CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 30 July 2015
Accepted 3 August 2015

Edited by M. Gdaniec, Adam Mickiewicz University, Poland

Keywords: crystal structure; epoxycyclohexenones; absolute configuration; chiral crystal; chemoenzymatic strategy

CCDC reference: 1416687
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and absolute configuration of (3aS,4S,5R,7aR)-2,2,7-trimethyl-3a,4,5,7a-tetra-hydro-1,3-benzodioxole-4,5-diol

Mario A. Macías, ${ }^{\text {a,b }}$ Leopoldo Suescun, ${ }^{\text {a* }}$ Enrique Pandolfi, ${ }^{c}$ Valeria Schapiro, ${ }^{\text {c }}$ Gaurao D. Tibhe ${ }^{\text {c }}$ and Álvaro W. Mombrúa

${ }^{\text {a }}$ Cryssmat-Lab/Cátedra de Física/DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay, ${ }^{\text {b }}$ Grupo INTERFASE, Universidad Industrial de Santander, Carrera 27, Calle 9, Ciudad Universitaria, Bucaramanga, Colombia, and ${ }^{\text {c }}$ Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay. *Correspondence e-mail: leopoldo@fq.edu.uy

The absolute configuration of the title compound, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4}$, determined as $3 \mathrm{a} S, 4 S, 5 R, 7 \mathrm{a} R$ on the basis of the synthetic pathway, was confirmed by X-ray diffraction. The molecule contains a five- and a six-membered ring that adopt twisted and envelope conformations, respectively. The dihedral angle between the mean planes of the rings is $76.80(11)^{\circ}$ as a result of their cis-fusion. In the crystal, molecules are linked by two pairs of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming chains along [010]. These chains are further connected by weaker CH \cdots O interactions along [100], creating (001) sheets that interact only by weak van der Waals forces.

1. Chemical context

Compounds containing an epoxycyclohexenone skeleton are very interesting, not only because of their wide spectrum of biological activities, but also because of their synthetically challenging chemical structures (Pandolfi et al., 2013). A biotransformation of toluene leads to a chiral diol (see Fig. 1) which is used as a precursor in enantioselective syntheses of epoxycyclohexenone compounds. Model compounds of the central core of ambuic acid (Labora et al., 2008), (+)- and (-)bromoxone (Labora et al., 2010), an epoxyquinol analog (Heguaburu et al., 2010), gabosine A, ent-epoformin and entepiepoformin (Labora et al., 2011) have been prepared starting from the same precursor. The title compound, diol (3) (see Fig. 1) has been prepared from iodohydrin (1), which, as indicated earlier, can be easily synthesized via biotransformation of toluene (Carrera et al., 2007).

2. Structural commentary

Fig. 2 shows the molecule of the title compound. The absolute configuration of the title compound, determined as

Synthesis pathway and structural scheme of the chiral $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4}$ compound. and analogs
$3 \mathrm{a} S, 4 S, 5 R, 7 \mathrm{a} R$ on the basis of the synthetic pathway, was confirmed by X-ray diffraction on the basis of anomalous dispersion of light atoms only. The five-membered ring (O1-C2-O3-C3A-C7A) adopts a twisted conformation with puckering parameters $Q(2)=0.342$ (2) \AA and $\varphi=122.1$ (3) ${ }^{\circ}$. The six-membered ring (C3A-C4-C5-C6-C7-C7A) adopts an envelope conformation with atom C 4 as the flap. In this case, the puckering parameters are $Q=0.466$ (2) $\AA, \theta=52.1$ (2) and $\varphi=50.8(3)^{\circ}$. The fused rings are nearly perpendicular with a dihedral angle of $76.20(11)^{\circ}$ as a result of their cis-fusion.

3. Supramolecular features

In the crystal structure, the molecules are connected in the three crystallographic directions by intermolecular interactions of different strengths (Table 1). In the [010] direction hydrogen bonds $\mathrm{O} 41-\mathrm{H} 41 \cdots \mathrm{O}^{\mathrm{i}}$ and $\mathrm{O} 51-\mathrm{H} 51 \cdots \mathrm{O} 41^{\mathrm{i}}$ [symmetry code: (i) $-x, y+\frac{1}{2},-z+\frac{3}{2}$] join molecules into chains that are further connected by weaker C7AH7A…O51 ${ }^{\text {ii }}$ [symmetry code: (ii) $x+1, y, z$] hydrogen bonds along [100], forming (001) sheets. Hydrogen bonds of the $\mathrm{O}-$

Figure 2
The molecular structure of the title compound, showing the anisotropic displacement ellipsoids drawn at the 50% probability level.

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O $41-\mathrm{H} 41 \cdots{ }^{\text {. }}{ }^{\text {i }}$	0.82 (3)	2.04 (3)	2.849 (2)	171 (3)
	0.80 (3)	2.04 (3)	2.826 (2)	167 (2)
C7A - H7A \cdots O51 ${ }^{\text {ii }}$	0.98	2.44	3.299 (3)	146

Symmetry codes: (i) $-x, y+\frac{1}{2},-z+\frac{3}{2}$; (ii) $x+1, y, z$.
$\mathrm{H} \cdots \mathrm{O}$ type generate $R_{2}^{2}(10)$ motifs (Fig. 3). There are only weak van der Waals forces acting between neighbouring (001) sheets.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.36 with one update; Groom \& Allen, 2014) of the 3a,4,5,7a-tetrahydro-1,3-benzodioxole skeleton gave 30 hits, of which only 20 had no additional fused rings. In all cases, the sixmembered ring displays an envelope conformation with atom C4 as a flap. The orientation of the flap with respect to the

Figure 3
Packing of the title compound, viewed along [100], showing hydrogenbonded chains of molecules

Table 2
Experimental details.

Crystal data
Chemical formu
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)

Data collection

Diffractometer
Absorption correction
$T_{\min }, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Absolute structure

Absolute structure parameter
$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4}$
200.23

Orthorhombic, $P 2_{1} 2_{1} 2_{1}$ 293
6.1230 (13), 7.5163 (17), 23.347 (5)
1074.5 (4)

4
$\mathrm{Cu} K \alpha$
0.79
$0.28 \times 0.18 \times 0.14$

Bruker D8 Venture/Photon 100 CMOS
Multi-scan (SADABS; Bruker, 2013)
0.643, 0.752

29451, 1967, 1951
0.030
0.603
$0.029,0.078,1.18$
1967
139
H atoms treated by a mixture of independent and constrained refinement
$0.14,-0.11$
Flack x determined using 782 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$ (Parsons et al., 2013) 0.01 (3)

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and Mercury (Macrae et al., 2008).
plane of the envelope can be determined from the $\mathrm{C} 7-\mathrm{C} 7 \mathrm{~A}-$ $\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4$ or the $\mathrm{H} 7 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$ torsion angles (with very similar values due to the geometry of the cis-fused rings). The $\mathrm{C} 7-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4$ torsion angle is positive if the flap atom is located on the opposite side of the plane (defined by the remaining five atoms of the cyclohexene ring) to O1 and O3 of the 1,3-dioxole ring, as observed in the title compound [$\left.33.5(2)^{\circ}\right] .12$ of the 20 mentioned structures, show a positive torsion angle with minimum and maximum values of 17.2 and 36.4°, respectively. From analysis of the abovementioned torsion angle and the equatorial/axial orientation of the C 4 and C 5 substituents in the 20 structures, there is no clear trend that allows the relative orientation of the flap to be predicted based only on the size or kind of the substituents.

5. Synthesis and crystallization

The synthesis of the title compound was carried out through the intermediate epoxide (2) (see Fig. 1). Iodohydrin (1) ($0.6 \mathrm{mmol}, 0.18 \mathrm{~g}$) was dissolved in dry dichloromethane $(5 \mathrm{~mL})$ and 1,8-diazabicyclo[5.4.0]undec-7-en (DBU) $(0.8 \mathrm{mmol}, 0.12 \mathrm{~g})$ was added at room temperature. The reaction was stirred for 24 h After completion of the reaction, the mixture was diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution
$(20 \mathrm{~mL})$ and extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with saturated NaCl solution $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered. Concentration of the filtrate, followed by flash chromatography (hexanes:ethyl acetate 93:7) yielded (2) ($0.063 \mathrm{~g}, 60 \%$). FT-IR (KBr): 2983, 2926, 2856, 1672, 1371. 1H-NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 6.01(m, 1 \mathrm{H}), 4.40(m, 2 \mathrm{H}), 3.58(m, 1 \mathrm{H}), 3.42(t, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(s, 3 \mathrm{H}), 1.53(s, 3 \mathrm{H}), 1.41(s, 1 \mathrm{H})$. For the synthesis of diol (3), epoxide (2) ($0.27 \mathrm{mmol}, 0.05 \mathrm{~g}$) was dissolved in THF (25 mL) and $10 \% \mathrm{KOH}$ (aq., 25 mL) was added. This mixture was refluxed for 4 h . After completion of the reaction, the mixture was diluted with dichloromethane $(20 \mathrm{~mL})$ and the organic phase was washed with $10 \% \mathrm{HCl}$ until neutralization, washed with saturated NaCl solution $(10 \mathrm{~mL})$, dried with $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered. Concentration of the filtrate, followed by flash chromatography (ethyl acetate:hexanes $4: 6$) yielded (3) ($0.02 \mathrm{~g}, 52 \%$). Crystals suitable for X-ray structure analysis were obtained by dissolving (3) in the minimum volume of ethyl acetate, adding hexanes until the solution became slightly turbid and slowly evaporating the solvent at room temperature. (m.p. $=385-386 \mathrm{~K}$). FT-IR (KBr): 3402, 1637, 1371. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta: 5.45$ $(s, 1 \mathrm{H}), 4.48(m, 2 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 2.52(b s, 1 \mathrm{H})$, $2.30(b s, 1 \mathrm{H}), 1.79(s, 3 H), 1.38(s, 3 H), 1.35(s, 3 H)$.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms bonded to C were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.95-1.00 \AA)$ and included as riding contributions with isotropic displacement parameters set to 1.2-1.5 times of the $U_{\text {eq }}$ of the parent atom. H atoms belonging to OH groups were located in $\Delta \mathrm{F}$ maps and freely refined.

Acknowledgements

The authors wish to thank ANII (EQC_2012_07), CSIC and the Facultad de Química for funds to purchase the diffractometer and the financial support of OPCW and PEDECIBA. MM and GT also thank ANII for their respective postdoctoral contracts (PD_NAC_2014_1_102409 and PD_NAC_2014_1_102498).

References

Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Carrera, I., Brovetto, M. \& Seoane, G. (2007). Tetrahedron, 63, 40954107.

Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

Heguaburu, V., Schapiro, V. \& Pandolfi, E. (2010). Tetrahedron Lett. 51, 6921-6923.
Labora, M., Heguaburu, V., Pandolfi, E. \& Schapiro, V. (2008). Tetrahedron Asymmetry, 19, 893-895.
Labora, M., Pandolfi, E. \& Schapiro, V. (2010). Tetrahedron Asymmetry, 21, 153-155.
Labora, M., Schapiro, V. \& Pandolfi, E. (2011). Tetrahedron Asymmetry, 22, 1705-1707.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Pandolfi, E., Schapiro, V., Heguaburu, V. \& Labora, M. (2013). Curr. Org. Synth. 71, 2-42.

Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

supporting information

Acta Cryst. (2015). E71, 1013-1016 [https://doi.org/10.1107/S2056989015014590]
Crystal structure and absolute configuration of (3aS, $4 S, 5 R, 7 a R$)-2,2,7-tri-methyl-3a,4,5,7a-tetrahydro-1,3-benzodioxole-4,5-diol

Mario A. Macías, Leopoldo Suescun, Enrique Pandolfi, Valeria Schapiro, Gaurao D. Tibhe and Álvaro W. Mombrú

Computing details

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).
(3aS,4S,5R,7aR)-2,2,7-Trimethyl-3a,4,5,7a-tetrahydro-1,3-benzodioxole-4,5-diol

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4}$
$M_{r}=200.23$
Orthorhombic, $P 2_{1} 2_{2} 2_{1}$
Hall symbol: P 2ac 2ab
$a=6.1230$ (13) \AA
$b=7.5163$ (17) \AA
$c=23.347$ (5) \AA
$V=1074.5$ (4) \AA^{3}
$Z=4$

Data collection

Bruker D8 Venture/Photon 100 CMOS diffractometer
Radiation source: Cu Incoatec microsource
Helios X-ray optical focusing and monochromatization module
Detector resolution: 10.4167 pixels mm^{-1}
π and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2013)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.078$
$S=1.18$
1967 reflections
139 parameters
0 restraints
$F(000)=432$
$D_{\mathrm{x}}=1.238 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
$\theta=3.8-66.7^{\circ}$
$\mu=0.79 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Parallelepiped, colorless
$0.28 \times 0.18 \times 0.14 \mathrm{~mm}$
$T_{\text {min }}=0.643, T_{\text {max }}=0.752$
29451 measured reflections
1967 independent reflections
1951 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=68.4^{\circ}, \theta_{\text {min }}=3.8^{\circ}$
$h=-7 \rightarrow 6$
$k=-9 \rightarrow 9$
$l=-28 \rightarrow 28$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0278 P)^{2}+0.2133 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
\(\Delta \rho_{\text {max }}=0.14 \mathrm{e} \AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.11\) e \(\AA^{-3}\)
```

Extinction correction: SHELXL2014
(Sheldrick, 2015),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0063 (9)
Absolute structure: Flack x determined using 782 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)

Absolute structure parameter: 0.01 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O3	0.1718 (2)	0.02424 (17)	0.83031 (6)	0.0431 (4)
C3A	0.2609 (3)	0.1964 (3)	0.81761 (8)	0.0379 (4)
H3A	0.3868	0.1850	0.7919	0.045*
O1	0.4078 (3)	0.0973 (2)	0.90222 (7)	0.0562 (5)
C7A	0.3342 (3)	0.2591 (3)	0.87622 (8)	0.0405 (5)
H7A	0.4583	0.3403	0.8719	0.049*
H41	-0.026 (5)	0.337 (4)	0.7201 (12)	0.066 (9)*
H51	-0.197 (5)	0.545 (4)	0.8006 (10)	0.051 (8)*
O41	0.0349 (3)	0.2538 (2)	0.73585 (6)	0.0499 (4)
O51	-0.2609 (3)	0.4552 (2)	0.80767 (7)	0.0488 (4)
C7	0.1596 (4)	0.3484 (3)	0.91126 (8)	0.0403 (5)
C6	-0.0366 (3)	0.3793 (3)	0.88973 (8)	0.0415 (5)
H6	-0.1387	0.4344	0.9133	0.050*
C23	0.4527 (6)	-0.1837 (4)	0.85765 (13)	0.0778 (9)
H23A	0.5376	-0.2248	0.8896	0.117*
H23B	0.5475	-0.1307	0.8297	0.117*
H23C	0.3769	-0.2824	0.8407	0.117*
C2	0.2898 (4)	-0.0479 (3)	0.87792 (9)	0.0484 (5)
C4	0.0914 (3)	0.3159 (3)	0.79142 (8)	0.0358 (4)
H4	0.1557	0.4347	0.7873	0.043*
C5	-0.1064 (3)	0.3320 (2)	0.83012 (9)	0.0370 (4)
H5	-0.1771	0.2152	0.8317	0.044*
C71	0.2246 (5)	0.3979 (4)	0.97104 (10)	0.0621 (7)
H71A	0.1042	0.4554	0.9898	0.093*
H71B	0.3471	0.4775	0.9698	0.093*
H71C	0.2639	0.2925	0.9919	0.093*
C22	0.1246 (6)	-0.1199 (4)	0.91968 (12)	0.0762 (9)
H22A	0.1985	-0.1646	0.9530	0.114*
H22B	0.0437	-0.2145	0.9019	0.114*
H22C	0.0263	-0.0266	0.9308	0.114*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O3	$0.0525(8)$	$0.0324(7)$	$0.0444(8)$	$0.0017(6)$	$-0.0105(7)$	$-0.0019(6)$
C3A	$0.0346(9)$	$0.0391(10)$	$0.0400(10)$	$0.0008(8)$	$0.0044(8)$	$-0.0027(8)$
O1	$0.0621(10)$	$0.0478(9)$	$0.0587(9)$	$0.0118(8)$	$-0.0243(8)$	$-0.0051(7)$
C7A	$0.0353(9)$	$0.0407(10)$	$0.0455(10)$	$-0.0020(9)$	$-0.0032(9)$	$-0.0026(9)$
O41	$0.0668(11)$	$0.0458(8)$	$0.0372(7)$	$0.0157(8)$	$-0.0080(7)$	$-0.0020(7)$
O51	$0.0369(8)$	$0.0452(9)$	$0.0643(10)$	$0.0056(7)$	$0.0024(7)$	$0.0124(7)$
C7	$0.0482(12)$	$0.0349(10)$	$0.0377(10)$	$-0.0064(9)$	$0.0036(9)$	$-0.0010(8)$
C6	$0.0428(11)$	$0.0414(11)$	$0.0405(10)$	$0.0022(9)$	$0.0124(9)$	$0.0014(9)$
C23	$0.083(2)$	$0.0651(17)$	$0.0857(19)$	$0.0354(16)$	$-0.0191(16)$	$-0.0160(15)$
C2	$0.0605(14)$	$0.0390(11)$	$0.0456(11)$	$0.0103(10)$	$-0.0116(10)$	$-0.0022(9)$
C4	$0.0408(10)$	$0.0323(9)$	$0.0343(9)$	$0.0000(8)$	$0.0034(8)$	$-0.0004(7)$
C5	$0.0323(9)$	$0.0323(9)$	$0.0465(10)$	$0.0003(8)$	$0.0031(8)$	$0.0047(8)$
C71	$0.0779(17)$	$0.0649(15)$	$0.0436(12)$	$0.0032(15)$	$-0.0050(12)$	$-0.0076(11)$
C22	$0.102(2)$	$0.0665(17)$	$0.0599(15)$	$-0.0030(18)$	$0.0010(15)$	$0.0110(13)$

Geometric parameters (\AA, ${ }^{\circ}$)

O3-C2	1.433 (2)	C6-H6	0.9300
$\mathrm{O} 3-\mathrm{C} 3 \mathrm{~A}$	1.435 (2)	C23-C2	1.503 (3)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4$	1.503 (3)	C23-H23A	0.9600
C3A-C7A	1.515 (3)	C23-H23B	0.9600
C3A-H3A	0.9800	C23-H23C	0.9600
O1-C2	1.427 (3)	C2-C22	1.505 (4)
O1-C7A	1.432 (3)	C4-C5	1.516 (3)
C7A-C7	1.504 (3)	C4-H4	0.9800
C7A-H7A	0.9800	C5-H5	0.9800
O41-C4	1.421 (2)	C71-H71A	0.9600
O41-H41	0.82 (3)	C71-H71B	0.9600
O51-C5	1.424 (2)	C71-H71C	0.9600
O51-H51	0.80 (3)	C22-H22A	0.9600
C7-C6	1.323 (3)	C22-H22B	0.9600
C7-C71	1.498 (3)	C22-H22C	0.9600
C6-C5	1.499 (3)		
$\mathrm{C} 2-\mathrm{O} 3-\mathrm{C} 3 \mathrm{~A}$	108.04 (16)	O1-C2-C23	108.0 (2)
$\mathrm{O} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4$	111.11 (16)	O3-C2-C23	110.34 (19)
$\mathrm{O} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	101.91 (15)	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 22$	111.0 (2)
$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	112.71 (16)	$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 22$	107.4 (2)
$\mathrm{O} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	110.3	C23-C2-C22	113.9 (2)
$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	110.3	O41-C4-C3A	110.06 (15)
C7A-C3A-H3A	110.3	O41-C4-C5	112.08 (17)
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 7 \mathrm{~A}$	108.78 (15)	C3A-C4-C5	110.92 (15)
O1-C7A-C7	111.85 (17)	O41-C4-H4	107.9
$\mathrm{O} 1-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	102.24 (16)	C3A-C4-H4	107.9
C7-C7A-C3A	114.80 (16)	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	107.9

O1-C7A-H7A	109.2
C7-C7A-H7A	109.2
C3A-C7A-H7A	109.2
C4-O41-H41	105.6 (19)
C5-O51-H51	107.4 (19)
C6-C7-C71	123.5 (2)
C6-C7-C7A	121.16 (18)
C71-C7-C7A	115.4 (2)
C7-C6-C5	124.75 (18)
C7-C6-H6	117.6
C5-C6-H6	117.6
C2-C23-H23A	109.5
$\mathrm{C} 2-\mathrm{C} 23-\mathrm{H} 23 \mathrm{~B}$	109.5
$\mathrm{H} 23 \mathrm{~A}-\mathrm{C} 23-\mathrm{H} 23 \mathrm{~B}$	109.5
$\mathrm{C} 2-\mathrm{C} 23-\mathrm{H} 23 \mathrm{C}$	109.5
$\mathrm{H} 23 \mathrm{~A}-\mathrm{C} 23-\mathrm{H} 23 \mathrm{C}$	109.5
$\mathrm{H} 23 \mathrm{~B}-\mathrm{C} 23-\mathrm{H} 23 \mathrm{C}$	109.5
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{O} 3$	105.92 (16)
$\mathrm{C} 2-\mathrm{O} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4$	-151.43 (16)
$\mathrm{C} 2-\mathrm{O} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	-31.14 (19)
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 7$	95.1 (2)
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	-28.2 (2)
$\mathrm{O} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{O} 1$	35.64 (18)
$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{O} 1$	154.80 (17)
O3-C3A-C7A-C7	-85.7 (2)
$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 7$	33.5 (2)
O1-C7A-C7-C6	-120.5 (2)
C3A-C7A-C7-C6	-4.6 (3)
O1-C7A-C7-C71	59.4 (2)
C3A-C7A-C7-C71	175.29 (19)
C71-C7-C6-C5	179.8 (2)
C7A-C7-C6-C5	-0.3 (3)
$\mathrm{C} 7 \mathrm{~A}-\mathrm{O} 1-\mathrm{C} 2-\mathrm{O} 3$	9.6 (2)

O51-C5-C6	112.15 (17)
O51-C5-C4	111.30 (16)
C6-C5-C4	110.18 (16)
O51-C5-H5	107.7
C6-C5-H5	107.7
C4-C5-H5	107.7
C7-C71-H71A	109.5
C7-C71-H71B	109.5
H71A-C71-H71B	109.5
C7-C71-H71C	109.5
H71A-C71-H71C	109.5
H71B-C71-H71C	109.5
$\mathrm{C} 2-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~B}$	109.5
$\mathrm{H} 22 \mathrm{~A}-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~B}$	109.5
C2- $222-\mathrm{H} 22 \mathrm{C}$	109.5
$\mathrm{H} 22 \mathrm{~A}-\mathrm{C} 22-\mathrm{H} 22 \mathrm{C}$	109.5
$\mathrm{H} 22 \mathrm{~B}-\mathrm{C} 22-\mathrm{H} 22 \mathrm{C}$	109.5
$\mathrm{C} 7 \mathrm{~A}-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 23$	127.8 (2)
$\mathrm{C} 7 \mathrm{~A}-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 22$	-106.6 (2)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{O} 3-\mathrm{C} 2-\mathrm{O} 1$	14.5 (2)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 23$	-102.1 (2)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 22$	133.2 (2)
$\mathrm{O} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4-\mathrm{O} 41$	-68.3 (2)
C7A-C3A-C4-O41	178.01 (16)
O3-C3A-C4-C5	56.3 (2)
C7A-C3A-C4-C5	-57.4 (2)
C7-C6-C5-O51	-147.6 (2)
C7-C6-C5-C4	-23.0 (3)
O41-C4-C5-O51	-60.8 (2)
C3A-C4-C5-O51	175.69 (16)
O41-C4-C5-C6	174.10 (15)
C3A-C4-C5-C6	50.6 (2)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 41 — \mathrm{H} 41 \cdots \mathrm{O}^{\mathrm{i}}$	$0.82(3)$	$2.04(3)$	$2.849(2)$	$171(3)$
$\mathrm{O} 51 — \mathrm{H} 51 \cdots \mathrm{O} 41^{\mathrm{i}}$	$0.80(3)$	$2.04(3)$	$2.826(2)$	$167(2)$
$\mathrm{C} 7 A — \mathrm{H} 7 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.98	2.44	$3.299(3)$	146

Symmetry codes: (i) $-x, y+1 / 2,-z+3 / 2$; (ii) $x+1, y, z$.

