# data reports





open 🖯 access

Crystal structure of dichlorido{ $N^1$ -phenyl- $N^4$ -[(quinolin-2-yl- $\kappa N$ )methylidene]benzene-1,4-diamine- $\kappa N^4$ }mercury(II)

#### Md. Serajul Haque Faizi,<sup>a</sup> Elena V. Prisyazhnaya<sup>b</sup>\* and Turganbay S. Iskenderov<sup>c</sup>

<sup>a</sup>Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India, <sup>b</sup>Department of Chemistry, Kyiv National University of Construction and Architecture, Povitroflotsky Avenue 31, 03680 Kiev, Ukraine, and <sup>c</sup>National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine. \*Correspondence e-mail: eprisyazhnaya@ukr.net

Received 19 January 2015; accepted 24 January 2015

Edited by M. Weil, Vienna University of Technology, Austria

In the mononuclear title complex,  $[HgCl_2(C_{22}H_{17}N_3)]$ , synthesized from the quinoline-derived Schiff base  $N^1$ -phenyl- $N^4$ -[(quinolin-2-yl)methylidene]benzene-1,4-diamine (PQMBD) and HgCl<sub>2</sub>, the coordination sphere around the Hg<sup>2+</sup> atom is distorted tetrahedral, comprising two Cl atoms [Hg-Cl = 2.3487 (14) and 2.4490 (15) Å] and two N atom donors from the PQMBD ligand, *viz*. the quinolyl and the imine N atom [Hg-N = 2.270 (4) and 2.346 (4) Å, respectively]. The dihedral angle between the two benzene rings attached to the amino group is 43.7 (3)°. In the crystal, N-H···Cl and C-H···Cl hydrogen bonds, as well as  $\pi$ - $\pi$  stacking interactions between one phenyl ring and the pyridine ring of the quinoline moiety of an adjacent molecule [centroid-tocentroid separation = 3.617 (4) Å] are observed, resulting in a three-dimensional network.

**Keywords:** crystal structure; Schiff base; mercury(II) complex; N—H···Cl and C—H···Cl hydrogen bonding;  $\pi$ – $\pi$  stacking interactions.

#### CCDC reference: 1045457

#### 1. Related literature

For the hazards of mercury in organisms, see: Mandal *et al.* (2012). For reports of quinolyl derivatives of Schiff bases, see: Motswainyana *et al.* (2013); Das *et al.* (2013); Song *et al.* (2011); Jursic *et al.* (2002). For background to related Schiff base-metal complexes, see: Faizi & Hussain (2014); Faizi *et al.* (2014); Moroz *et al.* (2012). For related Hg-containing structures, see: Marjani *et al.* (2009); Faizi & Sen (2014), and for related Schiff base complexes, see: Penkova *et al.* (2009, 2010);

Strotmeyer *et al.* (2003); Petrusenko *et al.* (1997). The amino group of the title compound is separated from the chelating unit which makes this complex a possible precursor for further functionalization, eventually yielding binuclear compounds as reported by Fritsky *et al.* (1998, 2006) and Kanderal *et al.* (2005).



 $V = 4111.4 (12) \text{ Å}^3$ 

Mo  $K\alpha$  radiation

 $0.18 \times 0.15 \times 0.10 \text{ mm}$ 

 $\mu = 7.76 \text{ mm}^{-1}$ 

T = 100 K

Z = 8

#### 2. Experimental

2.1. Crystal data

 $\begin{array}{l} \left[ \mathrm{HgCl}_{2}(\mathrm{C}_{22}\mathrm{H}_{17}\mathrm{N}_{3}) \right] \\ M_{r} = 594.88 \\ \mathrm{Monoclinic}, \ C2/c \\ a = 29.265 \ (5) \\ b = 7.5671 \ (13) \\ c = 18.811 \ (3) \\ \beta \\ \beta = 99.271 \ (7)^{\circ} \end{array}$ 

2.2. Data collection

| Bruker SMART APEX CCD                  | 22545 measured reflections             |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 5133 independent reflections           |
| Absorption correction: multi-scan      | 3182 reflections with $I > 2\sigma(I)$ |
| (SADABS; Bruker, 2003)                 | $R_{\rm int} = 0.059$                  |
| $T_{\min} = 0.336, \ T_{\max} = 0.511$ |                                        |
|                                        |                                        |

2.3. Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.038$ | 253 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $vR(F^2) = 0.087$               | H-atom parameters constrained                              |
| S = 1.00                        | $\Delta \rho_{\rm max} = 0.99 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 5133 reflections                | $\Delta \rho_{\rm min} = -0.56 \ {\rm e} \ {\rm \AA}^{-3}$ |

Table 1Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|------|-------------------------|--------------|--------------------------------------|
| $N3-H3A\cdots Cl2^{i}$      | 0.86 | 2.58                    | 3.363 (4)    | 151                                  |
| $C10-H10\cdots Cl2^{ii}$    | 0.93 | 2.81                    | 3.679 (7)    | 157                                  |
| $C20-H20\cdots Cl1^{iii}$   | 0.93 | 2.80                    | 3.692 (11)   | 160                                  |

Symmetry codes: (i) -x + 1, y,  $-z + \frac{1}{2}$ ; (ii) -x + 1, -y + 1, -z + 1; (iii)  $x + \frac{1}{2}$ ,  $y + \frac{1}{2}$ , z.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2006) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

#### Acknowledgements

The authors are grateful to the Department of Chemistry, IIT Kanpur, Kanpur 208 016, India, for the X-ray data collection.

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5117).

#### References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Brandenburg, K. & Putz, H. (2006). *DIAMOND*. Crystal Impact, Bonn, Germany.
- Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Das, P., Mandal, A. K., Reddy, G. U., Baidya, M., Ghosh, S. K. & Das, A. (2013). Org. Biomol. Chem. 11, 6604–6614.
- Faizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197.
- Faizi, M. S. H., Mashrai, A., Garandal, S. & Shahid, M. (2014). Acta Cryst. E70, 0905–0906.
- Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173.
- Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). *Chem. Commun.* pp. 4125–4127.
- Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.

- Jursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). *Tetrahedron Lett.* 43, 5361–5365.
- Kanderal, O. M., Kozlowski, H., Dobosz, A., Swiatek-Kozlowska, J., Meyer, F. & Fritsky, I. O. (2005). *Dalton Trans.* pp. 1428–1437.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mandal, A. K., Suresh, M., Das, P., Suresh, E., Baidya, M., Ghosh, S. K. & Das, A. (2012). Org. Lett. 14, 2980–2983.
- Marjani, K., Asgarian, J., Mousavi, M. & Amani, V. (2009). Z. Anorg. Allg. Chem. 635, 1633–1637.
- Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). *Inorg. Chem.* 51, 7445–7447.
- Motswainyana, W. M., Onani, M. O., Madiehe, A. M., Saibu, M., Jacobs, J. & van Meervelt, L. (2013). *Inorg. Chim. Acta*, 400, 197–202.
- Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). *Inorg. Chim. Acta*, 363, 3036–3040.
- Penkova, L. V., Maci\ag, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). *Inorg. Chem.* 48, 6960–6971.
- Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Song, S., Zhao, W., Wang, L., Redshaw, C., Wang, F. & Sun, W.-H. (2011). J. Organomet. Chem. 696, 3029–3035.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.

# supporting information

Acta Cryst. (2015). E71, m46-m47 [doi:10.1107/S2056989015001620]

# Crystal structure of dichlorido{ $N^1$ -phenyl- $N^4$ -[(quinolin-2-yl- $\kappa N$ )methylidene]benzene-1,4-diamine- $\kappa N^4$ }mercury(II)

## Md. Serajul Haque Faizi, Elena V. Prisyazhnaya and Turganbay S. Iskenderov

#### S1. Experimental

The iminoquinolyl ligand  $N^1$ -phenyl- $N^4$ -[(quinolin-2-yl)methylidene]benzene-1,4-diamine (PQMBD) was prepared by reacting 2-quinolinecarboxaldehyde (0.085 g, 0.54 mmol) with one equivalent of N-phenyl-p-phenylenediamine (0.100 g, 0.54 mmol) and was obtained in 88% yield (0.15 g). The obtained compound was characterized by FT–IR, NMR and ESI-mass spectroscopy: IR (KBr,  $v / \text{cm}^{-1}$ ): 3417, 3052 (C-H arom), 1620 (C=N), 1515, 1313, 843, 756. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta / \text{p.p.m.}$ ): 8.85 (1H, S), 8.37 (1H, d), 8.23 (1H, d), 8.16 (1H, d), 7.86 (1H, d), 7.75 (1H, t), 7.58 (1H, t), 7.40 (2H, d), 7.30 (1H, t), 7.13 (5H, m), 6.51 (1H, t). ESI-MS m/z: 324 (M+1).

PQMBD (0.10 g, 0.31 mmol), mercury(II) chloride (0.08 g, 0.31 mmol) and ethanol (5 ml) were stirred vigorously for 1 h, after which the precipitate was filtered off and redissolved in dimethylformamide. Crystals of the title complex suitable for X-ray analysis was obtained within 3 days by slow evaporation of the DMF solvent.

#### S2. Refinement

The N-bound H-atom was located in a difference Fourier maps, and the positions restrained to N—H = 0.86 Å and  $U_{iso}(H) = 1.2U_{eq}(N)$ . All other H-atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$ .



#### Figure 1

The molecular structure and the atom-numbering scheme of the title complex, with non-H atoms drawn as displacement ellipsoids at the 40% probability level.



# Figure 2

N-H…Cl hydrogen bonds between adjacent molecules as viewed along [010].



## Figure 3

The packing of molecules in the title compound, showing intermolecular interactions as dashed lines.

## Dichlorido{ $N^1$ -phenyl- $N^4$ -[(quinolin-2-yl- $\kappa N$ )methylidene]benzene-1,4-diamine- $\kappa N^4$ }mercury(II)

| Crystal data                |                          |
|-----------------------------|--------------------------|
| $[HgCl_2(C_{22}H_{17}N_3)]$ | Hall symbol: -C 2yc      |
| $M_r = 594.88$              | a = 29.265 (5) Å         |
| Monoclinic, C2/c            | <i>b</i> = 7.5671 (13) Å |

Cell parameters from 7479 reflections

 $\theta = 2.8 - 24.6^{\circ}$  $\mu = 7.76 \text{ mm}^{-1}$ 

Block, colourless

 $0.18 \times 0.15 \times 0.10 \text{ mm}$ 

T = 100 K

c = 18.811 (3) Å  $\beta = 99.271 (7)^{\circ}$   $V = 4111.4 (12) \text{ Å}^3$  Z = 8 F(000) = 2272  $D_x = 1.922 \text{ Mg m}^{-3}$ Mo  $K\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ 

Data collection

| Bruker SMART APEX CCD                    | 22545 measured reflections                                          |
|------------------------------------------|---------------------------------------------------------------------|
| diffractometer                           | 5133 independent reflections                                        |
| Radiation source: fine-focus sealed tube | 3182 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                   | $R_{\rm int} = 0.059$                                               |
| $\omega$ scans                           | $\theta_{\rm max} = 28.4^{\circ}, \ \theta_{\rm min} = 2.8^{\circ}$ |
| Absorption correction: multi-scan        | $h = -38 \rightarrow 38$                                            |
| (SADABS; Bruker, 2003)                   | $k = -10 \rightarrow 9$                                             |
| $T_{\min} = 0.336, \ T_{\max} = 0.511$   | $l = -25 \rightarrow 25$                                            |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.038$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.087$                               | neighbouring sites                                         |
| S = 1.00                                        | H-atom parameters constrained                              |
| 5133 reflections                                | $w = 1/[\sigma^2 (F_o^2) + (0.0374P)^2 + 1.5818P]$         |
| 253 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.99 \text{ e } \text{\AA}^{-3}$  |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$ |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

| Fractional atomic coordinates | s and isotropic or | equivalent isotropic | displacement | parameters $(Å^2)$ | ) |
|-------------------------------|--------------------|----------------------|--------------|--------------------|---|
|                               |                    | 1 1                  |              | •                  | _ |

|     | x            | у          | Ζ          | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|------------|------------|-----------------------------|--|
| N1  | 0.42861 (15) | 0.2191 (5) | 0.5298 (2) | 0.0396 (10)                 |  |
| N2  | 0.50810 (14) | 0.2420 (6) | 0.4703 (2) | 0.0389 (10)                 |  |
| N3  | 0.65162 (17) | 0.3036 (7) | 0.3095 (2) | 0.0603 (14)                 |  |
| H3A | 0.6410       | 0.3037     | 0.2641     | 0.072*                      |  |
| C11 | 0.54666 (17) | 0.2526 (7) | 0.4348 (2) | 0.0373 (12)                 |  |
| C10 | 0.50915 (18) | 0.2791 (7) | 0.5369 (3) | 0.0422 (13)                 |  |
| H10 | 0.5369       | 0.3144     | 0.5644     | 0.051*                      |  |
| C17 | 0.6984 (2)   | 0.3274 (7) | 0.3265 (3) | 0.0507 (14)                 |  |
| C12 | 0.59004 (18) | 0.3146 (7) | 0.4656 (2) | 0.0431 (13)                 |  |
| H12 | 0.5952       | 0.3467     | 0.5140     | 0.052*                      |  |

| C1  | 0.3891 (2)   | 0.2106 (7)  | 0.5581 (3)    | 0.0475 (14)  |
|-----|--------------|-------------|---------------|--------------|
| C16 | 0.5400 (2)   | 0.2029 (7)  | 0.3633 (3)    | 0.0509 (15)  |
| H16 | 0.5115       | 0.1588      | 0.3418        | 0.061*       |
| C9  | 0.46781 (18) | 0.2673 (7)  | 0.5702 (3)    | 0.0392 (12)  |
| C15 | 0.5752 (2)   | 0.2181 (8)  | 0.3236 (3)    | 0.0572 (16)  |
| H15 | 0.5697       | 0.1861      | 0.2753        | 0.069*       |
| C13 | 0.62510 (18) | 0.3293 (7)  | 0.4263 (3)    | 0.0447 (13)  |
| H13 | 0.6537       | 0.3729      | 0.4481        | 0.054*       |
| C6  | 0.3892 (2)   | 0.2468 (8)  | 0.6324 (3)    | 0.0479 (14)  |
| C7  | 0.4309 (2)   | 0.2985 (7)  | 0.6737 (3)    | 0.0543 (15)  |
| H7  | 0.4319       | 0.3271      | 0.7220        | 0.065*       |
| C8  | 0.4699 (2)   | 0.3076 (8)  | 0.6443 (3)    | 0.0559 (16)  |
| H8  | 0.4978       | 0.3400      | 0.6722        | 0.067*       |
| C14 | 0.61872 (19) | 0.2795 (7)  | 0.3533 (3)    | 0.0469 (14)  |
| Hg1 | 0.432753 (8) | 0.18401 (3) | 0.411137 (10) | 0.05198 (10) |
| Cl2 | 0.40186 (6)  | 0.4552 (2)  | 0.35050 (7)   | 0.0702 (5)   |
| Cl1 | 0.41693 (5)  | -0.0647 (2) | 0.33652 (7)   | 0.0593 (4)   |
| C2  | 0.3473 (2)   | 0.1623 (7)  | 0.5149 (3)    | 0.0553 (15)  |
| H2  | 0.3471       | 0.1343      | 0.4667        | 0.066*       |
| C4  | 0.3076 (2)   | 0.1986 (8)  | 0.6148 (4)    | 0.0699 (19)  |
| H4  | 0.2798       | 0.1988      | 0.6327        | 0.084*       |
| C3  | 0.3070 (2)   | 0.1557 (8)  | 0.5420 (3)    | 0.0656 (18)  |
| Н3  | 0.2795       | 0.1233      | 0.5129        | 0.079*       |
| C5  | 0.3471 (2)   | 0.2397 (9)  | 0.6601 (3)    | 0.0624 (17)  |
| Н5  | 0.3465       | 0.2628      | 0.7085        | 0.075*       |
| C18 | 0.7240 (2)   | 0.2570 (9)  | 0.3877 (3)    | 0.0632 (17)  |
| H18 | 0.7096       | 0.1968      | 0.4210        | 0.076*       |
| C19 | 0.7715 (3)   | 0.2770 (13) | 0.3989 (4)    | 0.098 (3)    |
| H19 | 0.7890       | 0.2272      | 0.4396        | 0.118*       |
| C22 | 0.7218 (3)   | 0.4179 (9)  | 0.2794 (3)    | 0.0700 (19)  |
| H22 | 0.7050       | 0.4696      | 0.2384        | 0.084*       |
| C21 | 0.7680 (3)   | 0.4324 (11) | 0.2915 (5)    | 0.091 (3)    |
| H21 | 0.7826       | 0.4886      | 0.2573        | 0.110*       |
| C20 | 0.7937 (3)   | 0.3686 (15) | 0.3512 (5)    | 0.115 (4)    |
| H20 | 0.8256       | 0.3856      | 0.3602        | 0.138*       |
|     |              |             |               |              |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$  | $U^{22}$  | $U^{33}$  | $U^{12}$   | $U^{13}$    | $U^{23}$     |
|-----|-----------|-----------|-----------|------------|-------------|--------------|
| N1  | 0.046 (3) | 0.040 (3) | 0.033 (2) | 0.002 (2)  | 0.0060 (19) | 0.0038 (18)  |
| N2  | 0.043 (3) | 0.040 (2) | 0.033 (2) | -0.003(2)  | 0.0032 (18) | -0.0005 (18) |
| N3  | 0.050 (3) | 0.101 (4) | 0.030(2)  | 0.000 (3)  | 0.007 (2)   | 0.001 (2)    |
| C11 | 0.039 (3) | 0.041 (3) | 0.034 (3) | 0.001 (2)  | 0.011 (2)   | -0.006 (2)   |
| C10 | 0.045 (3) | 0.044 (3) | 0.034 (3) | 0.003 (2)  | -0.002(2)   | 0.007 (2)    |
| C17 | 0.053 (4) | 0.056 (4) | 0.046 (3) | 0.003 (3)  | 0.015 (3)   | -0.004 (3)   |
| C12 | 0.050 (3) | 0.050 (3) | 0.029 (2) | -0.002 (3) | 0.003 (2)   | -0.002 (2)   |
| C1  | 0.055 (4) | 0.040 (3) | 0.047 (3) | 0.009 (3)  | 0.008 (3)   | 0.008 (2)    |
| C16 | 0.048 (3) | 0.064 (4) | 0.039 (3) | -0.007 (3) | 0.000(2)    | -0.014 (3)   |
|     |           |           |           |            |             |              |

# supporting information

| C9  | 0.048 (3)    | 0.038 (3)    | 0.033 (3)    | 0.007 (2)     | 0.007 (2)   | 0.000 (2)     |
|-----|--------------|--------------|--------------|---------------|-------------|---------------|
| C15 | 0.055 (4)    | 0.085 (5)    | 0.030 (3)    | -0.009 (3)    | 0.002 (3)   | -0.013 (3)    |
| C13 | 0.037 (3)    | 0.058 (4)    | 0.037 (3)    | -0.005 (3)    | 0.000(2)    | -0.007 (3)    |
| C6  | 0.057 (4)    | 0.048 (3)    | 0.042 (3)    | 0.006 (3)     | 0.015 (3)   | 0.009 (3)     |
| C7  | 0.070 (4)    | 0.061 (4)    | 0.034 (3)    | 0.002 (3)     | 0.015 (3)   | -0.003 (3)    |
| C8  | 0.060 (4)    | 0.071 (4)    | 0.034 (3)    | -0.001 (3)    | 0.000 (3)   | 0.003 (3)     |
| C14 | 0.046 (3)    | 0.058 (4)    | 0.037 (3)    | 0.005 (3)     | 0.007 (2)   | 0.000 (3)     |
| Hg1 | 0.05736 (16) | 0.05833 (16) | 0.03782 (13) | -0.00317 (12) | 0.00037 (9) | -0.00853 (11) |
| Cl2 | 0.1027 (13)  | 0.0504 (9)   | 0.0476 (8)   | 0.0032 (9)    | -0.0178 (8) | -0.0030(7)    |
| Cl1 | 0.0732 (10)  | 0.0508 (9)   | 0.0524 (8)   | -0.0083 (8)   | 0.0053 (7)  | -0.0122 (7)   |
| C2  | 0.052 (4)    | 0.064 (4)    | 0.052 (3)    | -0.002 (3)    | 0.012 (3)   | 0.000 (3)     |
| C4  | 0.066 (4)    | 0.078 (5)    | 0.073 (5)    | 0.007 (4)     | 0.032 (4)   | -0.001 (4)    |
| C3  | 0.049 (4)    | 0.078 (5)    | 0.070 (4)    | 0.003 (3)     | 0.011 (3)   | 0.007 (4)     |
| C5  | 0.069 (5)    | 0.068 (4)    | 0.058 (4)    | 0.009 (4)     | 0.034 (4)   | 0.010 (3)     |
| C18 | 0.051 (4)    | 0.087 (5)    | 0.052 (4)    | 0.003 (4)     | 0.010 (3)   | 0.009 (3)     |
| C19 | 0.057 (5)    | 0.174 (9)    | 0.062 (4)    | 0.006 (5)     | 0.006 (4)   | -0.022 (5)    |
| C22 | 0.082 (5)    | 0.076 (5)    | 0.061 (4)    | 0.009 (4)     | 0.040 (4)   | 0.008 (4)     |
| C21 | 0.094 (6)    | 0.097 (6)    | 0.098 (6)    | -0.031 (5)    | 0.061 (5)   | -0.025 (5)    |
| C20 | 0.069 (6)    | 0.179 (10)   | 0.107 (7)    | -0.036 (6)    | 0.045 (5)   | -0.069 (7)    |
|     |              |              |              |               |             |               |

Geometric parameters (Å, °)

| N1—C9   | 1.322 (6) | C13—H13 | 0.9300      |
|---------|-----------|---------|-------------|
| N1-C1   | 1.349 (7) | C6—C7   | 1.394 (8)   |
| N1—Hg1  | 2.270 (4) | C6—C5   | 1.413 (8)   |
| N2-C10  | 1.279 (6) | C7—C8   | 1.347 (8)   |
| N2-C11  | 1.402 (6) | C7—H7   | 0.9300      |
| N2—Hg1  | 2.346 (4) | C8—H8   | 0.9300      |
| N3—C17  | 1.367 (7) | Hg1—Cl1 | 2.3487 (14) |
| N3—C14  | 1.377 (7) | Hg1—Cl2 | 2.4490 (15) |
| N3—H3A  | 0.8600    | C2—C3   | 1.359 (8)   |
| C11—C16 | 1.380 (6) | C2—H2   | 0.9300      |
| C11—C12 | 1.389 (7) | C4—C5   | 1.358 (9)   |
| С10—С9  | 1.453 (7) | C4—C3   | 1.403 (8)   |
| С10—Н10 | 0.9300    | C4—H4   | 0.9300      |
| C17—C22 | 1.385 (8) | С3—Н3   | 0.9300      |
| C17—C18 | 1.375 (8) | С5—Н5   | 0.9300      |
| C12—C13 | 1.362 (7) | C18—C19 | 1.381 (9)   |
| С12—Н12 | 0.9300    | C18—H18 | 0.9300      |
| C1—C2   | 1.404 (8) | C19—C20 | 1.375 (12)  |
| C1—C6   | 1.425 (7) | C19—H19 | 0.9300      |
| C16—C15 | 1.370 (8) | C22—C21 | 1.340 (9)   |
| С16—Н16 | 0.9300    | C22—H22 | 0.9300      |
| С9—С8   | 1.418 (7) | C21—C20 | 1.338 (11)  |
| C15—C14 | 1.385 (7) | C21—H21 | 0.9300      |
| С15—Н15 | 0.9300    | C20—H20 | 0.9300      |
| C13—C14 | 1.409 (7) |         |             |
|         |           |         |             |

| C9—N1—C1       | 120.4 (4) | С6—С7—Н7        | 119.7       |
|----------------|-----------|-----------------|-------------|
| C9—N1—Hg1      | 114.8 (3) | C7—C8—C9        | 119.1 (5)   |
| C1—N1—Hg1      | 124.5 (4) | С7—С8—Н8        | 120.4       |
| C10—N2—C11     | 124.0 (4) | С9—С8—Н8        | 120.4       |
| C10—N2—Hg1     | 112.2 (3) | C15—C14—N3      | 119.3 (5)   |
| C11—N2—Hg1     | 123.5 (3) | C15—C14—C13     | 116.8 (5)   |
| C17—N3—C14     | 130.3 (5) | N3—C14—C13      | 123.6 (5)   |
| C17—N3—H3A     | 114.8     | N1—Hg1—N2       | 72.96 (15)  |
| C14—N3—H3A     | 114.8     | N1—Hg1—Cl1      | 130.14 (11) |
| C16—C11—C12    | 118.3 (5) | N2—Hg1—Cl1      | 120.86 (11) |
| C16—C11—N2     | 116.8 (5) | N1—Hg1—Cl2      | 106.60 (11) |
| C12—C11—N2     | 124.9 (4) | N2—Hg1—Cl2      | 108.21 (11) |
| N2—C10—C9      | 121.3 (5) | Cl1—Hg1—Cl2     | 111.75 (5)  |
| N2—C10—H10     | 119.4     | C3—C2—C1        | 121.4 (6)   |
| С9—С10—Н10     | 119.4     | C3—C2—H2        | 119.3       |
| N3—C17—C22     | 119.6 (5) | C1—C2—H2        | 119.3       |
| N3—C17—C18     | 122.4 (5) | C5—C4—C3        | 122.7 (6)   |
| C22—C17—C18    | 118.0 (6) | C5—C4—H4        | 118.7       |
| C13—C12—C11    | 121.2 (4) | C3—C4—H4        | 118.7       |
| C13—C12—H12    | 119.4     | C2—C3—C4        | 118.9 (6)   |
| C11—C12—H12    | 119.4     | С2—С3—Н3        | 120.6       |
| N1—C1—C2       | 120.5 (5) | С4—С3—Н3        | 120.6       |
| N1—C1—C6       | 120.8 (5) | C4—C5—C6        | 118.8 (6)   |
| C2—C1—C6       | 118.7 (5) | C4—C5—H5        | 120.6       |
| C15—C16—C11    | 120.5 (5) | С6—С5—Н5        | 120.6       |
| C15—C16—H16    | 119.7     | C19—C18—C17     | 119.0 (6)   |
| C11—C16—H16    | 119.7     | C19—C18—H18     | 120.5       |
| N1—C9—C8       | 121.4 (5) | C17—C18—H18     | 120.5       |
| N1-C9-C10      | 118.3 (4) | C18—C19—C20     | 121.7 (8)   |
| C8—C9—C10      | 120.3 (5) | C18—C19—H19     | 119.2       |
| C16—C15—C14    | 122.1 (5) | С20—С19—Н19     | 119.2       |
| C16—C15—H15    | 118.9     | C21—C22—C17     | 121.4 (7)   |
| C14—C15—H15    | 118.9     | C21—C22—H22     | 119.3       |
| C12—C13—C14    | 121.0 (5) | C17—C22—H22     | 119.3       |
| C12—C13—H13    | 119.5     | C22—C21—C20     | 121.9 (7)   |
| C14—C13—H13    | 119.5     | C22—C21—H21     | 119.0       |
| C7—C6—C5       | 122.9 (5) | C20—C21—H21     | 119.0       |
| C7—C6—C1       | 117.6 (5) | C21—C20—C19     | 118.0 (8)   |
| C5—C6—C1       | 119.4 (6) | С21—С20—Н20     | 121.0       |
| C8—C7—C6       | 120.6 (5) | С19—С20—Н20     | 121.0       |
| С8—С7—Н7       | 119.7     |                 |             |
|                |           |                 |             |
| C10—N2—C11—C16 | 178.2 (5) | C16—C15—C14—N3  | -175.4 (6)  |
| Hg1—N2—C11—C16 | -8.8 (7)  | C16—C15—C14—C13 | -1.1 (9)    |
| C10—N2—C11—C12 | -4.2 (8)  | C17—N3—C14—C15  | -165.2 (6)  |
| Hg1—N2—C11—C12 | 168.9 (4) | C17—N3—C14—C13  | 20.9 (10)   |
| C11—N2—C10—C9  | 179.3 (5) | C12—C13—C14—C15 | 0.9 (8)     |
| Hg1—N2—C10—C9  | 5.6 (6)   | C12—C13—C14—N3  | 174.9 (5)   |

| C14 N2 C17 C22        | 152 7 (()  | CO N1 11.1 N2   | 5 2 (2)    |
|-----------------------|------------|-----------------|------------|
| C14 - N3 - C1 / - C22 | -153.7(6)  | C9-N1-Hg1-N2    | 5.3 (3)    |
| C14—N3—C17—C18        | 29.6 (10)  | C1—N1—Hg1—N2    | 178.8 (4)  |
| C16—C11—C12—C13       | 1.1 (8)    | C9—N1—Hg1—Cl1   | 121.6 (3)  |
| N2-C11-C12-C13        | -176.5 (5) | C1—N1—Hg1—Cl1   | -64.9 (4)  |
| C9—N1—C1—C2           | 178.9 (5)  | C9—N1—Hg1—Cl2   | -99.2 (3)  |
| Hg1—N1—C1—C2          | 5.8 (7)    | C1—N1—Hg1—Cl2   | 74.3 (4)   |
| C9—N1—C1—C6           | -2.3 (8)   | C10—N2—Hg1—N1   | -5.6 (3)   |
| Hg1—N1—C1—C6          | -175.5 (4) | C11—N2—Hg1—N1   | -179.4 (4) |
| C12—C11—C16—C15       | -1.3 (8)   | C10—N2—Hg1—Cl1  | -132.7 (3) |
| N2-C11-C16-C15        | 176.6 (5)  | C11—N2—Hg1—Cl1  | 53.5 (4)   |
| C1—N1—C9—C8           | 1.3 (7)    | C10—N2—Hg1—Cl2  | 96.7 (4)   |
| Hg1—N1—C9—C8          | 175.1 (4)  | C11—N2—Hg1—Cl2  | -77.1 (4)  |
| C1—N1—C9—C10          | -178.3 (5) | N1—C1—C2—C3     | -178.9 (5) |
| Hg1—N1—C9—C10         | -4.6 (6)   | C6—C1—C2—C3     | 2.3 (8)    |
| N2-C10-C9-N1          | -0.9 (8)   | C1—C2—C3—C4     | 0.1 (9)    |
| N2-C10-C9-C8          | 179.5 (5)  | C5—C4—C3—C2     | -2.7 (10)  |
| C11—C16—C15—C14       | 1.3 (10)   | C3—C4—C5—C6     | 2.7 (10)   |
| C11—C12—C13—C14       | -1.0 (8)   | C7—C6—C5—C4     | 175.9 (6)  |
| N1—C1—C6—C7           | 2.8 (8)    | C1—C6—C5—C4     | -0.1 (9)   |
| C2-C1-C6-C7           | -178.5 (5) | N3-C17-C18-C19  | 175.8 (6)  |
| N1—C1—C6—C5           | 178.9 (5)  | C22-C17-C18-C19 | -0.9 (10)  |
| C2-C1-C6-C5           | -2.3 (8)   | C17—C18—C19—C20 | 1.4 (12)   |
| C5—C6—C7—C8           | -178.2 (6) | N3-C17-C22-C21  | -174.9 (6) |
| C1—C6—C7—C8           | -2.2 (9)   | C18—C17—C22—C21 | 1.9 (10)   |
| C6—C7—C8—C9           | 1.3 (9)    | C17—C22—C21—C20 | -3.5 (13)  |
| N1—C9—C8—C7           | -0.8 (8)   | C22—C21—C20—C19 | 3.8 (14)   |
| C10-C9-C8-C7          | 178.9 (5)  | C18—C19—C20—C21 | -2.8 (14)  |
|                       |            |                 |            |

## Hydrogen-bond geometry (Å, °)

| D—H···A                       | D—H  | H···A | D··· $A$   | D—H··· $A$ |
|-------------------------------|------|-------|------------|------------|
| N3—H3A····Cl2 <sup>i</sup>    | 0.86 | 2.58  | 3.363 (4)  | 151        |
| C10—H10…Cl2 <sup>ii</sup>     | 0.93 | 2.81  | 3.679 (7)  | 157        |
| C20—H20····Cl1 <sup>iii</sup> | 0.93 | 2.80  | 3.692 (11) | 160        |

Symmetry codes: (i) -*x*+1, *y*, -*z*+1/2; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*+1/2, *y*+1/2, *z*.