data reports

OPEN 🗟 ACCESS

ISSN 2056-9890

Crystal structure of bis(9*H*-6-aminopurin-1-ium) hexafluoridosilicate(IV) dihydrate

Ratiba Belhouas,^a Sofiane Bouacida,^{a,b}* Chaouki Boudaren,^a Jean-Claude Daran^c and El Hossain Chtoun^d

^aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000, Algeria, ^bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria, ^cLaboratoire de Chimie de Coordination, UPR CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex, France, and ^dUniversité Abdelmalek Essaadi, Faculté des Sciences, BP 2121 M'Hannech II, 93002 Tétouan, Morocco. *Correspondence e-mail: bouacida_sofiane@yahoo.fr

Received 29 November 2014; accepted 9 December 2014

Edited by M. Weil, Vienna University of Technology, Austria

The asymmetric unit of the title compound, $2C_5H_6N_5^+$ ·SiF₆²⁻·2H₂O, contains one adeninium cation, half of a hexafluoridosilicate anion located on an inversion centre and one lattice water molecule. The adeninium cations are connected through N-H···N hydrogen bonds involving one H atom of the -NH₂ group and the H atom of the protonated N atom of the adenine ring system, forming centrosymmetric ring motifs of the type $R_2^2(10)$ and $R_2^2(8)$, respectively. The overall connection of the cation leads to the formation of planar ribbons parallel to (122). In the ribbons, slipped $\pi - \pi$ stacking interactions, with a centroid-to-centroid distance of 3.6938 (9) Å, an interplanar distance of 3.455 Å and a slippage of 1.306 Å is observed. The hexafluoridosilicate anion and the water molecule are linked through $O-H \cdots F$ hydrogen bonds [ring motif $R_4^4(12)$] into chains parallel to [100]. The cationic ribbons and anionic chains are finally connected through additional N-H···O, N-H···F and O-H···F hydrogen bonds into a three-dimensional network in which lavers of adeninium cations and fluoridosilicate anions alternate parallel to (001).

Keywords: crystal structure; purinium cation; hexafluoridosilicate anion; hydrogen bonding.

CCDC reference: 1038389

1. Related literature

The title compound was prepared as part of our ongoing studies of hydrogen-bonding interactions in the crystal struc-

tures of protonated amines (Bouacida *et al.*, 2005*a*,*b*,*c*; 2006; Belhouas *et al.*, 2012). For π - π stacking interactions, see: Janiak (2000).

2. Experimental

2.1. Crystal data $2C_5H_6N_5^+ \cdot SiF_6^{-2-} \cdot 2H_2O$ $M_r = 450.42$ Triclinic, $P\overline{1}$ a = 5.7500 (7) Å b = 7.8504 (3) Å c = 10.0884 (6) Å

 $\alpha = 79.141 \ (6)^{\circ}$ $\beta = 84.534 \ (17)^{\circ}$

2.2. Data collection

Nonius KappaCCD diffractometer 4025 measured reflections 1923 independent reflections

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.082$ S = 1.031923 reflections 1757 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.018$

 $\gamma = 71.774 \ (9)^{\circ}$

Z = 1

V = 424.47 (6) Å³

Mo $K\alpha$ radiation

 $0.55 \times 0.12 \times 0.07 \text{ mm}$

 $\mu = 0.24 \text{ mm}^{-1}$

T = 295 K

133 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.28 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1W\cdots F2^{i}$	0.85	1.88	2.7307 (14)	178
$O1W - H2W \cdot \cdot \cdot F3$	0.80	1.95	2.7553 (14)	174
$N1 - H1 \cdots O1W$	0.86	1.88	2.7059 (15)	162
N9−H9···N3 ⁱⁱ	0.86	2.13	2.9378 (17)	157
N9−H9···F1 ⁱⁱⁱ	0.86	2.54	3.0009 (14)	115
$N6-H6A\cdots F3^{i}$	0.86	1.98	2.7917 (14)	157
$N6-H6A\cdots F1^{iv}$	0.86	2.61	3.2906 (15)	137
$N6-H6B\cdots N7^{v}$	0.86	2.15	2.9648 (18)	159

Symmetry codes: (i) x + 1, y, z; (ii) -x, -y + 2, -z + 1; (iii) x, y + 1, z - 1; (iv) -x + 1, -y, -z + 2; (v) -x + 2, -y + 1, -z + 1.

Data collection: *COLLECT* (Otwinowski & Minor, 1997); cell refinement: *DIRAX/LSQ* (Duisenberg *et al.*, 2003); data reduction: *EVALCCD* (Duisenberg *et al.*, 2003); program(s) used to solve structure: *SIR92* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996), *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Acknowledgements

We acknowledge MESRS and ATRST (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique Algérie) for financial support *via* the PNR programme.

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5099).

References

- Belhouas, R., Bouacida, S., Boudaren, C., Daran, J.-C. & Roisnel, T. (2012). *Acta Cryst.* E68, 01791–01792.
- Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005*a*). Acta Cryst. E**61**, m1153–m1155.
- Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005b). Acta Cryst. E61, m2072-m2074.

- Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005c). Acta Cryst. E61, m577-m579.
- Bouacida, S., Merazig, H. & Benard-Rocherulle, P. (2006). Acta Cryst. E62, 0838–0840.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2015). E71, o72-o73 [doi:10.1107/S2056989014027005]

Crystal structure of bis(9*H*-6-aminopurin-1-ium) hexafluoridosilicate(IV) dihydrate

Ratiba Belhouas, Sofiane Bouacida, Chaouki Boudaren, Jean-Claude Daran and El Hossain Chtoun

S1. Experimental

Crystals of the title compound were grown from aqueous solution by dissolving 1 mmol SiO_2 and 2 mmol adenine in hydrofluoric acid (HF). The solutions were slowly evaporated to dryness for a couple of weeks. Some colourless crystals were isolated under a polarizing microscope for X-ray diffraction analysis.

S2. Refinement

All H atoms attached to C or N atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and N—H = 0.86 Å with $U_{iso}(H) = 1.2U_{eq}(C \text{ or N})$. H atoms of the water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H= 0.82 (1) Å and H…H = 1.38 (2) Å) with $U_{iso}(H) = 1.5U_{eq}(O)$.

The principal structural units in the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radius. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x, -y, 2 - z]

Partial packing view of the title compound, showing the formation of $R_2^2(10)$ (A1) and $R_2^2(8)$ (A2) rings through N—H…N, N—H…O, N—H…F and O—H…F hydrogen bonds. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (i) -*x*, *y* - 1/2, -*z* + 1/2; (ii) -*x*, *y* + 1/2, -*z* + 1/2; (iii) *x*, *y* - 1, *z*; (iv) -*x*, -*y*, -*z* + 1.].

Partial packing view showing chains formed between water molecules and fluoridosilicate anions through O—H \cdots F hydrogen bonds. For the sake of clarity, the cationic counterparts have been omitted. [Symmetry code: (i) x + 1, y, z]

Packing view in a projection approximately along [100] showing the formation of layers parallel to (001). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Bis(9H-6-aminopurin-1-ium) hexafluoridosilicate(IV) dihydrate

Crystal data	
$2C_5H_6N_5^+ \cdot SiF_6^{2-} \cdot 2H_2O$	Z = 1
$M_r = 450.42$	F(000) = 230
Triclinic, P1	$D_{\rm x} = 1.762 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 5.7500 (7) Å	Cell parameters from 2981 reflections
b = 7.8504 (3) Å	$\theta = 5.2 - 27.5^{\circ}$
c = 10.0884 (6) Å	$\mu=0.24~\mathrm{mm^{-1}}$
$\alpha = 79.141 \ (6)^{\circ}$	T = 295 K
$\beta = 84.534 \ (17)^{\circ}$	Lath, colourless
$\gamma = 71.774 \ (9)^{\circ}$	$0.55 \times 0.12 \times 0.07 \text{ mm}$
V = 424.47 (6) Å ³	

Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Detector resolution: 9 pixels mm ⁻¹ CCD rotation images, thick slices scans 4025 measured reflections 1923 independent reflections	1757 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 5.2^{\circ}$ $h = -6 \rightarrow 7$ $k = -10 \rightarrow 10$ $l = -13 \rightarrow 13$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.082$ S = 1.03 1923 reflections 133 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0373P)^2 + 0.1468P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sil	0.0000	0.0000	1.0000	0.02519 (13)	
F1	0.16598 (16)	-0.01595 (12)	1.13081 (8)	0.0417 (2)	
F2	-0.25721 (16)	0.04669 (12)	1.09945 (9)	0.0432 (2)	
F3	-0.03226 (17)	0.22671 (11)	0.95904 (9)	0.0410 (2)	
O1W	0.36312 (19)	0.33709 (13)	0.99720 (11)	0.0411 (3)	
H1W	0.4831	0.2480	1.0279	0.062*	
H2W	0.2551	0.2970	0.9859	0.062*	
N1	0.4082 (2)	0.56497 (15)	0.76571 (10)	0.0304 (2)	
H1	0.4261	0.4920	0.8417	0.036*	
N7	0.7063 (2)	0.69851 (15)	0.44077 (11)	0.0322 (3)	
N9	0.3304 (2)	0.89656 (15)	0.41590 (11)	0.0339 (3)	
H9	0.2111	0.9840	0.3789	0.041*	
N6	0.8149 (2)	0.42421 (16)	0.70564 (12)	0.0384 (3)	
H6A	0.8298	0.3513	0.7817	0.046*	
H6B	0.9376	0.4154	0.6487	0.046*	
N3	0.1313 (2)	0.80786 (16)	0.63114 (11)	0.0344 (3)	
C6	0.6057 (2)	0.54850 (16)	0.67661 (12)	0.0277 (3)	

supporting information

C4	0.3254 (2)	0.79502 (17)	0.54071 (12)	0.0287 (3)
C5	0.5581 (2)	0.67381 (16)	0.55526 (12)	0.0268 (3)
C8	0.5605 (3)	0.83344 (18)	0.36060 (14)	0.0347 (3)
H8	0.6093	0.8810	0.2748	0.042*
C2	0.1861 (3)	0.68935 (19)	0.74132 (13)	0.0334 (3)
H2	0.0632	0.6901	0.8084	0.040*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Si1	0.0258 (2)	0.0253 (2)	0.0204 (2)	-0.00695 (18)	-0.00429 (17)	0.00622 (16)
F1	0.0428 (5)	0.0461 (5)	0.0328 (4)	-0.0095 (4)	-0.0160 (4)	0.0021 (3)
F2	0.0341 (4)	0.0502 (5)	0.0354 (4)	-0.0076 (4)	0.0041 (3)	0.0054 (4)
F3	0.0494 (5)	0.0291 (4)	0.0412 (5)	-0.0126 (4)	-0.0109 (4)	0.0080 (3)
O1W	0.0376 (6)	0.0361 (5)	0.0458 (6)	-0.0123 (4)	-0.0092 (4)	0.0080 (4)
N1	0.0364 (6)	0.0310 (5)	0.0209 (5)	-0.0091 (4)	-0.0034 (4)	0.0016 (4)
N7	0.0338 (6)	0.0308 (5)	0.0266 (5)	-0.0067 (5)	-0.0001 (4)	0.0027 (4)
N9	0.0354 (6)	0.0298 (5)	0.0279 (6)	-0.0023 (5)	-0.0052 (4)	0.0050 (4)
N6	0.0354 (6)	0.0376 (6)	0.0297 (6)	-0.0022 (5)	-0.0020 (5)	0.0106 (5)
N3	0.0323 (6)	0.0355 (6)	0.0286 (6)	-0.0024 (5)	-0.0022 (4)	-0.0017 (4)
C6	0.0328 (6)	0.0260 (6)	0.0232 (6)	-0.0086 (5)	-0.0038 (5)	-0.0009 (4)
C4	0.0328 (7)	0.0265 (6)	0.0244 (6)	-0.0061 (5)	-0.0044 (5)	-0.0021 (4)
C5	0.0306 (6)	0.0247 (5)	0.0229 (6)	-0.0064 (5)	-0.0028 (5)	-0.0009 (4)
C8	0.0380 (7)	0.0332 (6)	0.0270 (6)	-0.0079 (5)	-0.0013 (5)	0.0049 (5)
C2	0.0348 (7)	0.0361 (7)	0.0271 (6)	-0.0081 (5)	0.0008 (5)	-0.0051 (5)

Geometric parameters (Å, °)

Si1—F1	1.6646 (8)	N9—C4	1.3605 (16)
Si1—F1 ⁱ	1.6646 (8)	N9—C8	1.3637 (19)
Si1—F2	1.6867 (9)	N9—H9	0.8600
Si1—F2 ⁱ	1.6867 (9)	N6—C6	1.3080 (17)
Si1—F3	1.7041 (8)	N6—H6A	0.8600
Si1—F3 ⁱ	1.7041 (8)	N6—H6B	0.8600
O1W—H1W	0.8476	N3—C2	1.3015 (17)
O1W—H2W	0.8046	N3—C4	1.3632 (17)
N1—C2	1.3543 (18)	C6—C5	1.4081 (16)
N1—C6	1.3681 (17)	C4—C5	1.3803 (18)
N1—H1	0.8600	C8—H8	0.9300
N7—C8	1.3154 (17)	C2—H2	0.9300
N7—C5	1.3892 (16)		
F1—Si1—F1 ⁱ	180.000 (1)	C4—N9—H9	126.5
F1—Si1—F2	89.86 (5)	C8—N9—H9	126.5
F1 ⁱ —Si1—F2	90.14 (5)	C6—N6—H6A	120.0
F1-Si1-F2 ⁱ	90.14 (5)	C6—N6—H6B	120.0
F1 ⁱ —Si1—F2 ⁱ	89.86 (5)	H6A—N6—H6B	120.0
F2—Si1—F2 ⁱ	180.0	C2—N3—C4	112.33 (12)

F1—Si1—F3	90.31 (4)	N6—C6—N1	120.97 (11)
F1 ⁱ —Si1—F3	89.69 (4)	N6—C6—C5	125.23 (12)
F2—Si1—F3	89.68 (5)	N1—C6—C5	113.80 (11)
F2 ⁱ —Si1—F3	90.32 (5)	N9—C4—N3	127.47 (12)
F1—Si1—F3 ⁱ	89.69 (4)	N9—C4—C5	105.20 (11)
F1 ⁱ —Si1—F3 ⁱ	90.31 (4)	N3—C4—C5	127.32 (11)
F2—Si1—F3 ⁱ	90.32 (5)	C4—C5—N7	111.11 (11)
F2 ⁱ —Si1—F3 ⁱ	89.68 (5)	C4—C5—C6	117.64 (12)
F3—Si1—F3 ⁱ	180.000(1)	N7—C5—C6	131.23 (12)
H1W—O1W—H2W	107.5	N7—C8—N9	113.25 (12)
C2—N1—C6	123.90 (11)	N7—C8—H8	123.4
C2—N1—H1	118.1	N9—C8—H8	123.4
C6—N1—H1	118.1	N3—C2—N1	125.00 (13)
C8—N7—C5	103.37 (11)	N3—C2—H2	117.5
C4—N9—C8	107.06 (11)	N1—C2—H2	117.5

Symmetry code: (i) -x, -y, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H…A
O1 <i>W</i> —H1 <i>W</i> …F2 ⁱⁱ	0.85	1.88	2.7307 (14)	178
O1 <i>W</i> —H2 <i>W</i> ···F3	0.80	1.95	2.7553 (14)	174
N1—H1…O1 <i>W</i>	0.86	1.88	2.7059 (15)	162
N9—H9…N3 ⁱⁱⁱ	0.86	2.13	2.9378 (17)	157
$N9$ — $H9$ ···· $F1^{iv}$	0.86	2.54	3.0009 (14)	115
N6—H6A···F3 ⁱⁱ	0.86	1.98	2.7917 (14)	157
$N6-H6A\cdots F1^{v}$	0.86	2.61	3.2906 (15)	137
N6—H6B····N7 ^{vi}	0.86	2.15	2.9648 (18)	159

Symmetry codes: (ii) *x*+1, *y*, *z*; (iii) –*x*, –*y*+2, –*z*+1; (iv) *x*, *y*+1, *z*–1; (v) –*x*+1, –*y*, –*z*+2; (vi) –*x*+2, –*y*+1, –*z*+1.