

CRYSTALLOGRAPHIC COMMUNICATIONS

Crystal structure of poly[bis(μ_2 -5hydroxynicotinato- $\kappa^2 N:O^3$)zinc]

Wen-Bing Wang, Shan-Shan Xu and Hong-Ii Chen*

Department of Material Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China. *Correspondence e-mail: thjchen@jnu.edu.cn

Received 16 December 2014; accepted 7 January 2015

Edited by M. Weil, Vienna University of Technology, Austria

The title coordination polymer, $[Zn(C_6H_4NO_3)_2]_n$, was prepared under hydrothermal conditions by the reaction of zinc nitrate with 5-hydroxynicotinic acid in the presence of malonic acid. In the structure, the Zn^{II} ion is coordinated by two carboxylate O atoms and two pyridine N atoms of four 5-hydroxynicotinate ligands in a distorted tetrahedral coordination environment. The μ_2 -bridging mode of each anion leads to the formation of a three-dimensional framework structure. Intermolecular hydrogen bonds between the hydroxy groups of one anion and the non-coordinating carboxylate O atoms of neighbouring anions consolidate the crystal packing.

Keywords: crystal structure; zinc coordination polymer; 5-hydroxynicotinate ligand; hydrogen bonding.

CCDC reference: 1042412

1. Related literature

For transition metal complexes with 5-hydroxynicotinate ligands, see: Jiang & Feng (2008); Zhang et al. (2011); Yang et al. (2010). For corresponding rare earth metal complexes, see: Zhang et al. (2012); Mi et al. (2012); Xu et al. (2013).

OPEN a ACCESS 2. Experimental

2.1. Crystal data

$[Zn(C_6H_4NO_3)_2]$	$V = 1221.07 (14) \text{ Å}^3$
$M_r = 341.57$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 9.4299 (6) Å	$\mu = 2.04 \text{ mm}^{-1}$
b = 10.5453 (7) Å	T = 150 K
c = 12.6914 (8) Å	$0.41 \times 0.37 \times 0.17 \text{ mm}$
$\beta = 104.640 \ (7)^{\circ}$	

2.2. Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{\min} = 0.488, \ T_{\max} = 0.723$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.075$ S = 1.07

3345 reflections

 $R_{\rm int} = 0.034$

7054 measured reflections

2891 independent reflections

2397 reflections with $I > 2\sigma(I)$

192 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.42 \text{ e} \text{ \AA}^ \Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$	
$\begin{array}{c} O3 - H3A \cdots O5^{i} \\ O6 - H6A \cdots O2^{ii} \end{array}$	0.82 0.82	1.88 1.83	2.697 (2) 2.651 (3)	175 174	
Symmetry codes: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.					

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5106).

References

- Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
- Jiang, M.-X. & Feng, Y.-L. (2008). Acta Cryst. E64, m1517.
- Mi, J.-L., Huang, J. & Chen, H.-J. (2012). Acta Cryst. E68, m1146-m1147.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Xu, S.-S., Mi, J.-L. & Chen, H.-J. (2013). Acta Cryst. E69, m294-m295.
- Yang, J., Chen, H. J. & Tsz, H. L. (2010). Inorg. Chem. Commun. 10, 1016-1019.
- Zhang, J., Chen, H.-J. & Huang, J. (2011). Chin. J. Struct. Chem. 30, 1069-1073. Zhang, J., Huang, J., Yang, J. & Chen, H.-J. (2012). Inorg. Chem. Commun. 17, 163-168.

supporting information

Acta Cryst. (2015). E71, m23 [doi:10.1107/S2056989015000249]

Crystal structure of poly[bis(μ_2 -5-hydroxynicotinato- $\kappa^2 N:O^3$)zinc]

Wen-Bing Wang, Shan-Shan Xu and Hong-Ji Chen

S1. Experimental

A mixture of zinc nitrate, 5-hydroxynicotinic acid, malonic acid and water in a mole ratio of *ca* 1:2:1:550 was added to a 25 ml Teflon-lined cup, and the pH value of the mixture was adjusted to 6.5 by $5\%_{wt}$ ammonia/water at room temperature. The Teflon-lined cup was sealed in a stainless steel vessel and heated to 443 K, kept at that temperature for 3 days, and then slowly cooled to room temperature at a rate of 5 K per hour. Yellow block-like crystals of the title compound were obtained. The yield was about 55%. Elemental anal. calc. for C₁₂H₈N₂O₆Zn (341.57): C 28.60, H 2.79, N, 3.28. Found: C 28.65, H 2.81, N, 3.13. IR (cm⁻¹, KBr): 3454(*s*), 3104(*m*), 1856(*w*), 1632(*s*), 1586(*s*), 1487(*m*), 1432(*m*), 1400(*s*), 1302(*w*), 1279(*s*), 1239(*m*), 1158(*w*), 1119(*w*), 1026(*s*), 968(*w*), 936(*s*), 898(*s*), 822(*s*), 787(*s*), 732(*m*), 710(*m*), 687(*s*), 594(*m*), 539(*m*), 485(*m*), 453(*w*).

S2. Refinement

Hydrogen atoms bonded to C atoms of the 5-hydroxynicotinate anions were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms of the hydroxy functions were found from difference maps and were included in the refinement as riding atoms, with O—H = 0.82 Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The coordination environment of the Zn^{II} ion in the title compound, showing displacement ellipsoids at the 50% probability level.

Figure 2

The packing in the structure of $[Zn(C_6H_4O_3N)_2]_n$, showing the polymeric character of the title compound.

Poly[bis(μ_2 -5-hydroxynicotinato- $\kappa^2 N:O^3$)zinc]

Crystal data

 $[Zn(C_6H_4NO_3)_2]$ $M_r = 341.57$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 9.4299 (6) Å b = 10.5453 (7) Å c = 12.6914 (8) Å $\beta = 104.640$ (7)° V = 1221.07 (14) Å³

Data collection

Bruker APEXII CCD	7054 measured reflections
diffractometer	2891 independent reflections
Radiation source: fine-focus sealed tube	2397 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.034$
φ and ω scans	$\theta_{\rm max} = 29.3^\circ, \ \theta_{\rm min} = 2.4^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(SADABS; Bruker, 2007)	$k = -14 \rightarrow 12$
$T_{\min} = 0.488, \ T_{\max} = 0.723$	$l = -17 \rightarrow 17$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0271P)^2 + 0.5488P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.42 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.43 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Z = 4

F(000) = 688

 $\theta = 3.0-29.1^{\circ}$

 $\mu = 2.04 \text{ mm}^{-1}$

Block, yellow

 $0.41 \times 0.37 \times 0.17 \text{ mm}$

T = 150 K

 $D_{\rm x} = 1.858 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.8597 (2)	0.3757 (2)	0.30816 (18)	0.0111 (5)	
C2	0.4890 (2)	0.1376 (2)	-0.09332 (18)	0.0104 (5)	
C3	0.6200 (2)	0.0759 (2)	-0.08906 (19)	0.0118 (5)	
H3	0.6325	0.0305	-0.1489	0.014*	
C4	0.7328 (2)	0.0828 (2)	0.00604 (19)	0.0114 (5)	

C5	0.7092 (2)	0.1514 (2)	0.09361 (19)	0.0114 (5)
Н5	0.7828	0.1540	0.1581	0.014*
C6	0.4744 (2)	0.2077 (2)	-0.00397 (19)	0.0123 (5)
H6	0.3875	0.2512	-0.0078	0.015*
C7	0.3884 (2)	0.5320 (2)	0.19736 (19)	0.0135 (5)
C8	0.2504 (2)	0.1059 (2)	0.34892 (19)	0.0121 (5)
C9	0.3220 (3)	0.0977 (2)	0.45873 (19)	0.0122 (5)
Н9	0.2824	0.0509	0.5065	0.015*
C10	0.4545 (3)	0.1615 (2)	0.49542 (19)	0.0126 (5)
C11	0.5125 (3)	0.2258 (2)	0.42054 (19)	0.0131 (5)
H11	0.6029	0.2656	0.4450	0.016*
C12	0.3118 (3)	0.1758 (2)	0.27914 (19)	0.0117 (5)
H12	0.2610	0.1836	0.2064	0.014*
N1	0.5831 (2)	0.21429 (19)	0.08815 (15)	0.0108 (4)
N2	0.4436 (2)	0.2330 (2)	0.31413 (15)	0.0122 (4)
O1	0.74133 (17)	0.32799 (17)	0.32074 (13)	0.0154 (4)
O2	0.87405 (18)	0.43130 (18)	0.22547 (13)	0.0179 (4)
O3	0.85858 (17)	0.02136 (18)	0.00882 (14)	0.0168 (4)
H3A	0.9134	0.0264	0.0702	0.025*
O4	0.41994 (18)	0.44819 (17)	0.13440 (13)	0.0178 (4)
O5	0.45953 (19)	0.55268 (19)	0.29152 (14)	0.0238 (5)
O6	0.53504 (19)	0.16272 (18)	0.60036 (13)	0.0188 (4)
H6A	0.4885	0.1288	0.6391	0.028*
Zn1	0.55375 (3)	0.32108 (3)	0.21439 (2)	0.01009 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0105 (10)	0.0118 (12)	0.0110 (11)	0.0024 (10)	0.0028 (9)	-0.0023 (9)
C2	0.0105 (10)	0.0102 (12)	0.0101 (11)	0.0001 (10)	0.0016 (9)	0.0015 (9)
C3	0.0130 (11)	0.0122 (13)	0.0113 (11)	-0.0013 (10)	0.0050 (9)	-0.0009 (10)
C4	0.0083 (10)	0.0120 (13)	0.0139 (12)	0.0006 (10)	0.0026 (9)	0.0016 (10)
C5	0.0097 (10)	0.0129 (13)	0.0104 (11)	0.0005 (10)	0.0006 (9)	0.0001 (9)
C6	0.0089 (11)	0.0160 (13)	0.0111 (12)	0.0011 (10)	0.0008 (9)	0.0005 (9)
C7	0.0107 (11)	0.0143 (13)	0.0158 (13)	-0.0011 (10)	0.0039 (10)	0.0019 (10)
C8	0.0122 (11)	0.0104 (12)	0.0132 (12)	0.0004 (10)	0.0021 (9)	-0.0021 (9)
C9	0.0154 (11)	0.0100 (12)	0.0122 (11)	-0.0003 (10)	0.0058 (9)	0.0001 (9)
C10	0.0129 (11)	0.0143 (13)	0.0097 (11)	0.0017 (10)	0.0012 (9)	-0.0017 (9)
C11	0.0100 (11)	0.0159 (13)	0.0128 (12)	-0.0013 (10)	0.0016 (10)	-0.0029 (10)
C12	0.0123 (11)	0.0128 (13)	0.0102 (11)	0.0026 (10)	0.0034 (9)	-0.0011 (9)
N1	0.0097 (9)	0.0127 (11)	0.0093 (9)	0.0001 (8)	0.0011 (8)	-0.0007 (8)
N2	0.0121 (9)	0.0131 (11)	0.0113 (10)	-0.0014 (9)	0.0028 (8)	-0.0009 (8)
01	0.0096 (8)	0.0246 (10)	0.0109 (8)	-0.0041 (7)	0.0006 (7)	0.0016 (7)
O2	0.0157 (8)	0.0280 (11)	0.0097 (8)	0.0012 (8)	0.0025 (7)	0.0045 (7)
O3	0.0092 (8)	0.0250 (10)	0.0144 (9)	0.0079 (8)	-0.0002 (7)	-0.0027 (8)
O4	0.0190 (9)	0.0203 (10)	0.0136 (9)	0.0090 (8)	0.0029 (7)	0.0021 (7)
O5	0.0191 (9)	0.0302 (12)	0.0164 (10)	0.0070 (8)	-0.0060 (8)	-0.0029 (8)
O6	0.0184 (9)	0.0295 (12)	0.0071 (8)	-0.0073 (8)	0.0008 (7)	-0.0013 (7)

0.00810 (14) 0.00817 (15) 0.00045 (11) 0.00084 (10) -0.00090(11)Zn1 0.01335 (17) Geometric parameters (Å, °) C1-02 1.239 (3) C8-C12 1.387 (3) C1-01 1.270(3)C8-C9 1.389(3) $C1-C2^{i}$ 1.516(3) C8-C7^{iv} 1.509 (3) C2—C3 C9-C10 1.385 (3) 1.392(3)C2-C6 С9—Н9 1.390(3)0.9300 C2-C1ⁱⁱ C10-06 1.516(3)1.356 (3) C3—C4 C10-C11 1.395 (3) 1.387 (3) С3—Н3 C11-N2 1.345 (3) 0.9300 C4---03 C11-H11 0.9300 1.344(3)C4—C5 1.390(3) C12-N2 1.351 (3) C5-N1 1.348(3)C12-H12 0.9300 С5—Н5 0.9300 N1-Zn1 2.034(2)C6-N1 1.348 (3) N2-Zn1 2.052(2) С6—Н6 0.9300 O1-Zn1 1.9364 (15) C7—O5 O3—H3A 1.233(3)0.8200 C7---04 1.276 (3) O4-Zn1 1.9421 (17) C7-C8ⁱⁱⁱ O6—H6A 1.509(3) 0.8200 02-C1-01 125.5 (2) С10-С9-Н9 120.9 O2-C1-C2i O6-C10-C11 120.3 (2) 116.6 (2) 01-C1-C2i O6-C10-C9 124.5(2)114.1(2)C3-C2-C6 C11-C10-C9 118.9 (2) 119.3(2)C3-C2-C1ⁱⁱ N2-C11-C10 122.8 (2) 120.8 (2) C6-C2-C1ⁱⁱ 119.8 (2) N2-C11-H11 118.6 C2-C3-C4 119.1(2)C10-C11-H11 118.6 С2—С3—Н3 120.4 N2-C12-C8 121.7 (2) C4-C3-H3 120.4 N2-C12-H12 119.2 O3-C4-C5 123.2(2)C8-C12-H12 119.2 O3-C4-C3 118.2 (2) C5-N1-C6 119.1 (2) C5-C4-C3 C5-N1-Zn1 121.74 (15) 118.5(2)N1-C5-C4 122.2(2)C6-N1-Zn1 119.12 (16) N1-C5-H5 118.9 C11-N2-C12 118.4 (2) С4—С5—Н5 118.9 C11-N2-Zn1 116.97 (15) 121.7 (2) N1-C6-C2 C12-N2-Zn1 124.49 (16) N1-C6-H6 119.2 C1-O1-Zn1 127.16(15) С2-С6-Н6 119.2 109.5 O5-C7-O4 125.0(2) C7-O4-Zn1 111.97 (15) O5-C7-C8ⁱⁱⁱ 119.4(2)C10-06-H6A 109.5 134.17 (8) O4-C7-C8ⁱⁱⁱ 115.5 (2) 01-Zn1-04 C12-C8-C9 119.9 (2) O1-Zn1-N1 106.71(7) C12-C8-C7^{iv} O4-Zn1-N1 119.2(2)99.80 (8) C9-C8-C7iv O1-Zn1-N2 95.90(7) 120.8 (2)

supporting information

C8—C9—C10	118.2 (2)	O4—Zn1—N2	105.76 (8)
С8—С9—Н9	120.9	N1—Zn1—N2	115.24 (8)

Symmetry codes: (i) x+1/2, -y+1/2, z+1/2; (ii) x-1/2, -y+1/2, z-1/2; (iii) -x+1/2, y+1/2, -z+1/2; (iv) -x+1/2, y-1/2, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H3 <i>A</i> ···O5 ^v	0.82	1.88	2.697 (2)	175
O6—H6A····O2 ^{vi}	0.82	1.83	2.651 (3)	174

Symmetry codes: (v) -x+3/2, y-1/2, -z+1/2; (vi) x-1/2, -y+1/2, z+1/2.