

Received 7 December 2014 Accepted 19 December 2014

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; organotin(IV) compound; oxalate ligands; *cis* arrangement; cyclohexylammonium; N—H···O hydrogen bonding

CCDC reference: 1040398 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of bis(cyclohexylammonium) diphenyldioxalatostannate(IV)

Modou Sarr,^a Aminata Diasse-Sarr,^a Libasse Diop,^a Laurent Plasseraud^b and Hélène Cattey^b*

^aLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and ^bICMUB UMR 6302, Université de Bourgogne, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France. *Correspondence e-mail: hcattey@u-bourgogne.fr

Reaction of oxalic acid and diphenyltin dichloride in the presence of the formation cvclohexvlamine led to of the title salt. $(C_6H_{14}N)_2[Sn(C_6H_5)_2(C_2O_4)_2]$. The dianion is made up from an $Sn(C_6H_5)_2$ moiety cis-coordinated by two chelating oxalate anions, leading to an overall distorted octahedral coordination geometry of the Sn^{IV} atom. The negative charges are compensated by two surrounding cyclohexylammonium cations adopting chair conformations each. In the crystal, anions and cations are linked *via* a network of $N-H \cdots O$ hydrogen bonds into a layered arrangement parallel to (101).

1. Chemical context

Organotin(IV) complexes are particularly investigated for their catalytic applications as well as for their potential biocidal properties (Davies et al., 2008). Thus, numerous studies have been carried out in order to determine the biological properties of organotin(IV) compounds against bacteria, fungi or cancer cell lines (Gielen, 2002). In this context, and in the course of our ongoing studies on organotin(IV) chemistry (Gueye et al., 1993; Kane et al., 2009; Fall, Okio et al., 2010; Fall, Sow et al., 2010), we have isolated the title stannate as colourless crystals from the reaction of oxalic acid and diphenyltin dichloride in the presence of cyclohexylamine. To date, several organotin(IV) oxalates have been characterized by X-ray crystallographic analysis showing cis- and trans-coordination of the oxalate anion, depending on the nature of the σ -bonded carbon ligand that is linked to Sn^{IV} (Ng, 1996, 1999; Ng et al., 1992; Ng & Hook, 1999; Ng & Rae, 2000; Xu et al., 2003a,b; Gueye et al., 2010, 2012; Reichelt & Reuter, 2014).

2. Structural comment

In the title salt, $2(C_6H_{14}N)^+[Sn(C_6H_5)_2(C_2O_4)_2]^{2-}$ or $2(CyNH_3)^+[Sn(Ph_2)(C_2O_4)_2]^{2-}$ (Cy is cyclohexyl; Ph is phenyl), the SnPh₂ moiety is chelated by two oxalate anions,

research communications

The molecular components of the title salt, showing the atom labelling and with displacement ellipsoids drawn at the 30% probability level. Colour code: Sn = light blue, O = red, N = blue, C = grey and H = white.

leading to a *cis* arrangement within the distorted octahedral coordination sphere of the Sn^{IV} atom. The Sn-C distances and angles of the SnPh₂ moiety [Sn-C5 = 2.1388 (15) Å, Sn-C11 = 2.1486 (15) Å with a C5-Sn-C11 angle of 106.94 (6)°] are similar to those previously reported for analogous diphenyltin(IV) derivatives (Xu *et al.*, 2003*a*,*b*; Ng & Rae, 2000).

Figure 2

Crystal packing of the title compound, viewed approximately along the *b* axis, showing the layer-like arrangement parallel (101) *via* hydrogenbonding interactions (dashed orange lines). H atoms not involved in hydrogen bonding have been omitted for clarity. Colour code: Sn = light blue, C = dark grey, H = white, N = dark blue and O = red.

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdots O2$	0.91	1.90	2.7851 (18)	163
$N2-H2B\cdots O6^{i}$	0.91	2.20	2.8885 (17)	132
$N2-H2B\cdots O8^{i}$	0.91	2.23	3.0583 (18)	151
$N2-H2C\cdots O6^{ii}$	0.91	2.68	3.2403 (18)	121
$N2-H2C\cdots O8^{ii}$	0.91	2.01	2.8970 (18)	164
$N1-H1A\cdots O6^{i}$	0.91	1.98	2.8842 (17)	177
$N1-H1B\cdots O3^{iii}$	0.91	2.31	2.9393 (16)	126
$N1-H1B\cdots O4^{iii}$	0.91	2.35	3.2550 (18)	177
$N1-H1C\cdots O4$	0.91	2.13	3.0076 (18)	163

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y + 1, -z + 1; (iii) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

The chelation of both oxalate anions is relatively symmetrical [Sn-O1 = 2.2005 (10) Å and Sn-O3 2.1267 (10) Å; Sn-O5 2.1883 (10) Å and Sn-O7 2.1396 (10) Å]. However, the oxalate anions are slightly distorted with O1-C1-C2-O3 and O5-C3-C4-O7 torsion angles of -4.0 (2) and -9.98 (19)°, respectively. They form a dihedral angle of 77.40 (8)° between their least-squares planes. The molecular structure of the title compound, showing the atom-numbering scheme, is depicted in Fig. 1.

3. Supramolecular features

From a supramolecular point of view, anions and cations of the title salt exhibit intermolecular interactions through N– $H\cdots O$ hydrogen-bonding contacts. Both coordinating and non-coordinating oxygen atoms of both oxalate anions are involved in these interactions (Table 1). Compared to the related structures of bis(diisopropylammonium) [diphenyl-dioxalatostannates(IV)] (Xu *et al.*, 2003*a*,*b*) where the supramolecular arrangement defines infinite zigzag chains, the cyclohexylammonium cations in the title structure lead to a layer-like arrangement parallel to (101) (Fig. 2).

4. Synthesis and crystallization

Chemicals were purchased from Sigma–Aldrich, and used without further purification. The title compound was obtained by reacting $[(CyNH_3)_2C_2O_4]\cdot 1.5H_2O$ – obtained previously in crystalline form by mixing CyNH₂ with oxalic acid (C₂O₄H₂) in a 2:1 molar ratio in water and evaporation at 333 K – with SnPh₂Cl₂ in methanol (molar ratio 2:1). Colourless single crystals suitable for X-ray diffraction analysis were obtained by slow solvent evaporation at room temperature.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms bonded to C or N atoms were placed at calculated positions using a riding model with C-H = 0.95 (aromatic), 0.99 (methylene) or N-H = 0.91 Å (amine) and with $U_{iso}(H) = 1.2U_{eq}(C \text{ or N})$.

Acknowledgements

The authors gratefully acknowledge the Cheikh Anta Diop University of Dakar (Senegal), the Centre National de la Recherche Scientifique (CNRS, France) and the University of Burgundy (Dijon, France).

References

- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Davies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). *Tin Chemistry, Fundamentals, Frontiers, and Applications*. Chichester: John Wiley & Sons Ltd.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Fall, A., Okio, K., Diop, L., Jouen, S. & Hannoyer, B. (2010). *Main Group Met. Chem.* 33, 227–231.
- Fall, A., Sow, Y., Diop, L., Diop, C. A. K. & Russo, U. (2010). *Main Group Met. Chem.* 33, 233–240.
- Gielen, M. (2002). Appl. Organomet. Chem. 16, 481-494.
- Gueye, N., Diop, L., Molloy, K. C. K. & Kociok-Köhn, G. (2010). Acta Cryst. E66, m1645–m1646.
- Gueye, N., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2012). Acta Cryst. E68, m854–m855.
- Gueye, O., Qamar, H., Diop, L., Diop, C. A. & Russo, U. (1993). *Main Group Met. Chem.* **12**, 1245–1249.
- Kane, H. Q. H., Okio, K. Y. A., Diop, L. & Mahieu, B. (2009). Main Group Met. Chem. 32, 229–233.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Ng, S. W. (1996). Acta Cryst. C52, 2990–2992.
- Ng, S. W. (1999). J. Organomet. Chem. 585, 12–17.
- Ng, S. W. & Hook, J. M. (1999). Acta Cryst. C55, 310-312.
- Ng, S. W., Kumar Das, V. G., Gielen, M. & Tiekink, E. R. T. (1992). *Appl. Organomet. Chem.* 6, 19–25.
- Ng, S. W. & Rae, A. D. (2000). Z. Kristallogr. 215, 199-204.

Table	2	
Experi	imental	details

Crystal data	
Chemical formula	$(C_6H_{14}N)_2[Sn(C_6H_5)_2(C_2O_2)_2]$
M _r	649.29
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	115
a, b, c (Å)	16.0084 (6), 8.9010 (3), 20.8060 (8)
β (°)	90.288 (1)
$V(Å^3)$	2964.63 (19)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.91
Crystal size (mm)	$0.50 \times 0.30 \times 0.23$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2014)
Tmine Tmax	0.652, 0.746
No. of measured, independent and	30318, 6831, 6077
observed $[I > 2\sigma(I)]$ reflections	,,
R _{int}	0.025
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.652
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.020, 0.048, 1.05
No. of reflections	6831
No. of parameters	354
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.37, -0.38

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 and SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008).

Reichelt, M. & Reuter, H. (2014). Acta Cryst. E70, m133.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Xu, T., Yang, S.-Y., Xie, Z.-X. & Ng, S. W. (2003*a*). Acta Cryst. E**59**, m870–m872.
- Xu, T., Yang, S.-Y., Xie, Z.-X. & Ng, S. W. (2003b). Acta Cryst. E59, m873–m875.

supporting information

Acta Cryst. (2015). E71, 151-153 [doi:10.1107/S2056989014027716]

Crystal structure of bis(cyclohexylammonium) diphenyldioxalatostannate(IV)

Modou Sarr, Aminata Diasse-Sarr, Libasse Diop, Laurent Plasseraud and Hélène Cattey

Computing details

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT* (Bruker, 2014); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

Bis(cyclohexylammonium) diphenyldioxalatostannate(IV)

Crystal data	
$(C_{6}H_{14}N)_{2}[Sn(C_{6}H_{5})_{2}(C_{2}O_{2})_{2}]$ $M_{r} = 649.29$ Monoclinic, $P2_{1}/n$ Hall symbol: -P 2yn a = 16.0084 (6) Å b = 8.9010 (3) Å c = 20.8060 (8) Å $\beta = 90.288$ (1)° V = 2964.63 (19) Å ³ Z = 4	F(000) = 1336 $D_x = 1.455 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9926 reflections $\theta = 2.5-27.6^{\circ}$ $\mu = 0.91 \text{ mm}^{-1}$ T = 115 K Prism, colourless $0.50 \times 0.30 \times 0.23 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2014) $T_{\min} = 0.652, T_{\max} = 0.746$ 30318 measured reflections	6831 independent reflections 6077 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 27.6^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -19 \rightarrow 20$ $k = -11 \rightarrow 11$ $l = -27 \rightarrow 26$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.020$ $wR(F^2) = 0.048$	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0188P)^2 + 1.6859P]$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0188P)^{2} + 1.683]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.38 \text{ e} \text{ Å}^{-3}$

Primary atom site location: iterative

S = 1.056831 reflections

354 parameters 0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sn	0.51059 (2)	0.63627 (2)	0.26048 (2)	0.01224 (3)	
01	0.53271 (6)	0.48705 (12)	0.34316 (5)	0.0161 (2)	
O2	0.60914 (8)	0.28994 (15)	0.37435 (6)	0.0298 (3)	
O3	0.62046 (6)	0.51474 (12)	0.23644 (5)	0.0167 (2)	
O4	0.70720 (7)	0.33267 (14)	0.26676 (6)	0.0253 (3)	
05	0.59259 (6)	0.77093 (12)	0.32213 (5)	0.0168 (2)	
06	0.58885 (7)	0.92654 (13)	0.40624 (5)	0.0194 (2)	
O7	0.42652 (6)	0.74042 (12)	0.32654 (5)	0.0154 (2)	
08	0.42376 (7)	0.85828 (12)	0.42139 (5)	0.0198 (2)	
C1	0.59203 (9)	0.39309 (18)	0.33711 (8)	0.0178 (3)	
C2	0.64560 (9)	0.41207 (18)	0.27566 (7)	0.0171 (3)	
C3	0.55591 (9)	0.83851 (16)	0.36756 (7)	0.0140 (3)	
C4	0.46009 (9)	0.81040 (16)	0.37349 (7)	0.0136 (3)	
C5	0.41711 (9)	0.48308 (17)	0.22695 (7)	0.0152 (3)	
C6	0.43554 (11)	0.33624 (18)	0.20842 (8)	0.0228 (3)	
H6	0.4916	0.3013	0.2105	0.027*	
C7	0.37264 (12)	0.2402 (2)	0.18690 (9)	0.0296 (4)	
H7	0.3859	0.1402	0.1747	0.035*	
C8	0.29096 (11)	0.2901 (2)	0.18317 (8)	0.0281 (4)	
H8	0.2483	0.2247	0.1680	0.034*	
C9	0.27154 (10)	0.4346 (2)	0.20153 (8)	0.0256 (4)	
H9	0.2154	0.4688	0.1993	0.031*	
C10	0.33417 (10)	0.53031 (19)	0.22323 (8)	0.0200 (3)	
H10	0.3202	0.6298	0.2358	0.024*	
C11	0.52458 (10)	0.80526 (17)	0.18759 (8)	0.0169 (3)	
C12	0.46483 (11)	0.81749 (19)	0.13879 (8)	0.0229 (3)	
H12	0.4193	0.7491	0.1375	0.027*	
C13	0.47103 (13)	0.9286 (2)	0.09192 (9)	0.0319 (4)	
H13	0.4294	0.9365	0.0594	0.038*	
C14	0.53748 (14)	1.0273 (2)	0.09269 (10)	0.0371 (5)	
H14	0.5415	1.1035	0.0609	0.045*	
C15	0.59799 (13)	1.0150 (2)	0.13979 (10)	0.0375 (5)	
H15	0.6443	1.0817	0.1398	0.045*	
C16	0.59177 (11)	0.9056 (2)	0.18728 (9)	0.0268 (4)	
H16	0.6335	0.8991	0.2198	0.032*	
N2	0.48965 (9)	0.17026 (15)	0.45662 (6)	0.0198 (3)	
H2A	0.5239	0.2274	0.4318	0.024*	
H2B	0.4893	0.0742	0.4416	0.024*	
H2C	0.5085	0.1712	0.4979	0.024*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H230.36560.16620.47980.021*C240.40273 (10)0.38860 (18)0.48363 (8)0.0226 (3)H24A0.44290.45360.46070.027*H24B0.42040.38240.52920.027*C250.31532 (12)0.4573 (2)0.47938 (10)0.0357 (5)H25A0.27630.39810.50610.043*C260.28439 (11)0.4592 (2)0.41009 (11)0.0357 (5)H26A0.22680.49950.40870.043*C270.28533 (12)0.3030 (2)0.38440.043*C270.28533 (12)0.3030 (2)0.38087 (10)0.0357 (5)H27A0.26750.30870.33530.041*H27B0.24530.23800.40400.041*C280.37231 (11)0.23443 (19)0.38491 (8)0.0257 (4)H28A0.37080.13050.36800.031*H28B0.41130.29360.35820.031*N10.73487 (8)0.05755 (15)0.34805 (6)0.0182 (3)H1A0.68770.01870.36570.022*H1B0.7531-0.00440.31630.022*C170.80130 (9)0.07153 (18)0.39886 (7)0.0171 (3)H170.85330.11070.37830.021*C180.81959 (12)-0.0288 (2)0.42055 (9)0.0288 (4)H1B0.7676-0.12690.44340.035*C190.88557 (14)-0.0728 (2)0.47965 (10)<	C23	0.40312 (10)	0.23265 (17)	0.45409 (8)	0.0176 (3)
C24 0.40273 (10) 0.38860 (18) 0.48363 (8) 0.0226 (3) H24A 0.4429 0.4536 0.4607 0.027* H24B 0.4204 0.3824 0.5292 0.027* C25 0.31532 (12) 0.4573 (2) 0.47938 (10) 0.0357 (5) H25A 0.2763 0.3981 0.5061 0.043* C26 0.28439 (11) 0.4592 (2) 0.41009 (11) 0.0357 (5) H26A 0.2268 0.4995 0.4087 0.043* C27 0.28533 (12) 0.3030 (2) 0.38087 (10) 0.0345 (5) H27B 0.2453 0.2380 0.4040 0.041* C28 0.37231 (11) 0.23443 (19) 0.3582 0.031* H27B 0.2453 0.2386 0.3582 0.031* H28A 0.3708 0.3575 (15) 0.34805 (6) 0.0182 (3) H14 0.7531 -0.0044 0.3163 0.022* H1A 0.6877 0.3183 0.021* C17 0.80130	H23	0.3656	0.1662	0.4798	0.021*
H24A 0.4429 0.4536 0.4607 $0.027*$ H24B 0.4204 0.3824 0.5292 $0.027*$ C25 $0.31532 (12)$ $0.4573 (2)$ $0.47938 (10)$ $0.0357 (5)$ H25A 0.2763 0.3981 0.5061 $0.043*$ H25B 0.3167 0.5612 0.4963 $0.043*$ C26 $0.28439 (11)$ $0.4592 (2)$ $0.41009 (11)$ $0.0357 (5)$ H26A 0.2268 0.4995 0.4087 $0.043*$ C27 $0.28533 (12)$ $0.3030 (2)$ $0.38087 (10)$ $0.0345 (5)$ H27A 0.2675 0.3087 0.3353 $0.041*$ H27B 0.2453 0.2380 0.4040 $0.041*$ C28 $0.37231 (11)$ $0.23443 (19)$ $0.38491 (8)$ $0.0257 (4)$ H28A 0.3708 0.1305 0.3680 $0.031*$ H28B 0.4113 0.2936 0.3582 $0.031*$ H28B 0.4113 0.2936 0.3582 $0.031*$ H18 0.7531 -0.0044 0.3163 $0.022*$ H1B 0.7531 -0.0044 $0.3988 (7)$ $0.0171 (3)$ H17 0.8533 0.1107 0.3783 $0.021*$ C18 $0.81959 (12)$ $-0.0828 (2)$ $0.42605 (9)$ $0.0288 (4)$ H18A 0.8401 -0.1733 0.4991 $0.049*$ C19 $0.88557 (14)$ $-0.0728 (2)$ $0.4365 (10)$ $0.0412 (5)$ H19A 0.8935 -0.1733 0.4991 $0.039*$ C19 $0.$	C24	0.40273 (10)	0.38860 (18)	0.48363 (8)	0.0226 (3)
H24B0.42040.38240.52920.027*C250.31532 (12)0.4573 (2)0.47938 (10)0.0357 (5)H25A0.27630.39810.50610.043*H25B0.31670.56120.49630.043*C260.28439 (11)0.4592 (2)0.41009 (11)0.0357 (5)H26A0.22680.49950.40870.043*C270.28533 (12)0.3030 (2)0.38087 (10)0.0345 (5)H27A0.26750.30870.33530.041*H27B0.24530.23800.40400.041*C280.37231 (11)0.23443 (19)0.38491 (8)0.0257 (4)H28A0.37080.13050.36800.031*H28B0.41130.29360.35820.031*H28B0.41130.29360.3680 (0)0.182 (3)H1A0.68770.01870.36570.022*H1B0.73487 (8)0.05755 (15)0.34805 (6)0.0122 (3)H1A0.68770.01870.31630.022*H1B0.7531-0.00440.31630.021*C170.80130 (9)0.07153 (18)0.3988 (7)0.0171 (3)H170.85330.11070.37830.021*C180.81959 (12)-0.0828 (2)0.42605 (9)0.0288 (4)H18A0.8401-0.17330.49910.049*C190.88557 (14)-0.0728 (2)0.47965 (10)0.0428H18A0.8935-0.17330.49910.0391 (4) <td>H24A</td> <td>0.4429</td> <td>0.4536</td> <td>0.4607</td> <td>0.027*</td>	H24A	0.4429	0.4536	0.4607	0.027*
C25 $0.31532(12)$ $0.4573(2)$ $0.47938(10)$ $0.0357(5)$ H25A 0.2763 0.3981 0.5061 $0.043*$ H25B 0.3167 0.5612 0.4963 $0.043*$ C26 $0.28439(11)$ $0.4592(2)$ $0.41009(11)$ $0.0357(5)$ H26A 0.2268 0.4995 0.4087 $0.043*$ H26B 0.3204 0.5265 0.3844 $0.043*$ C27 $0.28533(12)$ $0.3030(2)$ $0.38087(10)$ $0.0345(5)$ H27A 0.2675 0.3087 0.3353 $0.041*$ C28 $0.37231(11)$ $0.23443(19)$ $0.38491(8)$ $0.0257(4)$ H28A 0.3708 0.1305 0.3680 $0.31*$ H28B 0.4113 0.2936 0.3582 $0.31*$ N1 $0.73487(8)$ $0.0575(15)$ $0.34805(6)$ $0.0182(3)$ H1A 0.6877 0.0187 0.3657 $0.022*$ H1B 0.7531 -0.0044 0.3163 $0.022*$ C17 $0.80130(9)$ $0.07153(18)$ $0.3986(7)$ $0.171(3)$ H17 0.8533 0.1107 0.3783 $0.021*$ C18 0.8491 -0.1493 0.3914 $0.35*$ C19 $0.8857(14)$ -0.1269 0.4434 $0.35*$ C19 0.8935 -0.1733 0.4991 $0.049*$ H18 0.9051 $0.0381(2)$ $0.53148(9)$ $0.0319(4)$ H20A 0.8937 0.2327 0.4840 $0.37*$ H219 0.8937 0.2327 <td< td=""><td>H24B</td><td>0.4204</td><td>0.3824</td><td>0.5292</td><td>0.027*</td></td<>	H24B	0.4204	0.3824	0.5292	0.027*
H25A 0.2763 0.3981 0.5061 $0.043*$ H25B 0.3167 0.5612 0.4963 $0.043*$ C26 0.28439 (11) 0.4592 (2) 0.41009 (11) 0.0357 (5)H26A 0.2268 0.4995 0.4087 $0.043*$ H26B 0.3204 0.5265 0.3844 $0.043*$ C27 0.28533 (12) 0.3030 (2) 0.38087 (10) 0.0345 (5)H27A 0.2675 0.3087 0.3353 $0.041*$ C28 0.37231 (11) 0.23443 (19) 0.38491 (8) 0.0257 (4)H28A 0.3708 0.1305 0.3680 $0.031*$ H28B 0.4113 0.2936 0.3582 $0.031*$ N1 0.73487 (8) 0.05755 (15) 0.34805 (6) 0.0182 (3)H1A 0.6877 0.0187 0.3657 $0.022*$ H1B 0.7531 -0.0044 0.3163 $0.022*$ C17 0.80130 (9) 0.07153 (18) 0.39886 (7) 0.0171 (3)H17 0.8533 0.1107 0.3783 $0.021*$ C18 0.81959 (12) -0.0828 (2) 0.42605 (9) 0.0288 (4)H18A 0.8401 -0.1269 0.4434 $0.035*$ C19 0.8557 (14) -0.0728 (2) 0.47965 (10) 0.0412 (5)H19A 0.8935 -0.1733 0.4991 $0.049*$ C19 0.8597 (14) -0.0728 (2) 0.53535 $0.038*$ C19 0.85982 (12) 0.0311 (2) 0.53748 (0.039* <tr< td=""><td>C25</td><td>0.31532 (12)</td><td>0.4573 (2)</td><td>0.47938 (10)</td><td>0.0357 (5)</td></tr<>	C25	0.31532 (12)	0.4573 (2)	0.47938 (10)	0.0357 (5)
H25B0.31670.56120.49630.043*C260.28439 (11)0.4592 (2)0.41009 (11)0.0357 (5)H26A0.22680.49950.40870.043*H26B0.32040.52650.38440.043*C270.28533 (12)0.3002 (2)0.38087 (10)0.345 (5)H27A0.26750.30870.33530.041*H27B0.24530.23800.40400.041*C280.37231 (11)0.23443 (19)0.38491 (8)0.0257 (4)H28A0.37080.13050.36800.031*H28B0.41130.29360.35820.031*N10.73487 (8)0.05755 (15)0.34805 (6)0.0182 (3)H1A0.68770.01870.36670.022*H1B0.7531-0.00440.31630.022*H1C0.72360.14990.33130.021*C170.80130 (9)0.7153 (18)0.39886 (7)0.0171 (3)H170.85330.11070.37830.021*C180.81959 (12)-0.0828 (2)0.42605 (9)0.0288 (4)H18A0.8401-0.12690.44340.035*C190.88557 (14)-0.0728 (2)0.47965 (10)0.0412 (5)H19A0.8935-0.17330.49910.0319 (4)H19A0.8935-0.17330.49910.031*C200.85982 (12)0.0318 (2)0.53148 (9)0.0319 (4)H20A0.80930.00050.53750.038* <td>H25A</td> <td>0.2763</td> <td>0.3981</td> <td>0.5061</td> <td>0.043*</td>	H25A	0.2763	0.3981	0.5061	0.043*
C260.28439 (11)0.4592 (2)0.41009 (11)0.0357 (5)H26A0.22680.49950.40870.043*H26B0.32040.52650.38440.043*C270.28533 (12)0.3030 (2)0.38087 (10)0.0345 (5)H27A0.26750.30870.33530.014*L27B0.24530.23800.40400.041*C280.37231 (11)0.23443 (19)0.38491 (8)0.0257 (4)H28A0.37080.13050.36800.031*H28B0.41130.29360.35820.031*N10.73487 (8)0.05755 (15)0.34805 (6)0.0182 (3)H1A0.68770.01870.36570.022*H1B0.7531-0.00440.31630.022*C170.80130 (9)0.07153 (18)0.39886 (7)0.0117 (3)H170.85330.11070.37830.021*C180.81959 (12)-0.0828 (2)0.42605 (9)0.288 (4)H18A0.8401-0.14930.39140.035*H18B0.7676-0.12690.44340.035*C190.8557 (14)-0.0728 (2)0.53148 (9)0.0319 (4)H19B0.3935-0.04090.46100.49*H19B0.9395-0.04090.46100.049*C200.85982 (12)0.0381 (2)0.53148 (9)0.319 (4)H20A0.80930.00050.55350.038*C210.84186 (12)0.1913 (2)0.50270 (9)0.030	H25B	0.3167	0.5612	0.4963	0.043*
H26A 0.2268 0.4995 0.4087 0.043^* H26B 0.3204 0.5265 0.3844 0.043^* C27 $0.28533(12)$ $0.3030(2)$ $0.38087(10)$ $0.0345(5)$ H27A 0.2675 0.3087 0.3353 0.041^* H27B 0.2453 0.2380 0.4040 0.041^* C28 $0.37231(11)$ $0.23443(19)$ $0.38491(8)$ $0.0257(4)$ H28A 0.3708 0.1305 0.3680 0.031^* H28B 0.4113 0.2936 0.3582 0.031^* N1 $0.73487(8)$ $0.05755(15)$ $0.34805(6)$ $0.0182(3)$ H1A 0.6877 0.0187 0.3657 0.022^* H1B 0.7531 -0.0044 0.3163 0.022^* H1C 0.7236 0.1499 0.3313 0.022^* C17 $0.80130(9)$ $0.07153(18)$ $0.39886(7)$ $0.0171(3)$ H17 0.8533 0.1107 0.3783 0.21^* C18 $0.81959(12)$ $-0.0828(2)$ $0.42605(9)$ $0.0288(4)$ H18A 0.8401 -0.1493 0.3914 0.035^* H19B 0.7676 -0.1269 0.4434 0.035^* C19 $0.88557(14)$ $-0.0728(2)$ $0.47965(10)$ $0.0412(5)$ H19A 0.8935 -0.0409 0.4610 0.049^* C20 $0.85982(12)$ $0.0381(2)$ $0.53148(9)$ $0.0319(4)$ H20A 0.8093 0.0005 0.5535 0.038^* C21 $0.84186($	C26	0.28439 (11)	0.4592 (2)	0.41009 (11)	0.0357 (5)
H26B0.32040.52650.38440.043*C270.28533 (12)0.3030 (2)0.38087 (10)0.0345 (5)H27A0.26750.30870.33530.041*H27B0.24530.23800.40400.041*C280.37231 (11)0.23443 (19)0.38491 (8)0.0257 (4)H28A0.37080.13050.36800.031*H28B0.41130.29360.35820.031*N10.73487 (8)0.05755 (15)0.34805 (6)0.0182 (3)H1A0.68770.01870.36570.022*H1B0.7531-0.00440.31630.022*H1C0.72360.14990.33130.022*C170.80130 (9)0.07153 (18)0.39886 (7)0.0171 (3)H170.85330.11070.37830.021*C180.81959 (12)-0.0828 (2)0.42605 (9)0.288 (4)H18B0.7676-0.12690.44340.035*H18B0.7676-0.12690.44340.035*H19A0.8935-0.17330.49910.049*H20A0.80930.00050.53550.038*H20B0.90510.04700.56380.038*C210.84186 (12)0.1913 (2)0.50270 (9)0.3090 (4)H21A0.89370.23270.48400.037*H21B0.82310.26040.53700.037*C220.7453 (11)0.18142 (19)0.45050 (8)0.0241 (4)H22A	H26A	0.2268	0.4995	0.4087	0.043*
C270.28533 (12)0.3030 (2)0.38087 (10)0.0345 (5)H27A0.26750.30870.33530.041*H27B0.24530.23800.40400.041*C280.37231 (11)0.23443 (19)0.38491 (8)0.0257 (4)H28A0.37080.13050.36800.031*H28B0.41130.29360.35820.031*N10.73487 (8)0.05755 (15)0.34805 (6)0.0182 (3)H1A0.68770.01870.36570.022*H1B0.7531-0.00440.31630.022*H1C0.72360.14990.33130.022*C170.80130 (9)0.07153 (18)0.39886 (7)0.0117 (3)H170.85330.11070.37830.021*C180.81959 (12)-0.0828 (2)0.44340.035*H18B0.7676-0.12690.44340.035*H19A0.8935-0.17330.49910.0412 (5)H19A0.8935-0.0381 (2)0.53148 (9)0.0319 (4)H20A0.80930.00050.55350.038*C210.84186 (12)0.1913 (2)0.50270 (9)0.0309 (4)H21A0.89370.23270.48400.037*C220.77453 (11)0.18142 (19)0.45050 (8)0.02141 (4)H22A0.72130.14770.46970.029*	H26B	0.3204	0.5265	0.3844	0.043*
H27A0.26750.30870.33530.041*H27B0.24530.23800.40400.041*C280.37231 (11)0.23443 (19)0.38491 (8)0.0257 (4)H28A0.37080.13050.36800.031*H28B0.41130.29360.35820.031*N10.73487 (8)0.05755 (15)0.34805 (6)0.0182 (3)H1A0.68770.01870.36570.022*H1B0.7531-0.00440.31630.022*C170.80130 (9)0.07153 (18)0.37830.021*C180.81959 (12)-0.0828 (2)0.42605 (9)0.0288 (4)H18A0.8401-0.14930.39140.035*C190.8557 (14)-0.0728 (2)0.47965 (10)0.0412 (5)H19A0.8935-0.17330.49910.049*H19B0.9395-0.04090.46100.049*H20A0.80930.00050.55350.038*C210.84186 (12)0.9113 (2)0.50270 (9)0.0309 (4)H21A0.89370.23270.48400.037*H21B0.82310.26040.53700.037*C220.77453 (11)0.18142 (19)0.45050 (8)0.0241 (4)H22A0.72130.14770.46970.029*	C27	0.28533 (12)	0.3030 (2)	0.38087 (10)	0.0345 (5)
H27B0.24530.23800.40400.041*C280.37231 (1)0.23443 (19)0.38491 (8)0.0257 (4)H28A0.37080.13050.36800.031*H28B0.41130.29360.35820.031*N10.73487 (8)0.05755 (15)0.34805 (6)0.0182 (3)H1A0.68770.01870.36570.022*H1B0.7531-0.00440.31630.022*H1C0.72360.14990.33130.022*C170.80130 (9)0.07153 (18)0.39886 (7)0.0117 (3)H170.85330.11070.37830.021*C180.81959 (12)-0.0828 (2)0.42605 (9)0.288 (4)H18A0.8401-0.12690.44340.035*C190.8557 (14)-0.0728 (2)0.47965 (10)0.0412 (5)H19A0.8935-0.17330.49910.049*H20A0.89930.00050.53148 (9)0.319 (4)H20A0.80930.0050.53550.038*C210.84186 (12)0.1913 (2)0.50270 (9)0.039*H21B0.82310.26040.53700.037*H21B0.82310.26040.53700.037*H22B0.76550.28180.43120.029*	H27A	0.2675	0.3087	0.3353	0.041*
C280.37231 (11)0.23443 (19)0.38491 (8)0.0257 (4)H28A0.37080.13050.36800.031*H28B0.41130.29360.35820.031*N10.73487 (8)0.05755 (15)0.34805 (6)0.0182 (3)H1A0.68770.01870.36570.022*H1B0.7531-0.00440.31630.022*H1C0.72360.14990.33130.022*C170.80130 (9)0.07153 (18)0.39886 (7)0.0171 (3)H170.85330.11070.37830.021*C180.81959 (12)-0.0828 (2)0.42605 (9)0.0288 (4)H18A0.8401-0.14930.39140.035*C190.8557 (14)-0.0728 (2)0.47965 (10)0.0412 (5)H19A0.8935-0.17330.49910.049*C200.85982 (12)0.0381 (2)0.53148 (9)0.0319 (4)H20A0.80930.00050.55350.038*H20B0.90510.04700.56380.038*C210.84186 (12)0.1913 (2)0.50270 (9)0.309 (4)H21A0.89370.23270.48400.037*H21B0.82310.26040.53700.037*C220.77453 (11)0.18142 (19)0.45050 (8)0.0241 (4)H22A0.72130.28180.43120.029*	H27B	0.2453	0.2380	0.4040	0.041*
H28A0.37080.13050.36800.031*H28B0.41130.29360.35820.031*N10.73487 (8)0.05755 (15)0.34805 (6)0.0182 (3)H1A0.68770.01870.36570.022*H1B0.7531-0.00440.31630.022*H1C0.72360.14990.33130.022*C170.80130 (9)0.07153 (18)0.39886 (7)0.0171 (3)H170.85330.11070.37830.021*C180.81959 (12)-0.0828 (2)0.42605 (9)0.0288 (4)H18A0.8401-0.14930.39140.035*C190.88557 (14)-0.0728 (2)0.47965 (10)0.0412 (5)H19A0.8935-0.17330.49910.049*H19B0.9395-0.04090.46100.049*C200.85982 (12)0.0381 (2)0.53148 (9)0.0319 (4)H20A0.80930.00050.55350.038*H20B0.90510.04700.56380.038*C210.84186 (12)0.1913 (2)0.50270 (9)0.309 (4)H21A0.89370.23270.48400.037*H21B0.82310.26040.53700.037*C220.77453 (11)0.18142 (19)0.45050 (8)0.0241 (4)H22A0.72130.14770.46970.029*H22B0.76550.28180.43120.029*	C28	0.37231 (11)	0.23443 (19)	0.38491 (8)	0.0257 (4)
H28B0.41130.29360.35820.031*N10.73487 (8)0.05755 (15)0.34805 (6)0.0182 (3)H1A0.68770.01870.36570.022*H1B0.7531-0.00440.31630.022*H1C0.72360.14990.33130.022*C170.80130 (9)0.07153 (18)0.39886 (7)0.0171 (3)H170.85330.11070.37830.021*C180.81959 (12)-0.0828 (2)0.42605 (9)0.288 (4)H18A0.8401-0.14930.39140.035*C190.88557 (14)-0.0728 (2)0.47965 (10)0.0412 (5)H19A0.8935-0.17330.49910.049*C200.85982 (12)0.0381 (2)0.53148 (9)0.319 (4)H20A0.80930.00050.55350.038*C210.84186 (12)0.1913 (2)0.50270 (9)0.309 (4)H21A0.89370.23270.48400.037*H21B0.82310.26040.53700.037*C220.77453 (11)0.18142 (19)0.45050 (8)0.0241 (4)H22A0.72130.14770.46970.029*H22B0.76550.28180.43120.029*	H28A	0.3708	0.1305	0.3680	0.031*
N10.73487 (8)0.05755 (15)0.34805 (6)0.0182 (3)H1A0.68770.01870.36570.022*H1B0.7531-0.00440.31630.022*H1C0.72360.14990.33130.022*C170.80130 (9)0.07153 (18)0.39886 (7)0.0171 (3)H170.85330.11070.37830.021*C180.81959 (12)-0.0828 (2)0.42605 (9)0.0288 (4)H18A0.8401-0.14930.39140.035*H18B0.7676-0.12690.44340.035*C190.88557 (14)-0.0728 (2)0.47965 (10)0.0412 (5)H19A0.8935-0.17330.49910.049*H19B0.9395-0.04090.46100.049*C200.85982 (12)0.0381 (2)0.53148 (9)0.319 (4)H20A0.80930.00050.55350.038*C210.84186 (12)0.1913 (2)0.50270 (9)0.309 (4)H21A0.89370.23270.48400.037*H21B0.82310.26040.53700.037*C220.77453 (11)0.18142 (19)0.45050 (8)0.0241 (4)H22A0.72130.14770.46970.029*H22B0.76550.28180.43120.029*	H28B	0.4113	0.2936	0.3582	0.031*
H1A0.68770.01870.36570.022*H1B0.7531-0.00440.31630.022*H1C0.72360.14990.33130.022*C170.80130 (9)0.07153 (18)0.39886 (7)0.0171 (3)H170.85330.11070.37830.021*C180.81959 (12)-0.0828 (2)0.42605 (9)0.0288 (4)H18A0.8401-0.14930.39140.035*H18B0.7676-0.12690.44340.035*C190.88557 (14)-0.0728 (2)0.47965 (10)0.0412 (5)H19A0.8935-0.17330.49910.049*C200.85982 (12)0.0381 (2)0.53148 (9)0.0319 (4)H20A0.80930.00050.55350.038*C210.84186 (12)0.1913 (2)0.50270 (9)0.0309 (4)H21A0.89370.23270.48400.037*H21B0.82310.26040.53700.037*C220.77453 (11)0.18142 (19)0.45050 (8)0.0241 (4)H22A0.72130.14770.46970.029*H22B0.76550.28180.43120.029*	N1	0.73487 (8)	0.05755 (15)	0.34805 (6)	0.0182 (3)
H1B0.7531-0.00440.31630.022*H1C0.72360.14990.33130.022*C170.80130 (9)0.07153 (18)0.39886 (7)0.0171 (3)H170.85330.11070.37830.021*C180.81959 (12)-0.0828 (2)0.42605 (9)0.0288 (4)H18A0.8401-0.14930.39140.035*H18B0.7676-0.12690.44340.035*C190.88557 (14)-0.0728 (2)0.47965 (10)0.0412 (5)H19A0.8935-0.17330.49910.049*H19B0.9395-0.04090.46100.049*C200.85982 (12)0.0381 (2)0.53148 (9)0.0319 (4)H20A0.80930.00050.55350.038*C210.84186 (12)0.1913 (2)0.50270 (9)0.309 (4)H21A0.89370.23270.48400.037*H21B0.82310.26040.53700.037*C220.77453 (11)0.18142 (19)0.46970.029*H22B0.76550.28180.43120.029*	H1A	0.6877	0.0187	0.3657	0.022*
H1C0.72360.14990.33130.022*C170.80130 (9)0.07153 (18)0.39886 (7)0.0171 (3)H170.85330.11070.37830.021*C180.81959 (12)-0.0828 (2)0.42605 (9)0.0288 (4)H18A0.8401-0.14930.39140.035*H18B0.7676-0.12690.44340.035*C190.88557 (14)-0.0728 (2)0.47965 (10)0.0412 (5)H19A0.8935-0.17330.49910.049*H19B0.9395-0.04090.46100.049*C200.85982 (12)0.0381 (2)0.53148 (9)0.0319 (4)H20A0.80930.00050.55350.038*C210.84186 (12)0.1913 (2)0.50270 (9)0.30309 (4)H21B0.82310.26040.53700.037*C220.77453 (11)0.18142 (19)0.45050 (8)0.0241 (4)H22A0.72130.14770.46970.029*H22B0.76550.28180.43120.029*	H1B	0.7531	-0.0044	0.3163	0.022*
C170.80130 (9)0.07153 (18)0.39886 (7)0.0171 (3)H170.85330.11070.37830.021*C180.81959 (12)-0.0828 (2)0.42605 (9)0.0288 (4)H18A0.8401-0.14930.39140.035*H18B0.7676-0.12690.44340.035*C190.88557 (14)-0.0728 (2)0.47965 (10)0.0412 (5)H19A0.8935-0.17330.49910.049*H19B0.9395-0.04090.46100.049*C200.85982 (12)0.0381 (2)0.53148 (9)0.0319 (4)H20A0.80930.00050.55350.038*C210.84186 (12)0.1913 (2)0.50270 (9)0.0309 (4)H21B0.82310.26040.53700.037*C220.77453 (11)0.18142 (19)0.45050 (8)0.0241 (4)H22A0.72130.14770.46970.029*H22B0.76550.28180.43120.029*	H1C	0.7236	0.1499	0.3313	0.022*
H170.85330.11070.37830.021*C180.81959 (12)-0.0828 (2)0.42605 (9)0.0288 (4)H18A0.8401-0.14930.39140.035*H18B0.7676-0.12690.44340.035*C190.88557 (14)-0.0728 (2)0.47965 (10)0.0412 (5)H19A0.8935-0.17330.49910.049*H19B0.9395-0.04090.46100.049*C200.85982 (12)0.0381 (2)0.53148 (9)0.0319 (4)H20A0.80930.00050.55350.038*H20B0.90510.04700.56380.039*C210.84186 (12)0.1913 (2)0.50270 (9)0.309 (4)H21A0.89370.23270.48400.037*H21B0.82310.26040.53700.037*C220.77453 (11)0.18142 (19)0.45050 (8)0.0241 (4)H22A0.72130.14770.46970.029*H22B0.76550.28180.43120.029*	C17	0.80130 (9)	0.07153 (18)	0.39886 (7)	0.0171 (3)
C180.81959 (12)-0.0828 (2)0.42605 (9)0.0288 (4)H18A0.8401-0.14930.39140.035*H18B0.7676-0.12690.44340.035*C190.88557 (14)-0.0728 (2)0.47965 (10)0.0412 (5)H19A0.8935-0.17330.49910.049*H19B0.9395-0.04090.46100.049*C200.85982 (12)0.0381 (2)0.53148 (9)0.0319 (4)H20A0.80930.00050.55350.038*C210.84186 (12)0.1913 (2)0.50270 (9)0.3099 (4)H21A0.89370.23270.48400.037*H21B0.82310.26040.53700.037*C220.77453 (11)0.18142 (19)0.45050 (8)0.0241 (4)H22A0.72130.14770.46970.029*H22B0.76550.28180.43120.029*	H17	0.8533	0.1107	0.3783	0.021*
H18A0.8401-0.14930.39140.035*H18B0.7676-0.12690.44340.035*C190.88557 (14)-0.0728 (2)0.47965 (10)0.0412 (5)H19A0.8935-0.17330.49910.049*H19B0.9395-0.04090.46100.049*C200.85982 (12)0.0381 (2)0.53148 (9)0.0319 (4)H20A0.80930.00050.55350.038*H20B0.90510.04700.56380.039*C210.84186 (12)0.1913 (2)0.50270 (9)0.0309 (4)H21A0.89370.23270.48400.037*H21B0.82310.26040.53700.037*C220.77453 (11)0.18142 (19)0.45050 (8)0.0241 (4)H22A0.72130.14770.46970.029*H22B0.76550.28180.43120.029*	C18	0.81959 (12)	-0.0828 (2)	0.42605 (9)	0.0288 (4)
H18B0.7676-0.12690.44340.035*C190.88557 (14)-0.0728 (2)0.47965 (10)0.0412 (5)H19A0.8935-0.17330.49910.049*H19B0.9395-0.04090.46100.049*C200.85982 (12)0.0381 (2)0.53148 (9)0.0319 (4)H20A0.80930.00050.55350.038*H20B0.90510.04700.56380.038*C210.84186 (12)0.1913 (2)0.50270 (9)0.0309 (4)H21A0.89370.23270.48400.037*H21B0.82310.26040.53700.037*C220.77453 (11)0.18142 (19)0.45050 (8)0.0241 (4)H22A0.72130.14770.46970.029*H22B0.76550.28180.43120.029*	H18A	0.8401	-0.1493	0.3914	0.035*
C190.88557 (14)-0.0728 (2)0.47965 (10)0.0412 (5)H19A0.8935-0.17330.49910.049*H19B0.9395-0.04090.46100.049*C200.85982 (12)0.0381 (2)0.53148 (9)0.0319 (4)H20A0.80930.00050.55350.038*H20B0.90510.04700.56380.038*C210.84186 (12)0.1913 (2)0.50270 (9)0.0309 (4)H21A0.89370.23270.48400.037*H21B0.82310.26040.53700.0241 (4)H22A0.72130.14770.46970.029*H22B0.76550.28180.43120.029*	H18B	0.7676	-0.1269	0.4434	0.035*
H19A0.8935-0.17330.49910.049*H19B0.9395-0.04090.46100.049*C200.85982 (12)0.0381 (2)0.53148 (9)0.0319 (4)H20A0.80930.00050.55350.038*H20B0.90510.04700.56380.0309 (4)C210.84186 (12)0.1913 (2)0.50270 (9)0.0309 (4)H21A0.89370.23270.48400.037*H21B0.82310.26040.53700.037*C220.77453 (11)0.18142 (19)0.45050 (8)0.0241 (4)H22A0.72130.14770.46970.029*H22B0.76550.28180.43120.029*	C19	0.88557 (14)	-0.0728 (2)	0.47965 (10)	0.0412 (5)
H19B0.9395-0.04090.46100.049*C200.85982 (12)0.0381 (2)0.53148 (9)0.0319 (4)H20A0.80930.00050.55350.038*H20B0.90510.04700.56380.039*C210.84186 (12)0.1913 (2)0.50270 (9)0.0309 (4)H21A0.89370.23270.48400.037*H21B0.82310.26040.53700.037*C220.77453 (11)0.18142 (19)0.45050 (8)0.0241 (4)H22A0.72130.14770.46970.029*H22B0.76550.28180.43120.029*	H19A	0.8935	-0.1733	0.4991	0.049*
C200.85982 (12)0.0381 (2)0.53148 (9)0.0319 (4)H20A0.80930.00050.55350.038*H20B0.90510.04700.56380.038*C210.84186 (12)0.1913 (2)0.50270 (9)0.0309 (4)H21A0.89370.23270.48400.037*H21B0.82310.26040.53700.037*C220.77453 (11)0.18142 (19)0.45050 (8)0.0241 (4)H22A0.72130.14770.46970.029*H22B0.76550.28180.43120.029*	H19B	0.9395	-0.0409	0.4610	0.049*
H20A0.80930.00050.55350.038*H20B0.90510.04700.56380.038*C210.84186 (12)0.1913 (2)0.50270 (9)0.0309 (4)H21A0.89370.23270.48400.037*H21B0.82310.26040.53700.037*C220.77453 (11)0.18142 (19)0.45050 (8)0.0241 (4)H22A0.72130.14770.46970.029*H22B0.76550.28180.43120.029*	C20	0.85982 (12)	0.0381 (2)	0.53148 (9)	0.0319 (4)
H20B0.90510.04700.56380.038*C210.84186 (12)0.1913 (2)0.50270 (9)0.0309 (4)H21A0.89370.23270.48400.037*H21B0.82310.26040.53700.037*C220.77453 (11)0.18142 (19)0.45050 (8)0.0241 (4)H22A0.72130.14770.46970.029*H22B0.76550.28180.43120.029*	H20A	0.8093	0.0005	0.5535	0.038*
C210.84186 (12)0.1913 (2)0.50270 (9)0.0309 (4)H21A0.89370.23270.48400.037*H21B0.82310.26040.53700.037*C220.77453 (11)0.18142 (19)0.45050 (8)0.0241 (4)H22A0.72130.14770.46970.029*H22B0.76550.28180.43120.029*	H20B	0.9051	0.0470	0.5638	0.038*
H21A0.89370.23270.48400.037*H21B0.82310.26040.53700.037*C220.77453 (11)0.18142 (19)0.45050 (8)0.0241 (4)H22A0.72130.14770.46970.029*H22B0.76550.28180.43120.029*	C21	0.84186 (12)	0.1913 (2)	0.50270 (9)	0.0309 (4)
H21B0.82310.26040.53700.037*C220.77453 (11)0.18142 (19)0.45050 (8)0.0241 (4)H22A0.72130.14770.46970.029*H22B0.76550.28180.43120.029*	H21A	0.8937	0.2327	0.4840	0.037*
C220.77453 (11)0.18142 (19)0.45050 (8)0.0241 (4)H22A0.72130.14770.46970.029*H22B0.76550.28180.43120.029*	H21B	0.8231	0.2604	0.5370	0.037*
H22A0.72130.14770.46970.029*H22B0.76550.28180.43120.029*	C22	0.77453 (11)	0.18142 (19)	0.45050 (8)	0.0241 (4)
H22B 0.7655 0.2818 0.4312 0.029*	H22A	0.7213	0.1477	0.4697	0.029*
	H22B	0.7655	0.2818	0.4312	0.029*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn	0.01278 (5)	0.01303 (5)	0.01090 (5)	-0.00039 (4)	0.00020 (3)	-0.00061 (4)
O1	0.0153 (5)	0.0196 (5)	0.0135 (5)	0.0037 (4)	0.0023 (4)	0.0018 (4)
02	0.0287 (6)	0.0363 (7)	0.0244 (7)	0.0157 (5)	0.0075 (5)	0.0145 (6)
03	0.0166 (5)	0.0200 (5)	0.0136 (5)	0.0018 (4)	0.0040 (4)	0.0023 (4)
04	0.0175 (6)	0.0329 (7)	0.0256 (7)	0.0097 (5)	0.0053 (5)	0.0033 (5)
05	0.0138 (5)	0.0205 (6)	0.0161 (6)	-0.0015 (4)	0.0009 (4)	-0.0040 (4)

O6	0.0173 (5)	0.0221 (6)	0.0189 (6)	-0.0023 (4)	-0.0023 (4)	-0.0056 (5)
O7	0.0132 (5)	0.0170 (5)	0.0160 (5)	0.0004 (4)	-0.0002 (4)	-0.0035 (4)
08	0.0180 (5)	0.0244 (6)	0.0170 (6)	0.0019 (4)	0.0022 (4)	-0.0050 (5)
C1	0.0152 (7)	0.0237 (8)	0.0145 (7)	0.0021 (6)	-0.0001 (6)	0.0022 (6)
C2	0.0140 (7)	0.0216 (8)	0.0157 (7)	-0.0006 (6)	0.0005 (6)	-0.0009 (6)
C3	0.0153 (7)	0.0124 (7)	0.0141 (7)	0.0005 (5)	-0.0010 (6)	0.0022 (6)
C4	0.0146 (7)	0.0113 (6)	0.0149 (7)	0.0014 (5)	-0.0010 (6)	0.0019 (6)
C5	0.0189 (7)	0.0160 (7)	0.0107 (7)	-0.0021 (6)	-0.0001 (6)	0.0001 (6)
C6	0.0234 (8)	0.0214 (8)	0.0237 (9)	0.0003 (6)	0.0018 (7)	-0.0039 (7)
C7	0.0395 (10)	0.0205 (8)	0.0289 (10)	-0.0076 (7)	0.0048 (8)	-0.0095 (7)
C8	0.0300 (9)	0.0341 (10)	0.0201 (9)	-0.0173 (8)	0.0009 (7)	-0.0047 (7)
C9	0.0185 (8)	0.0368 (10)	0.0214 (9)	-0.0059 (7)	-0.0022 (6)	0.0000 (8)
C10	0.0212 (8)	0.0197 (8)	0.0191 (8)	-0.0007 (6)	-0.0005 (6)	-0.0009 (6)
C11	0.0212 (8)	0.0139 (7)	0.0157 (8)	0.0027 (6)	0.0044 (6)	-0.0002 (6)
C12	0.0270 (9)	0.0234 (8)	0.0182 (8)	0.0011 (7)	0.0006 (7)	0.0012 (7)
C13	0.0446 (11)	0.0328 (10)	0.0183 (9)	0.0123 (9)	0.0001 (8)	0.0063 (8)
C14	0.0603 (13)	0.0227 (9)	0.0285 (10)	0.0055 (9)	0.0130 (9)	0.0110 (8)
C15	0.0461 (12)	0.0260 (10)	0.0404 (12)	-0.0105 (9)	0.0076 (9)	0.0091 (9)
C16	0.0290 (9)	0.0237 (8)	0.0276 (9)	-0.0059 (7)	0.0011 (7)	0.0037 (7)
N2	0.0283 (7)	0.0188 (7)	0.0122 (6)	0.0068 (5)	0.0016 (5)	0.0004 (5)
C23	0.0204 (8)	0.0162 (7)	0.0163 (8)	-0.0004 (6)	0.0000 (6)	0.0020 (6)
C24	0.0250 (8)	0.0205 (8)	0.0223 (8)	0.0034 (6)	0.0003 (7)	-0.0032 (7)
C25	0.0312 (10)	0.0303 (10)	0.0456 (12)	0.0117 (8)	0.0072 (9)	-0.0008 (9)
C26	0.0232 (9)	0.0321 (10)	0.0516 (13)	0.0037 (8)	-0.0037 (9)	0.0154 (9)
C27	0.0308 (10)	0.0331 (10)	0.0394 (12)	-0.0095 (8)	-0.0151 (8)	0.0140 (9)
C28	0.0357 (10)	0.0220 (8)	0.0192 (8)	-0.0032 (7)	-0.0070 (7)	0.0023 (7)
N1	0.0158 (6)	0.0220 (7)	0.0167 (7)	0.0046 (5)	0.0022 (5)	0.0002 (5)
C17	0.0149 (7)	0.0204 (8)	0.0160 (8)	0.0006 (6)	0.0012 (6)	0.0006 (6)
C18	0.0408 (10)	0.0214 (8)	0.0243 (9)	0.0120 (8)	-0.0058 (8)	-0.0023 (7)
C19	0.0523 (13)	0.0412 (12)	0.0299 (11)	0.0266 (10)	-0.0150 (9)	-0.0054 (9)
C20	0.0395 (11)	0.0367 (10)	0.0195 (9)	0.0080 (8)	-0.0060 (8)	-0.0013 (8)
C21	0.0413 (11)	0.0280 (9)	0.0234 (9)	-0.0007 (8)	-0.0047 (8)	-0.0050 (8)
C22	0.0314 (9)	0.0192 (8)	0.0216 (9)	0.0076 (7)	-0.0003 (7)	-0.0029 (7)

Geometric parameters (Å, °)

Sn—O1	2.2005 (10)	N2—H2C	0.9100
Sn—O3	2.1267 (10)	N2—C23	1.493 (2)
Sn—O5	2.1883 (10)	C23—H23	1.0000
Sn—O7	2.1396 (10)	C23—C24	1.518 (2)
Sn—C5	2.1388 (15)	C23—C28	1.519 (2)
Sn—C11	2.1486 (15)	C24—H24A	0.9900
01—C1	1.2721 (18)	C24—H24B	0.9900
O2—C1	1.2312 (19)	C24—C25	1.529 (2)
O3—C2	1.2883 (19)	C25—H25A	0.9900
O4—C2	1.2280 (19)	C25—H25B	0.9900
O5—C3	1.2672 (18)	C25—C26	1.522 (3)
O6—C3	1.2391 (18)	C26—H26A	0.9900

O7—C4	1.2751 (18)	C26—H26B	0.9900
O8—C4	1.2326 (18)	C26—C27	1.517 (3)
C1—C2	1.552 (2)	С27—Н27А	0.9900
C3—C4	1.560 (2)	С27—Н27В	0.9900
C5—C6	1.395 (2)	C27—C28	1.522 (3)
C5—C10	1.394 (2)	C28—H28A	0.9900
С6—Н6	0.9500	C28—H28B	0.9900
C6—C7	1.393 (2)	N1—H1A	0.9100
С7—Н7	0.9500	N1—H1B	0.9100
C7—C8	1.383 (3)	N1—H1C	0.9100
С8—Н8	0.9500	N1—C17	1.5009 (19)
C8—C9	1.378 (3)	С17—Н17	1.0000
С9—Н9	0.9500	C17—C18	1.514 (2)
C9—C10	1.389 (2)	C17—C22	1.516 (2)
C10—H10	0.9500	C18—H18A	0.9900
C11—C12	1.396 (2)	C18—H18B	0.9900
C11—C16	1.398 (2)	C18—C19	1.535 (3)
C12—H12	0.9500	C19—H19A	0.9900
C12—C13	1.393 (2)	C19—H19B	0.9900
C13—H13	0.9500	C19—C20	1.521 (3)
C13—C14	1.380 (3)	C20—H20A	0.9900
C14—H14	0.9500	C20—H20B	0.9900
C14—C15	1.379 (3)	C20—C21	1.516 (3)
С15—Н15	0.9500	C21—H21A	0.9900
C15—C16	1.391 (3)	C21—H21B	0.9900
C16—H16	0.9500	C21—C22	1.529 (2)
N2—H2A	0.9100	C22—H22A	0.9900
N2—H2B	0.9100	C22—H22B	0.9900
O3—Sn—O1	75.33 (4)	С24—С23—Н23	108.7
O3—Sn—O5	85.53 (4)	C24—C23—C28	111.84 (13)
O3—Sn—O7	153.52 (4)	С28—С23—Н23	108.7
O3—Sn—C5	100.20 (5)	C23—C24—H24A	109.6
O3—Sn—C11	95.78 (5)	C23—C24—H24B	109.6
O5—Sn—O1	77.21 (4)	C23—C24—C25	110.36 (14)
O7—Sn—O1	81.88 (4)	H24A—C24—H24B	108.1
O7—Sn—O5	76.33 (4)	C25—C24—H24A	109.6
O7—Sn—C11	102.60 (5)	C25—C24—H24B	109.6
C5—Sn—O1	88.84 (5)	C24—C25—H25A	109.5
C5—Sn—O5	163.15 (5)	C24—C25—H25B	109.5
C5—Sn—O7	92.55 (5)	H25A—C25—H25B	108.1
C5—Sn—C11	106.94 (6)	C26—C25—C24	110.63 (16)
C11—Sn—O1	163.22 (5)	C26—C25—H25A	109.5
C11—Sn—O5	88.05 (5)	C26—C25—H25B	109.5
C1—O1—Sn	115.90 (9)	C25—C26—H26A	109.3
C2—O3—Sn	117.90 (9)	C25—C26—H26B	109.3
C3—O5—Sn	114.73 (9)	H26A—C26—H26B	108.0
C4—O7—Sn	116.08 (9)	C27—C26—C25	111.46 (16)

O1—C1—C2	115.19 (13)	C27—C26—H26A	109.3
O2—C1—O1	126.29 (15)	C27—C26—H26B	109.3
O2—C1—C2	118.51 (14)	С26—С27—Н27А	109.5
O3—C2—C1	115.26 (13)	C26—C27—H27B	109.5
O4—C2—O3	124.14 (14)	C26—C27—C28	110.87 (15)
O4—C2—C1	120.59 (14)	H27A—C27—H27B	108.1
O5—C3—C4	116.26 (13)	C28—C27—H27A	109.5
O6—C3—O5	125.96 (14)	C28—C27—H27B	109.5
O6—C3—C4	117.75 (13)	C23—C28—C27	110.43 (15)
O7—C4—C3	115.39 (13)	C23—C28—H28A	109.6
O8—C4—O7	126.13 (14)	C23—C28—H28B	109.6
O8—C4—C3	118.47 (13)	C27—C28—H28A	109.6
C6—C5—Sn	122.61 (12)	C27—C28—H28B	109.6
C10—C5—Sn	119.36 (11)	H28A—C28—H28B	108.1
C10—C5—C6	118.02 (14)	H1A—N1—H1B	109.5
С5—С6—Н6	119.7	H1A - N1 - H1C	109.5
C7-C6-C5	120.68 (16)	H1B - N1 - H1C	109.5
C7—C6—H6	119 7	C17— $N1$ — $H1A$	109.5
С6—С7—Н7	119.9	C17— $N1$ — $H1B$	109.5
C8 - C7 - C6	120 20 (16)	C17 $N1$ $H1C$	109.5
C8-C7-H7	119.9	N1-C17-H17	108.4
C7 - C8 - H8	120.0	N1 - C17 - C18	108.84(13)
C9 - C8 - C7	119.91 (16)	N1-C17-C22	100.01(12) 110.54(12)
C9 - C8 - H8	120.0	C18 - C17 - H17	108.4
C8-C9-H9	120.0	C18 - C17 - C22	112 06 (14)
$C_{8} - C_{9} - C_{10}$	119.93 (16)	C^{22} C^{17} C^{12} H^{17}	108.4
С10-С9-Н9	120.0	$C_{22} = C_{17} = H_{18}$	109.4
$C_{10} = C_{10} = H_{10}$	110 /	C17 $C18$ $H18B$	109.6
C_{9} C_{10} C_{5}	121 24 (15)	C17 - C18 - C19	110.48 (16)
$C_{P} = C_{10} = C_{2}$	110 /	H18A C18 H18B	108.1
$C_{12} = C_{11} = S_{12}$	119.4	C10 C18 H18A	100.1
$C_{12} = C_{11} = S_{11}$	119.05 (11)	C19 - C18 - H18R	109.0
$C_{12} = C_{11} = C_{10}$	110.11(13) 122.24(12)	C18 C10 H10A	109.0
$C_{10} - C_{11} - S_{11}$	122.24 (12)	C_{18} C_{19} H_{10R}	109.3
C13 - C12 - C11	119.5	U10A C10 U10P	109.3
$C_{13} = C_{12} = C_{11}$	120.91 (17)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.0
$C_{12} = C_{12} = H_{12}$	119.5	$C_{20} = C_{19} = C_{18}$	100.3
C_{12} C_{13} C_{12} C_{12}	119.9	C_{20} C_{10} H_{10} R_{10}	109.3
C14 - C13 - C12	120.11 (16)	C10 C20 H20A	109.5
C12 - C13 - H13	119.9	C19 - C20 - H20A	109.5
C15 - C14 - C12	120.1	C19 - C20 - H20B	109.3
C15 - C14 - C13	119.77 (17)	$H_{20}A - C_{20} - H_{20}B$	108.1
C13 - C14 - H14	120.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.81 (16)
C14 - C15 - C16	119./	C_{21} C_{20} H_{20D}	109.5
C14 - C15 - C16	120.53 (18)	C_{21} C_{20} H_{20} H_{21}	109.5
C10-C15-H15	119./	C20—C21—H21A	109.4
CII—CI6—HI6	119.7	C20—C21—H21B	109.4
CI5-CI6-CII	120.54 (18)	C20—C21—C22	111.15 (15)
C15—C16—H16	119.7	H21A—C21—H21B	108.0

H2A—N2—H2B	109.5	C22—C21—H21A	109.4
H2A—N2—H2C	109.5	C22—C21—H21B	109.4
H2B—N2—H2C	109.5	C17—C22—C21	109.86 (14)
C23—N2—H2A	109.5	C17—C22—H22A	109.7
C23—N2—H2B	109.5	С17—С22—Н22В	109.7
C23—N2—H2C	109.5	C21—C22—H22A	109.7
N2—C23—H23	108.7	C21—C22—H22B	109.7
N2—C23—C24	109.37 (13)	H22A—C22—H22B	108.2
N2-C23-C28	109.51 (13)		
Sn—O1—C1—O2	-171.88 (14)	C8—C9—C10—C5	0.0 (3)
Sn—O1—C1—C2	6.94 (17)	C10—C5—C6—C7	0.0 (2)
Sn-O3-C2-O4	178.78 (12)	C11—C12—C13—C14	0.9 (3)
Sn-O3-C2-C1	-1.22 (17)	C12-C11-C16-C15	0.5 (3)
SnO5C3O6	-176.13 (12)	C12-C13-C14-C15	0.4 (3)
SnO5C3C4	2.10 (16)	C13-C14-C15-C16	-1.2 (3)
Sn	-168.51 (12)	C14—C15—C16—C11	0.8 (3)
Sn	12.63 (16)	C16-C11-C12-C13	-1.4 (2)
SnC5C6C7	179.96 (13)	N2-C23-C24-C25	177.93 (14)
SnC5C10C9	179.79 (12)	N2-C23-C28-C27	-177.92 (13)
Sn-C11-C12-C13	178.20 (13)	C23—C24—C25—C26	-55.7 (2)
Sn-C11-C16-C15	-179.04 (14)	C24—C23—C28—C27	-56.52 (18)
O1—C1—C2—O3	-4.0 (2)	C24—C25—C26—C27	56.3 (2)
O1—C1—C2—O4	176.02 (15)	C25—C26—C27—C28	-56.5 (2)
O2—C1—C2—O3	174.93 (15)	C26—C27—C28—C23	55.9 (2)
O2—C1—C2—O4	-5.1 (2)	C28—C23—C24—C25	56.44 (19)
O5—C3—C4—O7	-9.98 (19)	N1-C17-C18-C19	-178.38 (14)
O5—C3—C4—O8	171.06 (13)	N1-C17-C22-C21	178.56 (14)
O6—C3—C4—O7	168.40 (13)	C17—C18—C19—C20	54.6 (2)
O6—C3—C4—O8	-10.6 (2)	C18—C17—C22—C21	56.96 (19)
C5—C6—C7—C8	0.5 (3)	C18—C19—C20—C21	-55.5 (2)
C6—C5—C10—C9	-0.2 (2)	C19—C20—C21—C22	56.9 (2)
C6—C7—C8—C9	-0.8 (3)	C20—C21—C22—C17	-57.1 (2)
C7—C8—C9—C10	0.5 (3)	C22—C17—C18—C19	-55.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2A····O2	0.91	1.90	2.7851 (18)	163
N2—H2 B ···O6 ⁱ	0.91	2.20	2.8885 (17)	132
N2—H2 B ···O8 ⁱ	0.91	2.23	3.0583 (18)	151
N2—H2C···O6 ⁱⁱ	0.91	2.68	3.2403 (18)	121
N2—H2C···O8 ⁱⁱ	0.91	2.01	2.8970 (18)	164
N1—H1A···O6 ⁱ	0.91	1.98	2.8842 (17)	177
N1—H1B····O3 ⁱⁱⁱ	0.91	2.31	2.9393 (16)	126

			supporting	supporting information		
N1—H1 <i>B</i> ····O4 ⁱⁱⁱ	0.91	2.35	3.2550 (18)	177		
N1—H1C···O4	0.91	2.13	3.0076 (18)	163		

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+3/2, *y*-1/2, -*z*+1/2.