | 0.485 (6) |
| Cl2′ | 0.5804 (9)   | 0.9669 (10) | 0.0975 (13) | 0.317 (8)    | 0.485 (6) |
| Cl3′ | 0.8819 (8)   | 0.8620 (7)  | -0.0529 (4) | 0.174 (3)    | 0.485 (6) |
|      |              |             |             |              |           |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C1  | 0.043 (2)   | 0.044 (2)   | 0.046 (2)   | -0.0120 (17) | -0.0174 (18) | 0.0013 (17)  |
| C2  | 0.052 (2)   | 0.040(2)    | 0.042 (2)   | -0.0108 (18) | -0.0176 (18) | -0.0028 (16) |
| C3  | 0.067 (3)   | 0.062 (3)   | 0.044 (2)   | -0.019 (2)   | -0.014 (2)   | -0.001 (2)   |
| C4  | 0.087 (4)   | 0.071 (3)   | 0.044 (3)   | -0.020 (3)   | -0.027 (3)   | 0.003 (2)    |
| C5  | 0.086 (4)   | 0.074 (3)   | 0.055 (3)   | -0.018 (3)   | -0.046 (3)   | 0.001 (2)    |
| C6  | 0.065 (3)   | 0.058 (3)   | 0.052 (3)   | -0.017 (2)   | -0.034 (2)   | -0.001(2)    |
| C7  | 0.051 (2)   | 0.0308 (18) | 0.041 (2)   | -0.0077 (16) | -0.0213 (18) | -0.0040 (15) |
| C8  | 0.0380 (19) | 0.0290 (17) | 0.041 (2)   | -0.0087 (15) | -0.0175 (16) | -0.0025 (14) |
| C9  | 0.0356 (19) | 0.0303 (17) | 0.042 (2)   | -0.0076 (15) | -0.0170 (16) | -0.0012 (14) |
| C10 | 0.0339 (18) | 0.0322 (17) | 0.0410 (19) | -0.0075 (14) | -0.0215 (15) | 0.0021 (14)  |
| C11 | 0.0377 (19) | 0.0330 (18) | 0.041 (2)   | -0.0105 (15) | -0.0187 (16) | 0.0043 (15)  |
| C12 | 0.041 (2)   | 0.0343 (18) | 0.049 (2)   | -0.0137 (16) | -0.0212 (17) | 0.0053 (16)  |
| C13 | 0.066 (3)   | 0.096 (4)   | 0.094 (4)   | -0.045 (3)   | -0.055 (3)   | 0.032 (3)    |
| C14 | 0.0360 (19) | 0.0353 (18) | 0.0355 (18) | -0.0116 (15) | -0.0174 (15) | 0.0042 (14)  |
|     |             |             |             |              |              |              |

| C15  | 0.045 (2)   | 0.0393 (19) | 0.045 (2)   | -0.0096 (17)  | -0.0255 (18) | 0.0016 (16)   |
|------|-------------|-------------|-------------|---------------|--------------|---------------|
| C16  | 0.045 (2)   | 0.043 (2)   | 0.038 (2)   | -0.0138 (17)  | -0.0176 (17) | -0.0001 (16)  |
| C17  | 0.061 (3)   | 0.058 (3)   | 0.051 (2)   | -0.018 (2)    | -0.028 (2)   | -0.010 (2)    |
| C18  | 0.061 (3)   | 0.046 (2)   | 0.053 (2)   | -0.019 (2)    | -0.014 (2)   | -0.0124 (19)  |
| C19  | 0.041 (2)   | 0.0357 (19) | 0.044 (2)   | -0.0124 (16)  | -0.0075 (17) | -0.0007 (16)  |
| C20  | 0.039 (2)   | 0.039 (2)   | 0.041 (2)   | -0.0134 (16)  | -0.0146 (16) | 0.0035 (16)   |
| C21  | 0.0376 (19) | 0.0354 (18) | 0.0376 (19) | -0.0126 (15)  | -0.0144 (16) | 0.0011 (15)   |
| C22  | 0.039 (2)   | 0.0373 (19) | 0.0399 (19) | -0.0118 (16)  | -0.0210 (16) | 0.0021 (15)   |
| N1   | 0.0407 (18) | 0.0347 (16) | 0.0451 (18) | -0.0081 (14)  | -0.0186 (15) | 0.0046 (13)   |
| N2   | 0.048 (2)   | 0.062 (2)   | 0.059 (2)   | -0.0286 (17)  | -0.0291 (17) | 0.0172 (17)   |
| 01   | 0.0446 (17) | 0.098 (3)   | 0.0627 (19) | -0.0300 (17)  | -0.0268 (15) | 0.0082 (17)   |
| O2   | 0.0475 (16) | 0.0693 (19) | 0.0447 (16) | -0.0225 (14)  | -0.0151 (13) | 0.0028 (14)   |
| O3   | 0.0430 (15) | 0.0440 (14) | 0.0461 (15) | -0.0173 (12)  | -0.0265 (12) | 0.0064 (11)   |
| O4   | 0.0554 (17) | 0.0539 (17) | 0.0505 (16) | -0.0164 (14)  | -0.0336 (14) | 0.0148 (13)   |
| 05   | 0.0497 (16) | 0.0521 (16) | 0.0548 (17) | -0.0239 (14)  | -0.0188 (13) | 0.0133 (13)   |
| 06   | 0.0569 (17) | 0.0432 (15) | 0.0710 (19) | -0.0030 (13)  | -0.0450 (16) | -0.0083 (13)  |
| O7   | 0.0592 (18) | 0.0485 (16) | 0.0545 (17) | -0.0080 (13)  | -0.0388 (14) | -0.0067 (13)  |
| Br1  | 0.0560 (3)  | 0.0359 (2)  | 0.0753 (3)  | -0.00750 (19) | -0.0191 (2)  | -0.00208 (19) |
| C23  | 0.127 (7)   | 0.178 (8)   | 0.117 (6)   | -0.035 (6)    | -0.027 (5)   | -0.024 (6)    |
| Cl1  | 0.125 (3)   | 0.100 (3)   | 0.118 (4)   | -0.038 (2)    | -0.061 (3)   | -0.005 (2)    |
| Cl2  | 0.107 (3)   | 0.123 (4)   | 0.134 (4)   | -0.031 (3)    | 0.019 (3)    | -0.002 (3)    |
| C13  | 0.157 (4)   | 0.152 (5)   | 0.084 (2)   | -0.078 (3)    | -0.028 (2)   | 0.028 (2)     |
| Cl1′ | 0.426 (17)  | 0.233 (10)  | 0.126 (5)   | -0.091 (11)   | -0.083 (8)   | -0.056 (6)    |
| Cl2′ | 0.257 (11)  | 0.154 (7)   | 0.425 (19)  | 0.054 (7)     | -0.078 (12)  | -0.041 (11)   |
| C13′ | 0.214 (7)   | 0.215 (8)   | 0.098 (3)   | -0.102 (6)    | -0.032 (4)   | 0.009 (4)     |
|      |             |             |             |               |              |               |

### Geometric parameters (Å, °)

| C101    | 1.199 (5) | C14—C15 | 1.337 (5) |
|---------|-----------|---------|-----------|
| C1—O2   | 1.370 (5) | C14—C22 | 1.453 (5) |
| C1—C9   | 1.446 (5) | C15—O7  | 1.358 (5) |
| C2—C3   | 1.374 (6) | C15—H15 | 0.9300    |
| C2—O2   | 1.374 (5) | C16—O7  | 1.367 (5) |
| C2—C7   | 1.391 (6) | C16—C21 | 1.383 (5) |
| C3—C4   | 1.365 (7) | C16—C17 | 1.390 (6) |
| С3—Н3   | 0.9300    | C17—C18 | 1.368 (6) |
| C4—C5   | 1.377 (7) | C17—H17 | 0.9300    |
| C4—H4   | 0.9300    | C18—C19 | 1.392 (6) |
| C5—C6   | 1.381 (7) | C18—H18 | 0.9300    |
| С5—Н5   | 0.9300    | C19—C20 | 1.366 (5) |
| С6—С7   | 1.397 (5) | C19—Br1 | 1.893 (4) |
| С6—Н6   | 0.9300    | C20—C21 | 1.397 (5) |
| С7—С8   | 1.437 (5) | C20—H20 | 0.9300    |
| С8—С9   | 1.344 (5) | C21—C22 | 1.470 (5) |
| C8—O3   | 1.369 (4) | C22—O6  | 1.223 (4) |
| C9—C10  | 1.501 (5) | N1—O4   | 1.248 (4) |
| C10-C11 | 1.505 (5) | N1—O5   | 1.264 (4) |
| C10—C14 | 1.521 (5) | N2—H2   | 0.8600    |
|         |           |         |           |

| С10—Н10                         | 0.9800               | C23—C11′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.587 (7)            |
|---------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| C11—N1                          | 1.372 (5)            | $C_{23}$ $C_{13'}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.653 (6)            |
| C11—C12                         | 1 391 (5)            | C23—Cl3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 688 (7)            |
| C12 - N2                        | 1 307 (5)            | $C^{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 691 (6)            |
| C12 - C12                       | 1.364(4)             | $C_{23}$ $C_{12}'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 721 (7)            |
| C13—N2                          | 1.361(1)<br>1.454(5) | $C_{23}$ $C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.812 (6)            |
| C13—H13A                        | 0.9600               | C23_H23A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9800               |
| C13_H13B                        | 0.9600               | C23_H23R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9800               |
| C13—H13C                        | 0.9600               | C25—1125D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9000               |
| ers—mse                         | 0.9000               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
| O1—C1—O2                        | 117.3 (4)            | C18—C17—H17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.3                |
| 01                              | 124.9 (4)            | С16—С17—Н17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.3                |
| 02                              | 117.8 (3)            | C17—C18—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 119.4 (4)            |
| $C_{3}$ $-C_{2}$ $-O_{2}$       | 117.1 (4)            | C17—C18—H18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.3                |
| $C_{3}$ $C_{2}$ $C_{7}$         | 1218(4)              | C19 - C18 - H18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.3                |
| 02-02-07                        | 121.0(1)<br>121.1(3) | $C_{20}$ $C_{19}$ $C_{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.5<br>121.6 (4)   |
| C4-C3-C2                        | 1190(5)              | $C_{20}$ $C_{19}$ $B_{r1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1193(3)              |
| C4-C3-H3                        | 120.5                | C18 - C19 - Br1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.3(3)<br>119.1(3) |
| C2-C3-H3                        | 120.5                | C19 - C20 - C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.1(3)<br>119.5(3) |
| $C_{2} = C_{3} = C_{4} = C_{5}$ | 120.9 (4)            | C19 - C20 - H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.3                |
| $C_{3}$ $C_{4}$ $H_{4}$         | 119.6                | $C_{21} = C_{20} = H_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.3                |
| C5-C4-H4                        | 119.6                | $C_{16} = C_{21} = C_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.5<br>118.8(3)    |
| C4-C5-C6                        | 120 5 (4)            | $C_{16} = C_{21} = C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.5(3)             |
| C4—C5—H5                        | 119.8                | $C_{20}$ $C_{21}$ $C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.5(3)<br>120.7(3) |
| С4 С5 Н5                        | 119.8                | 06-022-014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.7(3)<br>123.5(3) |
| $C_{5}$                         | 119.6 (4)            | $06-C^{22}-C^{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 123.3(3)<br>122.1(3) |
| C5 C6 H6                        | 119.0 (4)            | $C_{14}$ $C_{22}$ $C_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 122.1(3)<br>1144(3)  |
| C7-C6-H6                        | 120.2                | 04 - N1 - 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 117.7(3)<br>1204(3)  |
| $C_{2}$                         | 118 3 (4)            | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120.4(3)             |
| $C_2 - C_7 - C_8$               | 116.7(3)             | 05-N1-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.0(3)             |
| $C_{2} = C_{1} = C_{3}$         | 125.0(4)             | $C_{12}$ N2 $C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.5(3)<br>125.5(4) |
| $C_{9} - C_{8} - O_{3}$         | 123.0(4)<br>122.9(3) | C12 N2 C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 117 3                |
| $C_{2} = C_{2} = C_{2}$         | 122.9(3)<br>122.3(3) | C12 - 112<br>C13 - N2 - H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 117.3                |
| 03 - C8 - C7                    | 122.5(3)<br>114.8(3) | C1 - O2 - C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 127.3(3)             |
| $C_{8} - C_{9} - C_{1}$         | 119.5 (3)            | $C1^2 - C3 - C8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 122.3(3)<br>1197(3)  |
| $C_{8}$ $C_{9}$ $C_{10}$        | 1222(3)              | $C_{12} = 0.5 = 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.7(3)<br>118.5(3) |
| $C_1 - C_2 - C_{10}$            | 122.2(3)<br>1183(3)  | C11' - C23 - C13'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125.6(5)             |
| $C_{1} = C_{1} = C_{1}$         | 108.5(3)             | C11' - C23 - C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125.0(5)<br>117.6(7) |
| C9-C10-C14                      | 100.5(3)<br>109.8(3) | $C_{13}^{}C_{23}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{}C_{13}^{-$ | 554(3)               |
| $C_{11} - C_{10} - C_{14}$      | 109.0(3)             | C11' - C23 - C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 82 4 (5)             |
| $C_{10} - C_{10} - H_{10}$      | 108.8                | $C_{13}^{-} = C_{23}^{-} = C_{12}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 151.9(5)             |
| $C_{11} = C_{10} = H_{10}$      | 108.8                | $C_{13} = C_{23} = C_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 131.9(5)<br>112.8(5) |
| C14-C10-H10                     | 108.8                | C13 - C23 - C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 112.0(5)             |
| N1 - C11 - C12                  | 120.7(3)             | C13' - C23 - C12'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110.9(5)<br>114.1(5) |
| N1-C11-C10                      | 1170(3)              | $C_{13}$ $C_{23}$ $C_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85 0 (6)             |
| $C_{12}$ $C_{11}$ $C_{10}$      | 122 3 (3)            | $C_{12}$ $C_{23}$ $C_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38 2 (5)             |
| $N_{2}$ $C_{12}$ $O_{3}$        | 112.1 (3)            | C11' - C23 - C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 272(3)               |
| N2-C12-C11                      | 127.7 (3)            | Cl3′—C23—Cl1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99.0 (4)             |
|                                 | · ··· 、· / ···       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~ ~ • • • • • • •    |

| O3—C12—C11                                                  | 120.3 (3)           | Cl3—C23—Cl1                         | 109.5 (5)  |
|-------------------------------------------------------------|---------------------|-------------------------------------|------------|
| N2—C13—H13A                                                 | 109.5               | Cl2—C23—Cl1                         | 109.1 (4)  |
| N2—C13—H13B                                                 | 109.5               | Cl2′—C23—Cl1                        | 146.1 (5)  |
| H13A—C13—H13B                                               | 109.5               | Cl1'—C23—H23A                       | 123.7      |
| N2—C13—H13C                                                 | 109.5               | Cl3′—C23—H23A                       | 60.5       |
| H13A—C13—H13C                                               | 109.5               | C13—C23—H23A                        | 108.4      |
| H13B—C13—H13C                                               | 109.5               | C12—C23—H23A                        | 108.4      |
| C15—C14—C22                                                 | 120.1 (3)           | Cl2′—C23—H23A                       | 94.7       |
| C15—C14—C10                                                 | 120.2 (3)           | C11—C23—H23A                        | 108.4      |
| C22—C14—C10                                                 | 119.6 (3)           | Cl1′—C23—H23B                       | 93.9       |
| C14—C15—O7                                                  | 124.9 (3)           | Cl3'—C23—H23B                       | 93.9       |
| C14—C15—H15                                                 | 117.6               | Cl3—C23—H23B                        | 144.5      |
| 07—C15—H15                                                  | 117.6               | C12—C23—H23B                        | 85 5       |
| 07-C16-C21                                                  | 121 5 (3)           | C12' - C23 - H23B                   | 93.9       |
| 07 - C16 - C17                                              | 1172(3)             | $C_{11} = C_{23} = H_{23B}$         | 90.9       |
| $C_{21} - C_{16} - C_{17}$                                  | 121 4 (4)           | $H_{23}A = C_{23} = H_{23}B$        | 36.2       |
| C18 - C17 - C16                                             | 121.4(4)<br>1194(4) | 112574 025 11250                    | 50.2       |
| 010-017-010                                                 | 11).+ (+)           |                                     |            |
| $0^{2}-C^{2}-C^{3}-C^{4}$                                   | 179 3 (4)           | C10-C14-C15-07                      | -1788(3)   |
| $C_{2}^{-}C_{2}^{-}C_{3}^{-}C_{4}^{-}$                      | -0.1(7)             | 07 - C16 - C17 - C18                | 1789(4)    |
| $C_{1}^{2} - C_{2}^{2} - C_{3}^{2} - C_{4}^{2} - C_{5}^{2}$ | -0.4(7)             | $C_{21}$ $C_{16}$ $C_{17}$ $C_{18}$ | -14(6)     |
| $C_2 - C_3 - C_4 - C_5$                                     | 0.4(7)              | $C_{21} = C_{10} = C_{17} = C_{18}$ | -0.3(7)    |
| $C_{3} - C_{4} - C_{5} - C_{6} - C_{7}$                     | 0.1(3)              | $C_{10} = C_{11} = C_{10} = C_{10}$ | 1.7(6)     |
| $C_{+-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{$              | 0.0(7)              | $C_{17} = C_{18} = C_{19} = C_{20}$ | -170.2(2)  |
| $C_{3} = C_{2} = C_{7} = C_{0}$                             | 0.7(0)              | C19 - C10 - C20 - C21               | -179.2(3)  |
| 02-02-07-08                                                 | -1/8.3(3)           | $C_{18} - C_{19} - C_{20} - C_{21}$ | -1.5(0)    |
| $C_{3} = C_{2} = C_{7} = C_{8}$                             | -1/6.1(4)           | BII = C19 = C20 = C21               | 179.0(3)   |
| 02-02-07-08                                                 | 2.0(3)              | 0/-10-21-20                         | -1/8.0(3)  |
| $C_{3} = C_{0} = C_{1} = C_{2}$                             | -1.0(0)             | C1/-C10-C21-C20                     | 1.7(0)     |
| $C_{3} = C_{0} = C_{1} = C_{8}$                             | 1//.8 (4)           | 0/-0.00                             | 2.1(5)     |
| $C_2 = C_1 = C_3 = C_9$                                     | 1.9 (5)             | C1/-C10-C21-C22                     | -1//.5(4)  |
| $C_{0} = C_{1} = C_{0} = C_{0}$                             | -1/6.9(4)           | C19 - C20 - C21 - C16               | -0.4(5)    |
| $C_2 = C_1 = C_8 = O_3$                                     | -1/8.9(3)           | C19 - C20 - C21 - C22               | 178.9 (3)  |
| $C_{0} - C_{1} - C_{0} - C_{1}$                             | 2.3 (5)             | C13 - C14 - C22 - O6                | -1/6.2(4)  |
| 03 - 08 - 09 - 01                                           | 1/5.2 (3)           | C10-C14-C22-O6                      | 2.2 (6)    |
| C/-C8-C9-C1                                                 | -5.7(5)             | C15-C14-C22-C21                     | 3.0 (5)    |
| 03-08-09-010                                                | -6.7(5)             | C10-C14-C22-C21                     | -178.7(3)  |
| C/C8C9C10                                                   | 172.4 (3)           | C16-C21-C22-O6                      | 175.4 (4)  |
| 01-01-09-08                                                 | -175.3(4)           | C20—C21—C22—O6                      | -3.9 (6)   |
| 02-01-09-08                                                 | 4.9 (5)             | C16—C21—C22—C14                     | -3.8 (5)   |
| O1—C1—C9—C10                                                | 6.6 (6)             | C20—C21—C22—C14                     | 176.9 (3)  |
| O2—C1—C9—C10                                                | -173.2 (3)          | C12—C11—N1—O4                       | -176.3(3)  |
| C8—C9—C10—C11                                               | 19.9 (4)            | C10—C11—N1—O4                       | 0.6 (5)    |
| C1—C9—C10—C11                                               | -162.0 (3)          | C12—C11—N1—O5                       | 3.5 (5)    |
| C8—C9—C10—C14                                               | -102.7 (4)          | C10—C11—N1—O5                       | -179.6 (3) |
| C1—C9—C10—C14                                               | 75.4 (4)            | O3—C12—N2—C13                       | -1.6 (6)   |
| C9—C10—C11—N1                                               | 161.2 (3)           | C11—C12—N2—C13                      | 179.6 (4)  |
| C14—C10—C11—N1                                              | -77.5 (4)           | 01—C1—O2—C2                         | 179.6 (4)  |
| C9-C10-C11-C12                                              | -22.0 (5)           | C9—C1—O2—C2                         | -0.5(5)    |

| C14—C10—C11—C12 | 99.3 (4)   | C3—C2—O2—C1    | 177.5 (4)  |
|-----------------|------------|----------------|------------|
| N1-C11-C12-N2   | 6.3 (6)    | C7—C2—O2—C1    | -3.2 (6)   |
| C10-C11-C12-N2  | -170.4 (4) | N2-C12-O3-C8   | -173.6 (3) |
| N1-C11-C12-O3   | -172.3 (3) | C11—C12—O3—C8  | 5.3 (5)    |
| C10-C11-C12-O3  | 11.0 (5)   | C9—C8—O3—C12   | -7.5 (5)   |
| C9—C10—C14—C15  | -121.8 (4) | C7—C8—O3—C12   | 173.3 (3)  |
| C11—C10—C14—C15 | 117.6 (4)  | C14—C15—O7—C16 | -1.5 (6)   |
| C9—C10—C14—C22  | 59.9 (4)   | C21—C16—O7—C15 | 0.6 (5)    |
| C11—C10—C14—C22 | -60.7 (4)  | C17—C16—O7—C15 | -179.7 (4) |
| C22—C14—C15—O7  | -0.4 (6)   |                |            |
|                 |            |                |            |

Hydrogen-bond geometry (Å, °)

| D—H···A                   | <i>D</i> —Н | H···A | $D \cdots A$ | <i>D</i> —H…A |
|---------------------------|-------------|-------|--------------|---------------|
| N2—H2…O5                  | 0.86        | 2.00  | 2.622 (5)    | 128           |
| N2—H2···O5 <sup>i</sup>   | 0.86        | 2.37  | 3.063 (5)    | 138           |
| C4—H4···O7 <sup>ii</sup>  | 0.93        | 2.59  | 3.383 (6)    | 144           |
| C15—H15…O4 <sup>iii</sup> | 0.93        | 2.36  | 3.221 (4)    | 153           |

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) *x*, *y*, *z*-1; (iii) -*x*+1, -*y*+1, -*z*+1.