CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 6 January 2015
Accepted 19 January 2015

Edited by J. Simpson, University of Otago, New Zealand

Keywords: Crystal structure; synchrotron radiation; pyridine-2,6-dicarboxylate ammonium cation; chromate(III) complex; meridional configuration; hydrogen bonding

CCDC reference: 1044324
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of ammonium bis(pyridine-2,6-dicarboxylato- $\kappa^{3} \mathrm{O}, \mathrm{N}, \mathrm{O}^{\prime}$)chromate(III) from synchrotron data

Dohyun Moon ${ }^{\text {a }}$ and Jong-Ha Choi ${ }^{\text {b* }}$

${ }^{\text {a }}$ Pohang Accelerator Laboratory, POSTECH, Pohang 790-784, Republic of Korea, and ${ }^{\mathbf{b}}$ Department of Chemistry, Andong National University, Andong 760-749, Republic of Korea. *Correspondence e-mail: jhchoi@anu.ac.kr

The structure of the title compound, $\left(\mathrm{NH}_{4}\right)\left[\mathrm{Cr}(\mathrm{pydc})_{2}\right]$ (pydc is pyridine-2,6dicarboxylate, $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}$), has been determined from synchrotron data. The $\mathrm{Cr}^{\mathrm{III}}$ ion and the N atom of the ammonium cation are located on a crystallographic fourfold rotoinversion axis ($\overline{4}$). The $\mathrm{Cr}^{\mathrm{III}}$ cation is coordinated by four O atoms and the two N atoms of two meridional pydc ligands, displaying a distorted octahedral geometry. The $\mathrm{Cr}-\mathrm{N}$ and $\mathrm{Cr}-\mathrm{O}$ bond lengths are 1.9727 (15) and 1.9889 (9) \AA, respectively. The crystal structure is stabilized by intermolecular hydrogen bonds involving the $\mathrm{N}-\mathrm{H}$ groups of the ammonium cation and pyridine $\mathrm{C}-\mathrm{H}$ groups as donors and the non-coordinating carbonyl O atoms as acceptors.

1. Chemical context

Pyridine-2,6-dicarboxylic acid (also known as dipicolinic acid and abbreviated here as H_{2} pydc) can coordinate a metal center as a neutral molecule (H_{2} pydc), the univalent anion (Hpydc^{-}), or the divalent anion (pydc ${ }^{2-}$). In particular, the pyridine-2,6-dicarboxylate ligand frequently acts as a meridional tridentate ligand and sometimes also as a bidentate or bridging ligand (Park et al., 2007). The first $\left[\mathrm{Cr}(\mathrm{pydc})_{2}\right]^{-}$ complex was prepared as the Na^{+}salt according to the literature (Hoggard \& Schmidtke, 1973) and its crystal structure determined using synchrotron data. Structural analysis showed the compound to be a dihydrate (Dai et al., 2006; González-Baró et al., 2008) rather than the 1.5 or 2.5 hydrates that had been suggested previously (Hoggard \& Schmidtke, 1973; Fürst et al., 1979). The crystal structures of $\mathrm{K}\left[\mathrm{Cr}(\mathrm{pydc})_{2}\right]$ (Hakimi et al., 2012) and $\mathrm{Rb}\left[\mathrm{Cr}(\mathrm{pydc})_{2}\right]$ (Fürst et al., 1979) have also been reported previously but the structure of the ammonium salt is not known.

Here we report the crystal structure of $\left(\mathrm{NH}_{4}\right)\left[\mathrm{Cr}(\text { pydc })_{2}\right]$ in order to clarify unambiguously the bonding mode of the two

Figure 1
The molecular structure of $\left(\mathrm{NH}_{4}\right)\left[\mathrm{Cr}(\mathrm{pydc})_{2}\right]$, showing the atomnumbering scheme. Non-H atoms are shown as displacement ellipsoids drawn at the 50% probability level.
pyridine-2,6-dicarboxylato ligands and the structural arrangement of this ammonium salt.

2. Structural commentary

Counter-ionic species play a very important role in coordination chemistry. The structure reported here is another example of a $\left[\mathrm{Cr}(\mathrm{pydc})_{2}\right]^{-}$salt but with a different cation. The structural analysis shows that the two tridentate pyridine-2,6dicarboxylate (pydc) dianions octahedrally coordinate to the $\mathrm{Cr}^{\mathrm{III}}$ metal center through one N atom and two carboxylate O atoms in a meridional arrangement. The $\mathrm{Cr}^{\mathrm{II}}$ ion is located on a crystallographic fourfold rotoinversion axis ($\overline{4}$). An ellipsoid plot of title complex together with the atomic numbering is illustrated in Fig. 1.

The $\mathrm{Cr}-\mathrm{N}$ and $\mathrm{Cr}-\mathrm{O}$ bond lengths to the pydc ${ }^{2-}$ ligands are 1.9727 (15) and 1.9889 (9) \AA, respectively, and these lengths agree well with the values observed in the literature for complexes with the same $\left[\mathrm{Cr}(\mathrm{pydc})_{2}\right]^{-}$anion (Fürst et al., 1979; Dai et al., 2006; González-Baró et al., 2008; Zhou et al., 2009; Hakimi et al., 2012). The coordinating pyridine N atoms are in a mutually trans arrangement. Both tridendate pydc ${ }^{2-}$ ligands are nearly planar and are oriented perpendicular to one another. Bond angles about the central chromium atom are 79.10 (3) for $\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{O} 1,100.90$ (3) for $\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{O} 1^{\mathrm{i}}$ and $158.20(5)^{\circ}$ for $\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cr} 1-\mathrm{O} 1^{\mathrm{ii}}$, indicating a distorted octahedral coordination environment [symmetry codes: (i) $-y+\frac{5}{4}, x-\frac{3}{4},-z+\frac{5}{4}$; (ii) $y+\frac{3}{4},-x+\frac{5}{4},-z+\frac{5}{4}$. The $\mathrm{C} 1-\mathrm{O} 1$ and $\mathrm{C} 1-\mathrm{O} 2$ bond lengths within the carboxylate group of the pydc $^{2-}$ ligand are 1.2941 (15) and 1.2223 (14) A, respectively, and can be compared with values of 1.298 (5) and 1.224 (5) \AA for $\mathrm{Rb}\left[\mathrm{Cr}(\mathrm{pydc})_{2}\right]$ (Fürst et al., 1979). The ammonium cation, also lying on a crystallographic fourfold rotoinversion axis ($\overline{4}$), shows a distorted tetrahedral geometry of the hydrogen atoms around the central nitrogen atom with $\mathrm{N}-\mathrm{H}$ distances of 0.846 (9) \AA and the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ angles ranging from 105.36 (9) to $118.06(9)^{\circ}$.

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots{ }^{-} 2^{\mathrm{i}}$	0.93	2.50	$3.4071(15)$	167
$\mathrm{~N} 1 S-\mathrm{H} 1 S \cdots 2^{\mathrm{ii}}$	$0.85(1)$	$2.04(1)$	$2.8462(11)$	$158(2)$

Symmetry codes: (i) $-x+\frac{3}{2},-y+\frac{3}{2},-z+\frac{3}{2}$; (ii) $-y+\frac{5}{4}, x+\frac{1}{4},-z+\frac{5}{4}$.

3. Supramolecular features

The pattern of hydrogen bonding around the cation is very similar to the coordination environment in the related potassium salt (Hakimi et al., 2012). The non-coordinating carbonyl O atom forms weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds that contribute to the crystal packing. The ammonium cation is also linked to the carbonyl O atoms from four neighboring pydc ${ }^{2-}$ ligands through classical $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1). An extensive array of these contacts generate a threedimensional network of molecules stacked along the a-axis direction (Fig. 2). $\pi-\pi$ interactions involving adjacent pyridine rings further link the components of the structure into a threedimensional network. The centroid-centroid distance between the $\pi-\pi$ stacked rings $\left(\mathrm{N} 1 / \mathrm{C} 2-\mathrm{C} 4 / \mathrm{C} 3^{\mathrm{iv}} / \mathrm{C}^{\mathrm{iv}}\right) \cdots\left(\mathrm{N} 1^{\mathrm{v}} / \mathrm{C} 2^{\mathrm{v}}-\mathrm{C} 4^{\mathrm{v}} /\right.$ $\mathrm{C} 3^{\mathrm{vi}} / \mathrm{C} 2^{\mathrm{vi}}$) is 3.572 (2) \AA [symmetry codes: (iv) $2-x, \frac{1}{2}-y, z$; (v) $\frac{1}{2}+x, y, \frac{3}{2}-z$; (vi) $\left.\frac{5}{2}-x, \frac{1}{2}-y, \frac{3}{2}-z\right]$.

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, May 2014 with one update; Groom \& Allen, 2014) indicates a total of 16 hits for $\mathrm{Cr}^{\mathrm{III}}$ complexes with a complex anion $\left[\mathrm{Cr}(\text { pydc })_{2}\right]^{-}$unit. Many crystal structures of $\left[\mathrm{Cr}(\text { pydc })_{2}\right]^{-}$ with inorganic, organic or complex counter-cations such as K^{+} (Hakimi et al., 2012), Na^{+}(Dai et al., 2006; González-Baró et al., 2008; Zhou et al., 2009), Rb ${ }^{+}$(Fürst et al., 1979), creatH ${ }^{+}$ $\left(\right.$ creat $=$ creatinine; Aghabozorg et al., 2008), 4,4'-bpyH ${ }^{+}$(bpy

Figure 2
Crystal packing of $\left(\mathrm{NH}_{4}\right)\left[\mathrm{Cr}(\text { pydc })_{2}\right]$, viewed perpendicular to the $b c$ plane. Dashed lines represent $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (purple) and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ (blue) hydrogen-bonding interactions.

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
a, c (\AA)
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)

Data collection

Diffractometer
Absorption correction
$T_{\min }, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\left(\mathrm{NH}_{4}\right)\left[\mathrm{Cr}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)_{2}\right]$ 400.25

Tetragonal, $I 4_{1} / a$
301
7.0305 (10), 28.995 (6)
1433.2 (5)

4
Synchrotron, $\lambda=0.62998 \AA$ 0.62
$0.15 \times 0.10 \times 0.10$

ADSC Q210 CCD area detector Empirical (using intensity measurements) (HKL3000sm
SCALEPACK; Otwinowski \&
Minor, 1997)
$0.925,0.940$
6841, 943, 903
0.052
0.695
$0.028,0.081,1.21$
943
63
1
H atoms treated by a mixture of independent and constrained refinement
$0.31,-0.86$

Computer programs: PAL ADSC Quantum-210 ADX (Arvai \& Nielsen, 1983), HKL3000sm (Otwinowski \& Minor, 1997), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2008, 2015b), DIAMOND (Brandenburg, 2007) and publCIF (Westrip 2010).
$=$ bipyridine; Soleimannejad et al., 2008), $\mathrm{dmpH}^{+}(\mathrm{dmp}=2,9-$ dimethyl-1,10-phenanthrone; Aghajani et al., 2009), 2-apymH ${ }^{+}$ (2-apym $=2$-aminopyrimidine; Eshtiagh-Hosseini et al., 2010), $[\mathrm{Cr}(\text { tpy })(\text { pydc })]^{+}[$tpy $=2,6-$ bis $(2-$ pyridyl) pyridine; Casellato et al., 1991] and $\left[\operatorname{Ag}(\operatorname{atr})_{2}\right]^{+}(\operatorname{atr}=3$-amino-1H-1,2,4-triazole; Tabatabaee et al., 2011) have been determined.

Alternative coordination behaviors of the pydc ligands are found in $\left[\mathrm{Cu}(\mathrm{Hpydc})_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, which has one neutral H_{2} pydc and one divalent pydc ${ }^{2-}$ ligand, while $\left[\mathrm{Ni}(\mathrm{Hpydc})_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Nathan \& Mai, 2000) has two meridional univalent Hpydc ${ }^{-}$ ligands. The ligands in $\left[\mathrm{Ni}(\right.$ cyclam $\left.)(\mathrm{Hpydc})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Park et al., 2007) and $\mathrm{Na}_{2}\left[\mathrm{Pt}(\mathrm{Hpydc})_{2}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ are monodentate and bidentate, respectively, while Hpydc^{-}is tridentate in the complexes $\left[\mathrm{Cu}(\mathrm{Hpydc})_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Ni}(\mathrm{Hpydc})_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Nathan \& Mai, 2000).

5. Synthesis and crystallization

All chemicals were reagent-grade materials and were used without further purification. The starting material, $\mathrm{Na}\left[\mathrm{Cr}(\text { pydc })_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ was prepared as described previously (Hoggard \& Schmidtke, 1973). The sodium salt (0.20 g) was dissolved in 15 mL of water at 323 K and added to 3 mL of water containing 0.5 g of $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting solution was filtered and allowed to stand at room temperature for several
days to give brown block-like crystals of the ammonium salt $\mathrm{NH}_{4}\left[\mathrm{Cr}(\text { pydc })_{2}\right]$ suitable for X-ray structural analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.95 (ring H atoms) and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom). The H atoms of the ammonium cation were located from difference Fourier maps and refined with restraints and a fixed $\mathrm{N}-\mathrm{H}$ distance of $0.87 \AA$ A with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. One reflection with $F_{\mathrm{o}} \lll F_{\mathrm{c}}$ was omitted from the final refinement cycles. The slightly low fraction of measured reflections results from the geometry of the 2D-SMC beamline goniostat.

Acknowledgements

The X-ray crystallography experiment at the PLS-II 2D-SMC beamline was supported in part by MISP and POSTECH.

References

Aghabozorg, H., Derikvand, Z., Olmstead, M. M. \& Attar Gharamaleki, J. (2008). Acta Cryst. E64, m1234-m1235.
Aghajani, Z., Aghabozorg, H., Sadr-Khanlou, E., Shokrollahi, A., Derki, S. \& Shamsipur, M. (2009). J. Iran. Chem. Soc. 6, 373-385.
Arvai, A. J. \& Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.
Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Casellato, U., Graziani, R., Bonomo, R. P. \& Di Bilio, A. J. (1991). J. Chem. Soc. Dalton Trans. pp. 23-31.
Dai, Y., Shi, W., Zhu, X.-J., Zhao, B. \& Cheng, P. (2006). Inorg. Chim. Acta, 359, 3353-3358.
Eshtiagh-Hosseini, H., Yousefi, Z., Mirzaei, M., Chen, Y.-G., Beyramabadi, S. A., Shokrollahi, A. \& Aghaei, R. (2010). J. Mol. Struct. 973, 1-8.
Fürst, W., Gouzerh, P. \& Jeannin, Y. (1979). J. Coord. Chem. 8, 237243.

González-Baró, A. C., Pis-Diez, R., Piro, O. E. \& Parajón-Costa, B. S. (2008). Polyhedron, 27, 502-512.

Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

Hakimi, M., Kukovec, B.-M. \& Minoura, M. (2012). J. Chem. Crystallogr. 42, 290-294.
Hoggard, P. E. \& Schmidtke, H.-H. (1973). Inorg. Chem. 12, 19861990.

Nathan, L. C. \& Mai, T. D. (2000). J. Chem. Crystallogr. 30, 509-518. Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. Academic Press, New York.
Park, H., Lough, A. J., Kim, J. C., Jeong, M. H. \& Kang, Y. S. (2007). Inorg. Chim. Acta, 360, 2819-2823.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Soleimannejad, J., Aghabozorg, H. \& Hooshmand, S. (2008). Acta Cryst. E64, m564-m565.
Tabatabaee, M., Kukovec, B.-M. \& Kazeroonizadeh, M. (2011). Polyhedron, 30, 1114-1119.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zhou, Y., Yue, L. \& Liu, J. (2009). Inorg. Chem. Commun. 12, 10851087.

supporting information

Crystal structure of ammonium bis(pyridine-2,6-dicarboxylato$\left.\kappa^{3} O, N, O^{\prime}\right)$ chromate (III) from synchrotron data

Dohyun Moon and Jong-Ha Choi

Computing details

Data collection: PAL ADSC Quantum-210 ADX (Arvai \& Nielsen, 1983); cell refinement: HKL3000sm (Otwinowski \& Minor, 1997); data reduction: HKL3000sm (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2008, 2015b); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: publCIF (Westrip 2010).

Bis(pyridine-2,6-dicarboxylato- $\kappa^{3} O, N, O^{\prime}$)chromate(III)

Crystal data

$\left(\mathrm{NH}_{4}\right)\left[\mathrm{Cr}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)_{2}\right]$
$M_{r}=400.25$
Tetragonal, $I 4_{1} / a$
$a=7.0305$ (10) \AA
$c=28.995$ (6) \AA
$V=1433.2(5) \AA^{3}$
$Z=4$
$F(000)=812$

Data collection

ADSC Q210 CCD area detector diffractometer
Radiation source: PLSII 2D bending magnet
ω scan
Absorption correction: empirical (using
intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski \&
Minor, 1997)
$T_{\text {min }}=0.925, T_{\text {max }}=0.940$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.081$
$S=1.21$
943 reflections
63 parameters
1 restraint
$D_{\mathrm{x}}=1.855 \mathrm{Mg} \mathrm{m}^{-3}$
Synchrotron radiation, $\lambda=0.62998 \AA$
Cell parameters from 20017 reflections
$\theta=0.4-33.6^{\circ}$
$\mu=0.62 \mathrm{~mm}^{-1}$
$T=301 \mathrm{~K}$
Block, brown
$0.15 \times 0.10 \times 0.10 \mathrm{~mm}$

6841 measured reflections
943 independent reflections
903 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=4.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-9 \rightarrow 9$
$l=-36 \rightarrow 36$

```
Hydrogen site location: mixed
H atoms treated by a mixture of independent
    and constrained refinement
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0461 P)^{2}+0.7347 P\right]\)
    where \(P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}=0.001\)
\(\Delta \rho_{\text {max }}=0.31\) e \(\AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.86 \mathrm{e}^{-3}\)
```


Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cr1	1.0000	0.2500	0.6250	$0.01282(14)$
O1	$0.88412(13)$	$0.50247(12)$	$0.63797(3)$	$0.0205(2)$
O2	$0.78279(14)$	$0.69538(13)$	$0.69398(4)$	$0.0261(2)$
N1	1.0000	0.2500	$0.69303(5)$	$0.0133(3)$
C1	$0.86229(15)$	$0.55077(15)$	$0.68071(4)$	$0.0163(2)$
C2	$0.93527(14)$	$0.40403(15)$	$0.71495(4)$	$0.0142(2)$
C3	$0.93425(15)$	$0.41005(17)$	$0.76260(4)$	$0.0189(2)$
H3	0.8912	0.5171	0.7783	0.023^{*}
C4	1.0000	0.2500	$0.78645(6)$	$0.0201(3)$
H4	1.0000	0.2500	0.8185	0.024^{*}
N1S	0.5000	0.7500	0.6250	$0.0223(4)$
H1S	$0.502(3)$	$0.8529(19)$	$0.6099(7)$	0.027^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr1	$0.01591(16)$	$0.01591(16)$	$0.0066(2)$	0.000	0.000	0.000
O1	$0.0286(4)$	$0.0193(4)$	$0.0134(5)$	$0.0055(3)$	$-0.0013(3)$	$0.0013(3)$
O2	$0.0304(5)$	$0.0222(4)$	$0.0258(5)$	$0.0098(3)$	$-0.0009(3)$	$-0.0037(3)$
N1	$0.0146(5)$	$0.0171(6)$	$0.0082(7)$	$0.0008(4)$	0.000	0.000
C1	$0.0159(4)$	$0.0170(5)$	$0.0160(6)$	$0.0004(3)$	$-0.0013(4)$	$-0.0005(4)$
C2	$0.0133(4)$	$0.0175(4)$	$0.0117(5)$	$0.0001(3)$	$-0.0005(3)$	$-0.0016(3)$
C3	$0.0171(5)$	$0.0258(5)$	$0.0137(6)$	$-0.0006(4)$	$0.0005(3)$	$-0.0059(4)$
C4	$0.0199(7)$	$0.0324(8)$	$0.0078(8)$	$-0.0021(5)$	0.000	0.000
N1S	$0.0220(6)$	$0.0220(6)$	$0.0229(12)$	0.000	0.000	0.000

Geometric parameters ($A,{ }^{\circ}$)

Cr1-N1	1.9727 (15)	N1-C2	1.3355 (12)
$\mathrm{Cr} 1-\mathrm{N} 1^{\text {i }}$	1.9727 (15)	C1-C2	1.5208 (15)
Cr1-O1	1.9889 (9)	C2-C3	1.3824 (16)
$\mathrm{Cr} 1-\mathrm{O} 1^{\text {ii }}$	1.9889 (9)	C3-C4	1.3993 (15)
$\mathrm{Crl}-\mathrm{Ol}^{\text {i }}$	1.9889 (9)	C3-H3	0.9300
Cr1-O1 ${ }^{\text {iii }}$	1.9889 (9)	$\mathrm{C} 4-\mathrm{C} 3{ }^{\text {iii }}$	1.3992 (15)
O1-C1	1.2941 (15)	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{O} 2-\mathrm{C} 1$	1.2223 (14)	N1S-H1S	0.846 (9)
$\mathrm{N} 1-\mathrm{C} 2{ }^{\text {iii }}$	1.3354 (12)		
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{N} 1^{\text {i }}$	180.0	$\mathrm{C} 2{ }^{\text {iii }}-\mathrm{N} 1-\mathrm{C} 2$	123.19 (15)

$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{O} 1$
N1 ${ }^{\mathrm{i}}-\mathrm{Cr} 1-\mathrm{O} 1$
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{Ol}^{\text {ii }}$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cr} 1-\mathrm{O}^{1 i}$
$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{O} 1^{\text {ii }}$
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{Ol}^{\mathrm{i}}$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cr} 1-\mathrm{O} 1^{\mathrm{i}}$
$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{Ol}^{\mathrm{i}}$
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Cr} 1-\mathrm{Ol}^{\mathrm{i}}$
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{O}_{1}{ }^{\text {iii }}$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cr} 1-\mathrm{O}{ }^{\text {iii }}$
$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{Ol}^{\text {iii }}$
$\mathrm{O}^{1 i}-\mathrm{Crl}-\mathrm{O}{ }^{1 i i}$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cr} 1-\mathrm{O} 1^{\text {iii }}$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cr} 1$
$\mathrm{Cr} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$
$\mathrm{Cr} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$
$\mathrm{C} 2{ }^{\text {iii }}-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$
$\mathrm{Cr} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$
$\mathrm{C} 2{ }^{\text {iii- }} \mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$
$\mathrm{Cr} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$
79.10 (3)
100.90 (3)
100.90 (3)
79.10 (3)
92.049 (10)
100.90 (3)
79.10 (3)
92.049 (10)
158.20 (5)
79.10 (3)
100.90 (3)
158.20 (5)
92.049 (10)
92.049 (10)
117.64 (7)
-175.18 (9)
1.39 (12)
0.47 (7)
-179.53 (7)
-177.04 (9)
2.96 (9)
173.96 (9)

$$
\mathrm{C} 2^{\mathrm{iii}}-\mathrm{N} 1-\mathrm{Cr} 1
$$

$$
\mathrm{C} 2-\mathrm{N} 1-\mathrm{Cr} 1
$$

$$
\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1
$$

$$
\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2
$$

$$
\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2
$$

$$
\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3
$$

$$
\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1
$$

$$
\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1
$$

$$
\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4
$$

$$
\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3
$$

$$
\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3
$$

$$
\mathrm{C} 3 i i \mathrm{ii}-\mathrm{C} 4-\mathrm{C} 3
$$

$$
\mathrm{C} 3 i \mathrm{iii}-\mathrm{C} 4 — \mathrm{H} 4
$$

$$
\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4
$$

$$
\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1
$$

$$
\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3
$$

$$
\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3
$$

$$
\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4
$$

$$
\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4
$$

$$
\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 3{ }^{\mathrm{iii}}
$$

118.40 (7)
118.41 (7)
125.02 (11)
120.87 (11)
114.02 (9)
120.14 (11)
110.77 (10)
129.04 (10)
117.88 (11)
121.1
121.1
120.77 (16)
119.6
119.6
-2.76 (12)
-3.27 (17)
-179.99 (10)
-0.90 (14)
176.10 (9)
0.44 (7)

Symmetry codes: (i) $y+3 / 4,-x+5 / 4,-z+5 / 4$; (ii) $-y+5 / 4, x-3 / 4,-z+5 / 4$; (iii) $-x+2,-y+1 / 2, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\text {iv }}$	0.93	2.50	$3.4071(15)$	167
$\mathrm{~N} 1 S-\mathrm{H} 1 S \cdots 2^{v}$	$0.85(1)$	$2.04(1)$	$2.8462(11)$	$158(2)$

Symmetry codes: (iv) $-x+3 / 2,-y+3 / 2,-z+3 / 2$; (v) $-y+5 / 4, x+1 / 4,-z+5 / 4$.

