research communications

Received 15 November 2014 Accepted 9 January 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; benzoxazole; N— H···N hydrogen bonding

CCDC reference: 1042858 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 2-(2-aminophenyl)-1,3-benzoxazole

Imelda Pérez-Pérez,^a* Diego Martínez-Otero,^b Susana Rojas-Lima^a and Heraclio López-Ruiz^a

^aÁrea Académica de Química, Universidad Autónoma del Estado de Hidalgo, km. 4.5 Carretera Pachuca-Tulancingo, Mineral de la Reforma, Hidalgo CP 42184, Mexico, and ^bCentro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, carretera Toluca-Atlacomulco km. 14.5, CP 50200, Toluca, Estado de México, Mexico. *Correspondence e-mail: mei_781@hotmail.com

Crystals of the title compound, $C_{13}H_{10}N_2O$, were grown from a dichloromethane/ketone/methanol solvent mixture. It crystallizes with two molecules, A and B, in the asymmetric unit with very similar almost planar conformations [dihedral angles between the ring planes = 0.74 (8) and 0.67 (6)° for molecules Aand B, respectively; r.m.s. overlay fit = 0.019 Å]. Each molecule features an intramolecular N-H···N hydrogen bond, which closes an S(6) ring and therefore establishes a *syn* relationship for the N atoms. In the crystal, molecules are linked by N-H···N hydrogen bonds, generating [100] chains containing alternating A and B molecules. Weak aromatic π - π stacking [minimum centroid-centroid separation = 3.6212 (9) Å] links the chains into a threedimensional network.

1. Chemical context

Benzimidazole, benzoxazole, and benzothiazole derivatives are key components in many bioactive compounds of both natural and synthetic origin; many are active components of biocides such as bactericides, fungicides, insecticides and anticarcinogens (Kumar-Samota & Seth, 2010). Benzoxazole derivatives have been used as building blocks for biochemical and pharmaceutical agents, as well as dyes, fluorescent brightening agents, biomarkers and biosensors (Costa *et al.* 2007 and Tong *et al.* 2005).

In this context, 2-(2-aminophenyl)benzoxazole has shown considerable growth inhibition with respect to fungi and grampositive and gram-negative bacteria (Elnima *et al.* 1981). For this reason, several methods have been described for the synthesis of these heterocyclic compounds, some of which are summarized in the Scheme, which shows the retrosynthesis for the preparation of the title compound, (I). For example, Gajare *et al.* (2000) described a procedure for the preparation of 2-(*o*-aminophenyl)oxazolines from isatoic anhydride and

Figure 1 The asymmetric unit of (I) with displacement ellipsoids drawn at the 50% probability level (left: molecule A and right: molecule B)

2-aminoalcohols at reflux of PhCl mediated *via* a natural kaolinitic clay catalyst; a slightly modified procedure has been describe by Button & Gossage (2003) using zinc chloride as a catalyst. Qiao *et al.* (2011) described the synthesis of benzoxazole *via* the reaction of anionically activated trifluoromethyl groups with amino nucleophiles under mild aqueous conditions. Recently, Khalafi-Nezhad & Panahi (2014) reported an efficient approach for the preparation of benzoxazole derivatives, *via* acceptorless dehydrogenative coupling of alcohols with 2-aminophenol using an Ru catalytic system.

In the present work, as part of our ongoing studies of heterocyclic compounds (López-Ruiz *et al.*, 2011, 2013; de la Cerda-Pedro *et al.*, 2014), we report the synthesis of 2-(2-aminophenyl)benzoxazole, we analyse its molecular structure,

as well as its weak intermolecular interactions in molecular packing, which could be useful in the understanding of their mode of action in pharmaceutical science, as well as in the design of materials with specific functions. The title compound has been previously reported by Button & Gossage (2003) from isatoic anhydride and 2-aminophenol but its crystal structure has not been described.

2. Structural commentary

Compound (I) crystallized in the monoclinic space group $P2_1/c$ with two independent molecules (*A* and *B*) in the asymmetric unit (Fig. 1). The orientation of the amino group can be described using as a basis the carbon atom C9, this orientation

Figure 2

Crystal packing for (I), showing the formation of [100] chains. [Symmetry codes: (i) 2 - x, $-\frac{1}{2} + y$, $\frac{1}{2} - z$; (ii) 1 - x, $-\frac{1}{2} + y$, $\frac{1}{2} - z$; (iii) -x, $-\frac{1}{2} + y$, $\frac{1}{2} - z$; (iv) 1 + x, y, z; (v) x, y, z; (vi) 1 - x, 1 - y, 1 - z; (vii) -x, 1 - y, 1 - z; (viii) 1 + x, $\frac{3}{2} - y$, $\frac{1}{2} + z$; (ix) x, $\frac{3}{2} - y$, $\frac{1}{2} + z$; (x) -1 + x, $\frac{3}{2} - y$, $\frac{1}{2} + z$.]

research communications

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2-H2A\cdots N2'^{i}$	0.92(2)	2.29 (2)	3.202 (2)	175 (2)
$N2-H2B\cdots N3$	0.92(1)	2.09 (2)	2.7679 (19)	129 (2)
$N2' - H2'A \cdots N2^{ii}$	0.86(2)	2.52 (2)	3.359 (2)	164 (2)
$N2' - H2'B \cdot \cdot \cdot N3'$	0.89(1)	2.15 (2)	2.7913 (19)	129 (2)

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

is *syn* to the nitrogen atom N3 and *anti* for the oxygen atom O1.

The skeleton of each molecule is practically planar: to analyse the planarity of the molecule we use the torsion angle N3-C2-C8-C9, indicating the rotation of the aromatic ring C8-C13: these angles are -1.2 (2) and 0.9 (2)° for molecules A and B, respectively. The dihedral angles between the benzene ring and the fused ring system are 0.74 (8) and 0.67 (6)° for molecules A and B, respectively. The two independent molecules are very similar, with an r.m.s. overlay fit of 0.019 Å.

3. Supramolecular features

In the crystal, each NH₂ group forms an intramolecular hydrogen bond of the type N2–H2B···N3 (Table 1) with an H···N distance of 2.094 (18) Å in molecule A and 2.146 (18) Å in molecule B, and an intermolecular N2–H2A···N2 hydrogen bond with a distance of 2.289 (15) Å for N2–H2A···N2 ind 2.522 (16) Å for N2'–H2A···N2, forming zigzag chains propagating in the [100] direction and containing alternating A and B molecules (Fig. 2). Weak aromatic π - π stacking [minimum centroid–centroid separation = 3.6212 (9) Å] links the chains into a three-dimensional network.

4. Synthesis and crystallization

500 mg (3.00 mmol) of isatoic anhydride were dissolved in 50 mL of *m*-xylene then 390 mg (3.60 mmol) of *o*-aminophenol were added followed by the addition of 0.30 ml (10% mol) of a solution of $ZnCl_2$ (1 *M*). The mixture was then stirred and heated slowly to reflux temperature during 18 h. The crude reaction product was concentrated on a rotary evaporator with an azeotropic mixture of AcOEt/xylene to obtain a reddish brown solid which was dissolved in EtOAc and washed with 10% aq. NaCl solution. The crude reaction product was purified by column chromatography to give 356 mg (55%) of the amine (I) as a white solid m.p. = 381-382 K (literature value 379–381 K; Button & Gossage, 2003); IR (film) γ_{max} cm⁻¹: 3408 NH₂, 3051 C-H(arom), 1624 C=N; (literature value IR: 1620 cm⁻¹; Button & Gossage, 2003); ¹H NMR (CDCl₃, 400 MHz): $\delta = 6.20$ (*br s*, 2H, NH₂), 6.79 (*m*, 2H), 7.29 (m, 1H), 7.33 (m, 2H), 757 (m, 1H), 7.72 (m, 1H), 8.09 (*dd*, J = 1.6 Hz, J = 8.2 Hz, 1H); 13 C NMR (CDCl₃, 100 MHz) $\delta = 108.7, 110.4, 116.3, 116.8, 119.4, 124.3, 124.8,$ 128.8, 132.5, 141.9, 147.9, 149.3, 163.2 [Literature: Button &

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$C_{13}H_{10}N_{2}O$
M_r	210.23
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	293
<i>a</i> , <i>b</i> , <i>c</i> (Å)	4.81703 (10), 14.8104 (3), 29.4801 (6)
β (°)	91.3715 (18)
$V(Å^3)$	2102.57 (7)
Ζ	8
Radiation type	Cu Ka
$\mu \ (\mathrm{mm}^{-1})$	0.69
Crystal size (mm)	$0.38 \times 0.14 \times 0.11$
Data collection	
Diffractometer	Agilent Xcalibur Atlas Gemini
Absorption correction	Analytical [<i>CrysAlis PRO</i> (Agilent, 2011), based on expressions derived by Clark & Reid (1995)]
T_{\min}, T_{\max}	0.742, 0.887
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	21894, 4278, 3621
R _{int}	0.032
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.625
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.121, 1.02
No. of reflections	4278
No. of parameters	301
No. of restraints	4
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm A}^{-3})$	0.14, -0.16

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Gossage (2003); ¹H NMR δ = 6.15 (*br* s, 2H, -NH₂), 6.74 (*m*, 2H, ArH), 7.28 (*m*, 3H, ArH), 7.51 (*m*, 1H, ArH), 7.67 (*m*, 1H, ArH), 8.03 (*m*, 1H, ArH). ¹³C{¹H} NMR δ = 108.7, 110.3, 116.3, 116.8, 119.4, 124.3, 124.7, 128.8, 132.4, 141.9, 147.9, 149.3, 163.2]. Analysis calculated for C₁₃H₁₀N₂O: C, 74.27; H, 4.79%; Found: C, 74.43; H, 5.05%.

The single crystal used in the experiment was obtained by the method of liquid–liquid diffusion by slow evaporation. The pure compound was dissolved in the minimum amount of dichloromethane to be added by the walls of the tube the same amount of acetone followed by methanol. The tube was sealed to leave the solution in a vibration-free environment at room temperature. After a few days, the solution had evaporated, leaving colourless blocks of the title compound.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bond H atoms were placed in calculated positions and allowed to ride on their carrier atoms, with C-H = 0.93 Å (aromatic CH) and with $U_{iso}(H) =$ $1.2U_{eq}(C)$. Hydrogen atoms of the amine group were found in a difference map and refined freely.

Acknowledgements

We gratefully acknowledge financial support from CONACyT (CB-2012–01-182415, CB-2009–135172). IPP is also grateful to CONACyT for a scholarship (grant 206301) to support her studies.

References

- Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Button, K. M. & Gossage, R. A. (2003). J. Heterocycl. Chem. 40, 513– 517.
- Cerda-Pedro, J. E. de la , Amador-Sánchez, Y. A., Cortés-Hernández, M., Pérez-Pérez, J., Rojas-Lima, S. & López-Ruiz, H. (2014). *Heterocycles*, 89, 27–41.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Costa, S. P. G., Oliveira, E., Lodeiro, C. & Raposo, M. M. M. (2007). Sensors, 7, 2096–29114.

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Elnima, E. I., Zubair, M. U. & Al-Badr, A. A. (1981). Antimicrob. Agents Chemother. 19, 29–32.
- Gajare, A. S., Shaikh, N. S., Jnaneshwara, G. K., Deshpande, V. H., Ravindranathan, T. & Bedekar, A. V. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 999–1001.
- Khalafi-Nezhad, A. & Panahi, F. (2014). ACS Catal. 4, 1686–1692.
- Kumar-Samota, M. & Seth, G. (2010). Heteroatom Chem. 21, 44-50.
- López-Ruiz, H., Briseño-Ortega, H., Rojas-Lima, S., Santillan, R. & Farfán, N. (2011). *Tetrahedron Lett.* **52**, 4308–4312.
- López-Ruiz, H., de la Cerda-Pedro, J. E., Rojas-Lima, S., Pérez-Pérez, I., Rodríguez-Sánchez, B. V., Santillan, R. & Coreño, O. (2013). *ARKIVOC*, (iii), 139–164; http://www.arkat-usa.org/get-file/47182/.
- Qiao, J. X., Wang, T. C., Hu, C., Li, J., Wexler, R. & Lam, P. Y. S. (2011). Org. Lett. **13**, 1804–1807.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Tong, Y. P., Zheng, S. L. & Chen, X. M. (2005). *Inorg. Chem.* **44**, 4270–4275.

supporting information

Acta Cryst. (2015). E71, 188-191 [doi:10.1107/S2056989015000481]

Crystal structure of 2-(2-aminophenyl)-1,3-benzoxazole

Imelda Pérez-Pérez, Diego Martínez-Otero, Susana Rojas-Lima and Heraclio López-Ruiz

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO* (Agilent, 2011); data reduction: *CrysAlis PRO* (Agilent, 2011); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

2-(2-Aminophenyl)-1,3-benzoxazole

Crystal data $C_{13}H_{10}N_2O$ $M_r = 210.23$ Monoclinic, $P2_1/c$ a = 4.81703 (10) Å b = 14.8104 (3) Å c = 29.4801 (6) Å $\beta = 91.3715$ (18)° V = 2102.57 (7) Å³ Z = 8F(000) = 880

Data collection

Agilent Xcalibur Atlas Gemini	
diffractometer	
Radiation source: Enhance (Cu) X-ray Source	
Graphite monochromator	
Detector resolution: 10.3659 pixels mm ⁻¹	
ω scans	
Absorption correction: analytical	
[CrysAlis PRO (Agilent, 2011), based on	
expressions derived by Clark & Reid (1995)]	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.121$ S = 1.024278 reflections 301 parameters 4 restraints $D_{\rm x} = 1.328 \text{ Mg m}^{-3}$ Melting point: 381 K Cu $K\alpha$ radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 7503 reflections $\theta = 3.0-74.3^{\circ}$ $\mu = 0.69 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.38 \times 0.14 \times 0.11 \text{ mm}$

 $T_{\min} = 0.742, T_{\max} = 0.887$ 21894 measured reflections
4278 independent reflections
3621 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$ $\theta_{\text{max}} = 74.5^{\circ}, \theta_{\text{min}} = 3.0^{\circ}$ $h = -6 \rightarrow 4$ $k = -18 \rightarrow 18$ $l = -36 \rightarrow 36$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0602P)^2 + 0.2656P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.14 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.16 \text{ e } \text{Å}^{-3}$

Special details

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.35.15 (release 03-08-2011 CrysAlis171 .NET) (compiled Aug 3 2011,13:03:54) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	-0.0170 (2)	0.92286 (7)	0.34568 (3)	0.0625 (3)
O1′	0.6575 (2)	0.30487 (7)	0.46343 (3)	0.0605 (3)
N2	0.4198 (3)	0.85716 (10)	0.22601 (4)	0.0678 (3)
H2A	0.559 (4)	0.8439 (13)	0.2065 (6)	0.081*
H2B	0.337 (4)	0.8108 (11)	0.2413 (6)	0.081*
N2′	0.1130 (3)	0.31854 (11)	0.34698 (5)	0.0703 (4)
H2'A	-0.034 (4)	0.3172 (13)	0.3298 (6)	0.084*
H2′B	0.180 (4)	0.2642 (11)	0.3545 (7)	0.084*
N3	0.0403 (2)	0.81678 (8)	0.29206 (4)	0.0575 (3)
N3′	0.5227 (3)	0.23223 (8)	0.39963 (4)	0.0576 (3)
C2	0.1126 (3)	0.89555 (9)	0.30691 (4)	0.0532 (3)
C2′	0.4906 (3)	0.30246 (9)	0.42478 (4)	0.0533 (3)
C4	-0.3081 (3)	0.70682 (12)	0.32430 (7)	0.0735 (4)
H4	-0.2870	0.6619	0.3026	0.088*
C4′	0.8489 (4)	0.09914 (11)	0.41168 (6)	0.0683 (4)
H4′	0.7961	0.0673	0.3857	0.082*
C5	-0.4916 (4)	0.69714 (13)	0.35908 (7)	0.0804 (5)
Н5	-0.5976	0.6448	0.3607	0.096*
C3A	-0.1563 (3)	0.78613 (10)	0.32287 (5)	0.0587 (3)
C3A′	0.7278 (3)	0.18126 (10)	0.42227 (5)	0.0567 (3)
C5′	1.0510 (4)	0.06674 (12)	0.44134 (6)	0.0752 (5)
H5′	1.1357	0.0118	0.4352	0.090*
C6	-0.5220 (4)	0.76345 (16)	0.39167 (7)	0.0864 (6)
H6	-0.6470	0.7543	0.4148	0.104*
C6′	1.1316 (4)	0.11380 (13)	0.48016 (6)	0.0763 (5)
H6′	1.2695	0.0899	0.4992	0.092*
C7	-0.3698 (4)	0.84388 (14)	0.39075 (6)	0.0785 (5)
H7	-0.3887	0.8890	0.4124	0.094*
C7′	1.0110 (4)	0.19587 (12)	0.49121 (5)	0.0708 (4)
H7′	1.0631	0.2279	0.5172	0.085*
C8	0.3115 (3)	0.95868 (9)	0.28832 (4)	0.0536 (3)
C7A	-0.1899 (3)	0.85106 (11)	0.35532 (5)	0.0607 (3)
C7A′	0.8096 (3)	0.22647 (10)	0.46119 (5)	0.0574 (3)
C8′	0.3042 (3)	0.37874 (10)	0.41810 (5)	0.0564 (3)
C9	0.4607 (3)	0.93665 (10)	0.24915 (4)	0.0553 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C9′	0.1199 (3)	0.38352 (11)	0.38020 (5)	0.0590 (3)	
C10	0.6493 (3)	1.00084 (11)	0.23331 (5)	0.0670 (4)	
H10	0.7479	0.9883	0.2073	0.080*	
C10′	-0.0505 (4)	0.46002 (13)	0.37630 (6)	0.0734 (4)	
H10′	-0.1725	0.4652	0.3515	0.088*	
C11	0.6923 (4)	1.08145 (12)	0.25509 (6)	0.0734 (4)	
H11	0.8203	1.1223	0.2439	0.088*	
C11′	-0.0415 (4)	0.52712 (13)	0.40806 (7)	0.0805 (5)	
H11′	-0.1578	0.5769	0.4046	0.097*	
C12	0.5471 (4)	1.10261 (11)	0.29352 (6)	0.0722 (4)	
H12	0.5765	1.1575	0.3082	0.087*	
C12′	0.1369 (4)	0.52214 (13)	0.44503 (7)	0.0815 (5)	
H12′	0.1420	0.5681	0.4665	0.098*	
C13	0.3603 (3)	1.04212 (10)	0.30963 (5)	0.0634 (4)	
H13	0.2624	1.0565	0.3355	0.076*	
C13′	0.3072 (4)	0.44845 (11)	0.44974 (6)	0.0709 (4)	
H13′	0.4280	0.4449	0.4748	0.085*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0665 (6)	0.0656 (6)	0.0558 (5)	0.0094 (5)	0.0078 (4)	-0.0016 (4)
O1′	0.0618 (6)	0.0648 (6)	0.0549 (5)	0.0045 (5)	-0.0013 (4)	-0.0050 (4)
N2	0.0683 (8)	0.0784 (8)	0.0571 (7)	0.0071 (7)	0.0072 (6)	-0.0083 (6)
N2′	0.0623 (8)	0.0896 (9)	0.0586 (7)	-0.0043 (7)	-0.0046 (6)	0.0023 (7)
N3	0.0519 (7)	0.0619 (6)	0.0587 (6)	0.0081 (5)	-0.0023 (5)	-0.0015 (5)
N3′	0.0572 (7)	0.0621 (6)	0.0535 (6)	-0.0006(5)	0.0038 (5)	-0.0030 (5)
C2	0.0505 (7)	0.0584 (7)	0.0504 (6)	0.0132 (6)	-0.0028 (5)	0.0011 (5)
C2′	0.0502 (7)	0.0615 (7)	0.0485 (6)	-0.0033 (6)	0.0054 (5)	0.0013 (5)
C4	0.0572 (9)	0.0744 (10)	0.0885 (11)	-0.0002(7)	-0.0072 (8)	0.0117 (8)
C4′	0.0738 (10)	0.0631 (8)	0.0686 (9)	0.0043 (7)	0.0107 (8)	-0.0016 (7)
C5	0.0558 (9)	0.0857 (11)	0.0994 (13)	-0.0001 (8)	-0.0036 (9)	0.0281 (10)
C3A	0.0468 (7)	0.0663 (8)	0.0627 (8)	0.0096 (6)	-0.0060 (6)	0.0087 (6)
C3A'	0.0555 (8)	0.0593 (7)	0.0558 (7)	-0.0024 (6)	0.0100 (6)	0.0028 (6)
C5′	0.0793 (11)	0.0663 (9)	0.0807 (11)	0.0137 (8)	0.0157 (9)	0.0109 (8)
C6	0.0597 (10)	0.1152 (15)	0.0846 (12)	0.0099 (10)	0.0102 (8)	0.0386 (11)
C6′	0.0704 (10)	0.0836 (11)	0.0749 (10)	0.0141 (8)	0.0036 (8)	0.0226 (9)
C7	0.0724 (11)	0.0958 (12)	0.0676 (9)	0.0158 (9)	0.0120 (8)	0.0119 (9)
C7′	0.0714 (10)	0.0821 (10)	0.0587 (8)	0.0035 (8)	-0.0009 (7)	0.0056 (7)
C8	0.0497 (7)	0.0589 (7)	0.0519 (7)	0.0097 (6)	-0.0045 (5)	0.0056 (5)
C7A	0.0516 (8)	0.0693 (8)	0.0612 (8)	0.0105 (6)	-0.0002 (6)	0.0123 (6)
C7A′	0.0553 (8)	0.0608 (8)	0.0565 (7)	0.0016 (6)	0.0068 (6)	0.0046 (6)
C8′	0.0516 (8)	0.0620 (7)	0.0560 (7)	0.0003 (6)	0.0084 (6)	0.0041 (6)
C9	0.0508 (8)	0.0651 (7)	0.0498 (6)	0.0117 (6)	-0.0053 (5)	0.0033 (6)
C9′	0.0491 (8)	0.0746 (9)	0.0538 (7)	-0.0041 (6)	0.0107 (6)	0.0103 (6)
C10	0.0612 (9)	0.0797 (10)	0.0603 (8)	0.0094 (8)	0.0057 (7)	0.0103 (7)
C10′	0.0582 (9)	0.0937 (12)	0.0684 (9)	0.0094 (8)	0.0059 (7)	0.0210 (8)
C11	0.0681 (10)	0.0721 (9)	0.0799 (10)	-0.0009(8)	0.0014 (8)	0.0171 (8)

supporting information

C11′	0.0741 (11)	0.0815 (11)	0.0865 (12)	0.0231 (9)	0.0164(9) -0.0034(8)	0.0173 (9)
C12'	0.0881 (13)	0.0732 (10)	0.0835 (11)	0.0182 (9)	0.0080 (9)	-0.0049(9)
C13 C13'	0.0676 (9) 0.0731 (11)	0.0636 (8) 0.0717 (9)	0.0592 (8) 0.0677 (9)	0.0094 (7) 0.0098 (8)	0.0039 (7) -0.0004 (8)	-0.0005(6) -0.0062(7)

Geometric parameters (Å, °)

01—C2	1.3763 (16)	С6—Н6	0.9300
O1—C7A	1.3842 (19)	C6—C7	1.399 (3)
O1'—C2'	1.3791 (16)	С6'—Н6'	0.9300
01′—C7A′	1.3756 (17)	C6′—C7′	1.389 (2)
N2—H2A	0.916 (15)	С7—Н7	0.9300
N2—H2B	0.919 (14)	C7—C7A	1.377 (2)
N2—C9	1.372 (2)	C7'—H7'	0.9300
N2′—H2′A	0.861 (15)	C7'—C7A'	1.374 (2)
N2'—H2'B	0.894 (14)	C8—C9	1.4129 (19)
N2′—C9′	1.373 (2)	C8—C13	1.404 (2)
N3—C2	1.2910 (18)	C8′—C9′	1.412 (2)
N3—C3A	1.4033 (19)	C8′—C13′	1.391 (2)
N3'—C2'	1.2889 (18)	C9—C10	1.403 (2)
N3'—C3A'	1.4001 (19)	C9′—C10′	1.402 (2)
C2—C8	1.455 (2)	C10—H10	0.9300
C2'—C8'	1.454 (2)	C10—C11	1.369 (3)
C4—H4	0.9300	C10′—H10′	0.9300
C4—C5	1.377 (3)	C10′—C11′	1.365 (3)
C4—C3A	1.385 (2)	C11—H11	0.9300
C4'—H4'	0.9300	C11—C12	1.382 (3)
C4'—C3A'	1.388 (2)	C11'—H11'	0.9300
C4'—C5'	1.379 (2)	C11′—C12′	1.374 (3)
С5—Н5	0.9300	C12—H12	0.9300
С5—С6	1.384 (3)	C12—C13	1.363 (2)
C3A—C7A	1.369 (2)	C12'—H12'	0.9300
C3A'—C7A'	1.378 (2)	C12′—C13′	1.370 (2)
C5'—H5'	0.9300	C13—H13	0.9300
C5'—C6'	1.387 (3)	С13'—Н13'	0.9300
C2—O1—C7A	103.41 (11)	C7A'—C7'—C6'	115.48 (16)
C7A'—O1'—C2'	103.83 (11)	C7A'—C7'—H7'	122.3
H2A—N2—H2B	118.9 (17)	C9—C8—C2	120.78 (13)
C9—N2—H2A	113.5 (12)	C13—C8—C2	120.11 (13)
C9—N2—H2B	117.1 (12)	C13—C8—C9	119.10 (14)
H2'A—N2'—H2'B	114.5 (19)	C3A—C7A—O1	108.32 (13)
C9'—N2'—H2'A	116.2 (14)	C3A—C7A—C7	124.26 (17)
C9'—N2'—H2'B	116.8 (13)	C7—C7A—O1	127.41 (16)
C2—N3—C3A	104.68 (12)	O1'—C7A'—C3A'	107.95 (13)
C2'—N3'—C3A'	104.70 (12)	C7'—C7A'—O1'	128.04 (14)
O1—C2—C8	116.10 (12)	C7'—C7A'—C3A'	124.01 (15)

N3—C2—O1	115.04 (13)	C9'—C8'—C2'	121.39 (13)
N3—C2—C8	128.86 (13)	C13'—C8'—C2'	119.30 (14)
O1'—C2'—C8'	115.96 (12)	C13'—C8'—C9'	119.31 (14)
N3'—C2'—O1'	114.88 (12)	N2—C9—C8	122.32 (14)
N3'—C2'—C8'	129.16 (13)	N2-C9-C10	120.15 (14)
C5—C4—H4	121.3	С10—С9—С8	117.49 (14)
C5—C4—C3A	117.38 (18)	N2′—C9′—C8′	122.22 (14)
C3A—C4—H4	121.3	N2'-C9'-C10'	120.26 (15)
C3A' - C4' - H4'	121.4	C10′—C9′—C8′	11745(15)
C5'-C4'-H4'	121.4	C9-C10-H10	119.1
C5' - C4' - C3A'	117 16 (16)	$C_{11} - C_{10} - C_{9}$	121.80 (15)
C4-C5-H5	119.2	$C_{11} = C_{10} = H_{10}$	119.1
$C_4 = C_5 = C_6$	121 56 (18)	C_{10} C_{10} H_{10}	119.1
$C_{4} = C_{5} = C_{0}$	121.30 (18)	$C_{3} - C_{10} - C_{10}$	119.2
$C_0 = C_3 = H_3$	117.2	$C_{11} = C_{10} = C_{3}$	121.33 (10)
C4 - C3A - N3	131.24(13) 109.55(12)	C10 C11 H11	119.2
$C/A = C_3 A = N_3$	108.55 (13)		119.7
C/A - C3A - C4	120.21 (15)	C10-C11-C12	120.57 (16)
C4' - C3A' - N3'	131.37 (14)	С12—С11—Н11	119.7
C7A'—C3A'—N3'	108.64 (13)	C10'—C11'—H11'	119.5
C7A'—C3A'—C4'	120.00 (15)	C10'—C11'—C12'	120.94 (17)
C4'—C5'—H5'	119.1	C12'—C11'—H11'	119.5
C4'—C5'—C6'	121.84 (16)	C11—C12—H12	120.4
C6'—C5'—H5'	119.1	C13—C12—C11	119.20 (16)
С5—С6—Н6	119.1	C13—C12—H12	120.4
C5—C6—C7	121.76 (17)	C11'—C12'—H12'	120.5
С7—С6—Н6	119.1	C13'—C12'—C11'	118.99 (18)
С5'—С6'—Н6'	119.2	C13'—C12'—H12'	120.5
C5'—C6'—C7'	121.52 (16)	C8—C13—H13	119.1
С7'—С6'—Н6'	119.2	C12—C13—C8	121.83 (15)
С6—С7—Н7	122.6	C12—C13—H13	119.1
C7A—C7—C6	114.83 (18)	C8'—C13'—H13'	119.1
С7А—С7—Н7	122.6	C12'—C13'—C8'	121.77 (17)
C6'—C7'—H7'	122.3	C12'-C13'-H13'	119.1
	122.0		117.1
01	178 67 (11)	C5 - C4 - C3A - N3	-17883(15)
$01 - C^2 - C^8 - C^{13}$	-0.43(18)	C_{5} C_{4} C_{3} C_{7}	0.4(2)
01' - 02' - 03' - 013'	-179.01.(12)	$C_5 = C_6 = C_7 = C_7 \wedge C_7 $	-0.2(3)
01 - 02 - 08 - 03	1/9.01(12)	$C_3 = C_3 = C_2 = C_1 = C_1 = C_2 = C_1 = C_2 = C_2 = C_1 = C_2 = C_1 = C_2 = C_1 = C_2 = C_1 = C_2 = C_2 = C_1 = C_2 $	0.2(3)
01 - 02 - 08 - 013	(1.9)(2)	$C_{2A} = N_{2} = C_{2} = C_{1}$	0.01(13)
$N_2 = C_9 = C_{10} = C_{11}$	178.90 (13)	C_{3A} C_{4} C_{5} C_{6}	1/9.91(13)
$N_2 = C_9 = C_{10} = C_{11}$	-1/7.83(10)	$C_{3A} = C_{4} = C_{5} = C_{6}$	-0.6(3)
N3-C2-C8-C9	-1.2(2)	$C3A^{-}N3^{-}C2^{-}O1^{-}$	0.00 (16)
N3-C2-C8-C13	1/9.6/ (14)	$C_3A' - N_3' - C_2' - C_8'$	-179.94 (13)
N3—C3A—C/A—Ol	-0.04 (15)	C3A'—C4'—C5'—C6'	-0.1 (3)
N3—C3A—C7A—C7	179.31 (14)	C5'—C4'—C3A'—N3'	179.39 (15)
N3'—C2'—C8'—C9'	0.9 (2)	C5'—C4'—C3A'—C7A'	-0.4 (2)
N3'—C2'—C8'—C13'	-179.17 (15)	C5'—C6'—C7'—C7A'	-0.1 (3)
N3'—C3A'—C7A'—O1'	0.35 (16)	C6—C7—C7A—O1	179.19 (14)
N3'—C3A'—C7A'—C7'	-179.14 (14)	C6—C7—C7A—C3A	0.0 (2)

C2—O1—C7A—C3A	0.05 (14)	C6'—C7'—C7A'—O1'	-179.79 (15)
C2-01-C7A-C7	-179.29 (15)	C6'—C7'—C7A'—C3A'	-0.4 (2)
C2—N3—C3A—C4	179.31 (15)	C8—C9—C10—C11	1.0 (2)
C2—N3—C3A—C7A	0.02 (15)	C7A—O1—C2—N3	-0.03 (15)
C2C8	2.2 (2)	C7A—O1—C2—C8	-179.95 (11)
C2-C8-C9-C10	-179.83 (12)	C7A'-01'-C2'-N3'	0.21 (15)
C2-C8-C13-C12	179.28 (14)	C7A'-01'-C2'-C8'	-179.85 (12)
C2'—O1'—C7A'—C3A'	-0.33 (14)	C8′—C9′—C10′—C11′	-0.6 (2)
C2'—O1'—C7A'—C7'	179.14 (15)	C9—C8—C13—C12	0.2 (2)
C2'—N3'—C3A'—C4'	179.99 (15)	C9—C10—C11—C12	-0.7 (3)
C2'—N3'—C3A'—C7A'	-0.21 (16)	C9'—C8'—C13'—C12'	-0.4 (3)
C2'—C8'—C9'—N2'	-2.3 (2)	C9'—C10'—C11'—C12'	0.3 (3)
C2'—C8'—C9'—C10'	-179.43 (13)	C10-C11-C12-C13	0.1 (3)
C2'—C8'—C13'—C12'	179.70 (16)	C10'—C11'—C12'—C13'	0.0 (3)
C4—C5—C6—C7	0.5 (3)	C11—C12—C13—C8	0.2 (3)
C4—C3A—C7A—O1	-179.43 (13)	C11'—C12'—C13'—C8'	0.1 (3)
C4—C3A—C7A—C7	-0.1 (2)	C13—C8—C9—N2	-178.64 (13)
C4'—C3A'—C7A'—O1'	-179.83 (13)	C13—C8—C9—C10	-0.72 (19)
C4'—C3A'—C7A'—C7'	0.7 (2)	C13'—C8'—C9'—N2'	177.80 (15)
C4'—C5'—C6'—C7'	0.4 (3)	C13'—C8'—C9'—C10'	0.7 (2)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
0.92 (2)	2.29 (2)	3.202 (2)	175 (2)
0.92(1)	2.09 (2)	2.7679 (19)	129 (2)
0.86 (2)	2.52 (2)	3.359 (2)	164 (2)
0.89 (1)	2.15 (2)	2.7913 (19)	129 (2)
	<i>D</i> —H 0.92 (2) 0.92 (1) 0.86 (2) 0.89 (1)	D—H H···A 0.92 (2) 2.29 (2) 0.92 (1) 2.09 (2) 0.86 (2) 2.52 (2) 0.89 (1) 2.15 (2)	D—HH···AD···A0.92 (2)2.29 (2)3.202 (2)0.92 (1)2.09 (2)2.7679 (19)0.86 (2)2.52 (2)3.359 (2)0.89 (1)2.15 (2)2.7913 (19)

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) -x, y-1/2, -z+1/2.