Received 29 December 2014
Accepted 20 January 2015

Edited by V. V. Chernyshev, Moscow State University, Russia
\# Additional correspondence author, e-mail: thamu@scbt.sastra.edu.

Keywords: crystal structure; L-proline cadmium bromide; cadmium coordination polymer; N/ $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br} / \mathrm{O}$ hydrogen bonds; distorted octahedral geometry.

CCDC reference: 1044327
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\odot A C C E S S$

Crystal structure of catena-poly[[cadmium(II)-di- $\mu_{2^{-}}$ bromido- μ_{2}-L-proline- $\left.\kappa^{2} O: O^{\prime}\right]$ monohydrate]

S. Sathiskumar, ${ }^{\text {a }}$ T. Balakrishnan, ${ }^{\text {a }}{ }^{\text {K K. Ramamurthi }}{ }^{\text {b }}$ and S. Thamotharan ${ }^{\text {c }} \ddagger$

${ }^{\text {a }}$ Crystal Growth Laboratory, PG \& Research Department of Physics, Periyar EVR College (Autonomous), Tiruchirappalli 620 023, India, ${ }^{\text {b }}$ Crystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, SRM University, Kattankulathur 603 203, India, and ${ }^{\text {c }}$ Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, India. *Correspondence e-mail: balacrystalgrowth@gmail.com

In the title coordination polymer, $\left\{\left[\mathrm{CdBr}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, the $\mathrm{Cd}^{\mathrm{II}}$ ion is coordinated by four bromido ligands and two carboxylate oxygen atoms of two symmetry-related proline ligands, which exist in a zwitterionic form, in a distorted octahedral geometry. There is an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond between the amino group and the carboxylate fragment. Each coordinating ligand bridges two $\mathrm{Cd}^{\mathrm{II}}$ atoms, thus forming polymeric chains running along the c-axis direction. The water molecules of crystallization serve as donors for the weak intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds that link adjacent polymeric chains, thus forming a three-dimensional structure. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds also occur.

1. Chemical context

The characterization of second-order non-linear optical (NLO) materials is important because of their potential applications such as frequency shifting, optical modulation, optical switching, telecommunication and signal processing. It is known that the chiral amino acids and their complexes are potential materials for NLO applications (Eimerl et al., 1989; Pal et al., 2004; Srinivasan et al., 2006). This study is a part of an ongoing investigation of the crystal and molecular structures of a series of amino acid-metal complexes (Sathiskumar et al., 2015; Balakrishnan et al., 2013).

2. Structural commentary

The asymmetric unit of the title complex (I) (Fig. 1) contains one $\mathrm{Cd}^{\mathrm{II}}$ ion, one proline and two bromido ligands, and one water molecule of crystallization. The title complex has a very

Figure 1
A portion of the crystal structure of the title complex, showing the atomic labeling. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (a) $\frac{1}{2}-x,-y, z-\frac{1}{2}$; (b) $\frac{1}{2}-x,-y, z+\frac{1}{2}$.]
similar structure to that of the chloride analogue (Yukawa et al., 1983) and L-proline manganese dichloride monohydrate (Rzączyńska et al., 1997; Lamberts \& Englert, 2012). In (I), proline exists in a zwitterionic form, as evident from the bond lengths involving the carboxylate atoms and the protonation of the ring N atom of the pyrrolidine fragment. The $\mathrm{Cd}^{\mathrm{II}}$ ion is coordinated by four bromido ligands $[\mathrm{Cd}-\mathrm{Br}=2.7236$ (13)2.7737 (12) \AA] and two carboxylate oxygen atoms $[\mathrm{Cd}-\mathrm{O}=$

Figure 2
The crystal packing of (I) viewed along the a axis. Dashed lines denote intermolecular hydrogen bonds. C-bound H atoms have been omitted for clarity.

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2$	0.89	2.16	$2.626(12)$	112
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{O} 1$	$0.84(17)$	$2.6(2)$	$3.175(19)$	132
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{Br} 2$	$0.84(17)$	$2.8(3)$	$3.311(19)$	123
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1 W^{\mathrm{i}}$	0.89	2.05	$2.90(2)$	159
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{Br} 1^{\mathrm{ii}}$	0.89	2.69	$3.416(11)$	140
$\mathrm{O} 1^{\mathrm{O}}-\mathrm{H} 1 W \cdots \mathrm{Br}^{\mathrm{iii}}$	$0.88(16)$	$2.7(3)$	$3.197(19)$	116

Symmetry codes: (i) $x, y, z-1$; (ii) $x-\frac{1}{2},-y+\frac{1}{2},-z$; (iii) $x-\frac{1}{2},-y+\frac{1}{2},-z+1$.
2.312 (8) and 2.318 (8) \AA 〕] of two proline ligands in a slightly distorted octahedral geometry. The title complex is extended as a polymeric chain which runs parallel to the c axis. Within one chain, adjacent $\mathrm{Cd}^{\mathrm{II}}$ ions are separated by 3.727 (1) \AA. The closest $\mathrm{Cd} \cdots \mathrm{Cd}$ distance between neighbouring polymeric chains is 8.579 (2) \AA. The five endocyclic torsion angles of the pyrrolidine ring of the proline residue are $\mathrm{N} 1-\mathrm{C} 2-$ $\mathrm{C} 3-\mathrm{C} 4=31.8(13)^{\circ}, \mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5=-39.1(15)^{\circ}, \mathrm{C} 3-$ $\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1=29.9(14)^{\circ}, \mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4=-9.7(12)^{\circ}$ and $\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3=-13.1(11)^{\circ}$. The pyrrolidine ring exhibits twisted conformation on the $\mathrm{C} 3-\mathrm{C} 4$ bond with a pseudorotation angle $\Delta=249.3$ (12) ${ }^{\circ}$ and a maximum torsion angle $\varphi_{\mathrm{m}}=38.5$ (8) ${ }^{\circ}$ (Rao et al., 1981).

In (I), as observed in the chloride analogue (Yukawa et al., 1983), there is an intramolecular $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2$ hydrogen bond between the amino group and the carboxylate fragment.

3. Supramolecular features

The crystal structure of (I), is stabilized by intermolecular N $\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{Br}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds (Table 1, Figs. 2 and 3). The water molecules serve as donors for the weak $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds (Table 1) which link adjacent polymeric chains (Fig. 3), thus forming a three-dimensional structure.

4. Database survey

A search in the Cambridge Structural Database (Version 5.35, last update May 2014; Groom \& Allen, 2014) for the structures with metal ions coordinated by one of the carboxylate oxygen

Figure 3
A portion of the crystal packing viewed along the a axis and showing hydrogen bonds (dashed lines) between two neighbouring polymeric chains.
atoms of the proline moiety yielded 44 hits. Of these, two structures contain a cadmium metal ion, viz. catena-[di-chlorido-(4-hydroxy-L-proline)cadmium] (refcode BOHVID; Yukawa et al., 1982) and catena-[bis(μ^{2}-chlorido)(μ_{2}-L-proline)cadmium monohydrate] (refcode BUXBUR; Yukawa et al., 1983). The latter structure is isotypic with the title complex. Another compound, catena-[bis (μ_{2}-chlorido) $\left(\mu_{2}-\mathrm{L}-\right.$ prolinato- $\kappa^{2}-O, O^{\prime}$)manganese(II) monohydrate], has been structurally determined three times and has similar cell parameters and the same space group as the title compound (refcode ROJQEM: Rzączyńska et al., 1997; refcode ROJEQM01: Tilborg et al., 2010; refcode ROJQEM02: Lamberts \& Englert, 2012).

5. Synthesis and crystallization

To prepare the title compound, L-proline (Loba) and cadmium bromide tetrahydrate (Loba) in an equimolar ratio were dissolved in double-distilled water. The obtained solution of the homogeneous mixture was evaporated at room temperature to afford the white crystalline title compound, which was then recrystallized by slow evaporation from an aqueous solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. As the title compound is isotypic with its chlorido analogue (Yukawa et al., 1983), the atomic coordinates of the latter were used as starting values in the initial cycles of the refinement. The positions of water hydrogen atoms were calculated by method of Nardelli (1999). Further, the $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} 1 W \cdots \mathrm{H} 2 W$ distances of the water molecules were restrained to 0.85 (2) and 1.38 (2) \AA, respectively, using the DFIX option and included in the structurefactor calculations with $U_{\text {iso }}(\mathrm{H} 1 W / \mathrm{H} 2 W)=1.1 U_{\text {eq }}(\mathrm{O} 1 W)$. The remaining hydrogen atoms were placed in geometrically idealized positions $(\mathrm{C}-\mathrm{H}=0.97-0.98 \AA$ and $\mathrm{N}-\mathrm{H}=0.89 \AA$) with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C} / \mathrm{N})$ and were constrained to ride on their parent atoms. Reflections 110 and 020 were partially obscured by the beam stop and were omitted.

Acknowledgements

TB and SS acknowledge the University Grants Commission (UGC), New Delhi, India, for providing financial support [project ref. No. 41-956/2012(SR)]. ST is very grateful to the management of SASTRA University for infrastructural and financial support (Professor TRR grant).

References

Balakrishnan, T., Ramamurthi, K., Jeyakanthan, J. \& Thamotharan, S. (2013). Acta Cryst. E69, m60-m61.

Bruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Eimerl, D., Velsko, S., Davis, L., Wang, F., Loiacono, G. \& Kennedy, G. (1989). IEEE J. Quantum Electron. 25, 179-193.

Table 2
Experimental details.
Crystal data

Chemical formula	$\left[\mathrm{CdBr}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{\text {r }}$	405.37
Crystal system, space group	Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Temperature (K)	296
$a, b, c(\AA)$	$\begin{aligned} & 10.1891 \text { (8), } 13.4961 \text { (11), } \\ & 7.4491 \text { (5) } \end{aligned}$
$V\left(\AA^{3}\right)$	1024.35 (13)
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	9.90
Crystal size (mm)	$0.35 \times 0.30 \times 0.30$
Data collection	
Diffractometer	Bruker SMART CCD area detector
Absorption correction	Multi-scan (SADABS; Bruker, 2008)
$T_{\text {min }}, T_{\text {max }}$	0.129, 0.155
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	8264, 2481, 1964
$R_{\text {int }}$	0.068
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.666
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.041, 0.089, 1.06
No. of reflections	2481
No. of parameters	115
No. of restraints	3
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	1.02, -1.07
Absolute structure	Flack x determined using 705 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$ (Parsons et al., 2013)
Absolute structure parameter	0.035 (15)

Computer programs: APEX2, SAINT and XPREP (Bruker, 2008), SHELXL2014/6 (Sheldrick, 2015), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

Lamberts, K. \& Englert, U. (2012). Acta Cryst. B68, 610-618.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
Pal, T., Kar, T., Bocelli, G. \& Rigi, L. (2004). Cryst. Growth Des. 4, 743-747.
Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Rao, S. T., Westhof, E. \& Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.
Rzączyńska, Z., Mrozek, R. \& Glowiak, T. (1997). J. Chem. Crystallogr. 27, 417-422.
Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. \& Thamotharan, S. (2015). Spectrochim. Acta Part A, 138, 187-194.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Srinivasan, P., Kanagasekaran, T., Gopalakrishnan, R., Bhagavannarayana, G. \& Ramasamy, P. (2006). Cryst. Growth Des. 6, 1663-1670.
Tilborg, A., Michaux, C., Norberg, B. \& Wouters, J. (2010). Eur. J. Med. Chem. 45, 3511-3517.
Yukawa, Y., Inomata, Y. \& Takeuchi, T. (1983). Bull. Chem. Soc. Jpn, 56, 2125-2128.
Yukawa, Y., Inomata, Y., Takeuchi, T., Shimoi, M. \& Ouchi, A. (1982). Bull. Chem. Soc. Jpn, 55, 3135-3137.

supporting information

Crystal structure of catena-poly[[cadmium(II)-di- μ_{2}-bromido- μ_{2}-L-proline$\left.\kappa^{2} O: O^{\prime}\right]$ monohydrate]

S. Sathiskumar, T. Balakrishnan, K. Ramamurthi and S. Thamotharan

Computing details

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: atomic coordinates of chlorido analogue (Yukawa et al., 1983) used as starting values in the initial cycles of the refinement; program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

catena-Poly[[cadmium(II)-di- μ_{2}-bromido- μ_{2}-L-proline- $\left.\kappa^{2} O: O^{\prime}\right]$ monohydrate]

Crystal data

$\left[\mathrm{CdBr}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=405.37$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=10.1891$ (8) \AA
$b=13.4961$ (11) \AA
$c=7.4491$ (5) \AA
$V=1024.35(13) \AA^{3}$
$Z=4$
$F(000)=760$

Data collection

Bruker SMART CCD area detector diffractometer
Radiation source: fine-focus sealed tube
ω and φ scan
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min }=0.129, T_{\max }=0.155$
8264 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.089$
$S=1.06$
2481 reflections
115 parameters
3 restraints
Hydrogen site location: mixed
$D_{\mathrm{x}}=2.629 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4066 reflections
$\theta=5.0-55.2^{\circ}$
$\mu=9.90 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colourless
$0.35 \times 0.30 \times 0.30 \mathrm{~mm}$

2481 independent reflections
1964 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.068$
$\theta_{\text {max }}=28.2^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-13 \rightarrow 13$
$k=-17 \rightarrow 14$
$l=-9 \rightarrow 6$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0243 P)^{2}+1.4185 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=1.02 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.07 \mathrm{e}^{-3}$
Absolute structure: Flack x determined using 705 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)

Absolute structure parameter: 0.035 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\mathrm{eq}}$
Cd1	$0.24415(7)$	$0.00192(7)$	$0.31349(9)$	$0.0425(2)$
Br1	$0.44442(8)$	$0.03071(8)$	$0.06673(14)$	$0.0450(3)$
Br2	$0.37743(10)$	$0.11262(9)$	$0.56256(15)$	$0.0537(3)$
O1	$0.1309(8)$	$0.1397(6)$	$0.2136(9)$	$0.057(2)$
O2	$0.1420(7)$	$0.1362(6)$	$-0.0865(9)$	$0.056(2)$
N1	$-0.0870(10)$	$0.2205(8)$	$-0.1393(11)$	$0.062(3)$
H1A	-0.0168	0.2171	-0.2100	0.075^{*}
H1B	-0.1202	0.2813	-0.1471	0.075^{*}
C1	$0.0861(9)$	$0.1560(7)$	$0.0564(15)$	$0.039(2)$
C2	$-0.0488(10)$	$0.1988(8)$	$0.0510(15)$	$0.053(3)$
H2	-0.0524	0.2596	0.1229	0.064^{*}
C3	$-0.1523(12)$	$0.1260(13)$	$0.115(2)$	$0.084(5)$
H3A	-0.1172	0.0826	0.2066	0.100^{*}
H3B	-0.2279	0.1607	0.1627	0.100^{*}
C4	$-0.1878(13)$	$0.0697(13)$	$-0.047(2)$	$0.094(5)$
H4A	-0.2733	0.0392	-0.0326	0.113^{*}
H4B	-0.1236	0.0181	-0.0701	0.113^{*}
C5	$-0.1899(14)$	$0.1441(12)$	$-0.200(2)$	$0.086(5)$
H5A	-0.2758	0.1743	-0.2126	0.103^{*}
H5B	-0.1651	0.1134	-0.3127	0.103^{*}
O1W	$0.111(2)$	$0.2521(17)$	$0.587(2)$	$0.183(8)$
H1W	$0.11(3)$	$0.296(11)$	$0.50(2)$	0.201^{*}
H2W	$0.13(3)$	$0.197(8)$	$0.54(3)$	0.201^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	$0.0453(4)$	$0.0579(4)$	$0.0243(3)$	$0.0069(4)$	$-0.0005(2)$	$0.0045(3)$
Br1	$0.0347(4)$	$0.0679(7)$	$0.0323(4)$	$0.0033(5)$	$-0.0007(4)$	$-0.0001(5)$
Br2	$0.0597(6)$	$0.0687(7)$	$0.0327(5)$	$-0.0117(6)$	$0.0013(5)$	$-0.0056(6)$
O1	$0.074(5)$	$0.066(5)$	$0.032(4)$	$0.025(4)$	$-0.011(3)$	$-0.005(4)$
O2	$0.059(5)$	$0.068(5)$	$0.043(4)$	$0.016(4)$	$0.005(4)$	$0.007(4)$
N1	$0.063(6)$	$0.066(7)$	$0.058(6)$	$0.037(6)$	$-0.015(5)$	$-0.001(5)$
C1	$0.040(5)$	$0.039(5)$	$0.039(5)$	$0.005(4)$	$-0.002(5)$	$-0.003(5)$
C2	$0.053(6)$	$0.060(7)$	$0.046(5)$	$0.024(6)$	$-0.009(6)$	$-0.010(6)$
C3	$0.043(7)$	$0.113(13)$	$0.095(10)$	$0.005(8)$	$0.018(6)$	$0.008(10)$
C4	$0.042(6)$	$0.110(12)$	$0.130(13)$	$-0.008(8)$	$0.006(9)$	$-0.021(13)$
C5	$0.075(9)$	$0.090(11)$	$0.091(10)$	$0.040(9)$	$-0.024(8)$	$-0.037(9)$
O1W	$0.178(16)$	$0.22(2)$	$0.153(13)$	$0.061(18)$	$0.007(14)$	$0.061(17)$

Geometric parameters ($A,{ }^{\circ}$)

Cd1-O1	2.312 (8)	N1-H1B	0.8900
$\mathrm{Cd} 1-\mathrm{O} 2{ }^{\text {i }}$	2.318 (8)	C1-C2	1.491 (13)
$\mathrm{Cd} 1-\mathrm{Br} 2^{\mathrm{ii}}$	2.7236 (13)	C2-C3	1.517 (19)
$\mathrm{Cd} 1-\mathrm{Br} 1^{\mathrm{i}}$	2.7285 (11)	C2-H2	0.9800
$\mathrm{Cd} 1-\mathrm{Br} 2$	2.7421 (13)	C3-C4	1.47 (2)
Cd1-Br1	2.7737 (12)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9700
$\mathrm{Br} 1-\mathrm{Cd1}{ }^{\text {ii }}$	2.7285 (11)	C3-H3B	0.9700
$\mathrm{Br} 2-\mathrm{Cd} 1^{\text {i }}$	2.7236 (13)	C4-C5	1.52 (2)
$\mathrm{O} 1-\mathrm{C} 1$	1.276 (12)	C4-H4A	0.9700
$\mathrm{O} 2-\mathrm{C} 1$	1.237 (12)	C4-H4B	0.9700
$\mathrm{O} 2-\mathrm{Cd} 1{ }^{\text {ii }}$	2.318 (8)	C5-H5A	0.9700
N1-C2	1.499 (13)	C5-H5B	0.9700
N1-C5	1.537 (17)	O1W-H1W	0.87 (3)
N1-H1A	0.8900	O1W-H2W	0.87 (3)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 2^{\mathrm{i}}$	179.9 (3)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	114.9 (9)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{Br} 2^{\mathrm{ii}}$	90.50 (19)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	109.9 (9)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Br} 2^{\text {ii }}$	89.53 (19)	C1-C2-C3	112.4 (10)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{Br}^{\text {i }}$	90.0 (2)	N1-C2-C3	103.9 (10)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Br} 1^{\mathrm{i}}$	90.03 (19)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	110.1
$\mathrm{Br} 2^{\text {ii }}-\mathrm{Cd} 1-\mathrm{Br} 1^{\text {i }}$	93.59 (4)	N1-C2-H2	110.1
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{Br} 2$	91.52 (19)	C3-C2-H2	110.1
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{Br} 2$	88.44 (19)	C4-C3-C2	104.5 (11)
$\mathrm{Br} 2 \mathrm{i}-\mathrm{Cd} 1-\mathrm{Br} 2$	177.29 (3)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	110.9
Br 1 - $\mathrm{Cd} 1-\mathrm{Br} 2$	88.22 (3)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	110.9
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{Br} 1$	92.4 (2)	C4-C3-H3B	110.9
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Br} 1$	87.56 (19)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	110.9
$\mathrm{Br} 2 \mathrm{ii}-\mathrm{Cd} 1-\mathrm{Br} 1$	87.67 (4)	H3A-C3-H3B	108.9
$\mathrm{Br} 1^{i}-\mathrm{Cd} 1-\mathrm{Br} 1$	177.27 (4)	C3-C4-C5	106.0 (12)
$\mathrm{Br} 2-\mathrm{Cd} 1-\mathrm{Br} 1$	90.44 (4)	C3-C4-H4A	110.5
Cd1ii-Br1-Cd1	85.27 (3)	C5-C4-H4A	110.5
$\mathrm{Cd} 1{ }^{\text {i }}-\mathrm{Br} 2-\mathrm{Cd} 1$	85.98 (3)	C3-C4-H4B	110.5
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cd} 1$	127.7 (6)	C5-C4-H4B	110.5
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Cd} 1^{\text {ii }}$	132.9 (7)	$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	108.7
C2-N1-C5	108.9 (10)	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	102.3 (10)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	109.9	C4-C5-H5A	111.3
C5-N1-H1A	109.9	N1-C5-H5A	111.3
C2-N1-H1B	109.9	C4-C5-H5B	111.3
C5-N1-H1B	109.9	N1-C5-H5B	111.3
H1A-N1-H1B	108.3	H5A-C5-H5B	109.2
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	126.0 (8)	H1W-O1W-H2W	106 (4)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	119.0 (10)		
$\mathrm{Cd} 1{ }^{\text {iil }}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	44.5 (15)	C5-N1-C2-C1	107.4 (11)
$\mathrm{Cd} 1{ }^{\text {ii- }}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	-132.7 (9)	C5-N1-C2-C3	-13.1 (11)
$\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	-40.4 (15)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-87.0 (14)

$\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$136.8(8)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$-6.1(15)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$176.4(9)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$109.1(12)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-68.3(13)$

$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$31.8(13)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-39.1(15)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$29.9(14)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$-9.7(12)$

Symmetry codes: (i) $-x+1 / 2,-y, z+1 / 2$; (ii) $-x+1 / 2,-y, z-1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 2$	0.89	2.16	$2.626(12)$	112
$\mathrm{O} 1 W — \mathrm{H} 2 W \cdots \mathrm{O} 1$	$0.84(17)$	$2.6(2)$	$3.175(19)$	132
$\mathrm{O} 1 W — \mathrm{H} 2 W \cdots \mathrm{Br} 2$	$0.84(17)$	$2.8(3)$	$3.311(19)$	123
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 1 W^{\text {iii }}$	0.89	2.05	$2.90(2)$	159
$\mathrm{~N} 1 — \mathrm{H} 1 B \cdots \mathrm{Br}^{\text {iv }}$	0.89	2.69	$3.416(11)$	140
$\mathrm{O} 1 W — \mathrm{H} 1 W \cdots \mathrm{Br}^{\text {v }}$	$0.88(16)$	$2.7(3)$	$3.197(19)$	116

Symmetry codes: (iii) $x, y, z-1$; (iv) $x-1 / 2,-y+1 / 2,-z$; (v) $x-1 / 2,-y+1 / 2,-z+1$.

