data reports

open ∂ access

Crystal structure of bis[μ -methoxy-(pyridin-2-yl)methanolato- $\kappa^3 N$,O:O]bis[chloridocopper(II)]

Sujirat Boonlue,^a Anchalee Sirikulkajorn^a and Kittipong Chainok^b*

^aDepartment of Chemistry, Faculty of Science, Naresuan University, Mueang, Phitsanulok 65000, Thailand, and ^bDepartment of Physics, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand. *Correspondence e-mail: kc@tu.ac.th

Received 4 January 2015; accepted 21 January 2015

Edited by A. M. Chippindale, University of Reading, England

The racemic title compound, $[Cu_2(C_7H_8NO_2)_2Cl_2]$, is composed of dinuclear molecules in which methoxy(pyridin-2-yl)methanolate ligands bridge two symmetry-related Cu^{II} ions. Each Cu^{II} ion is coordinated in a square-planar geometry by one Cl atom, the N and O atoms of the bidentate ligand and the bridging O atom of the centrosymmetrically related bidentate ligand. The separation between the two Cu^{II} atoms is 3.005 (1) Å. In the crystal, non-classical C-H···O hydrogen bonds, weak π - π stacking [centroid-centroid distance = 4.073 (1) Å] and weak electrostatic Cu···Cl interactions [3.023 (1) Å] link the dinuclear molecules into chains running parallel to the *b* axis. These chains are further connected by weak C-H···Cl hydrogen bonds directed approximately along the *a* axis, forming a three-dimensional supramolecular network.

Keywords: crystal structure; hydrogen bonds; copper(II); Cu···Cl interaction; π - π stacking.

CCDC reference: 1044740

1. Related literature

For related structures and applications of transition metal compounds with the methoxy-2-pyridylmethanolate ligand, see: Pijper *et al.* (2010); Mondal *et al.* (2009); Drew *et al.* (2008); Wang *et al.* (2003); Guidote *et al.* (2001).

V = 824.5 (2) Å³

Mo $K\alpha$ radiation

 $0.16 \times 0.10 \times 0.06$ mm

7703 measured reflections

1485 independent reflections

1030 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 2.92 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.091$

110 parameters

 $\Delta \rho_{\text{max}} = 0.52 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.42 \text{ e } \text{\AA}^{-3}$

Z = 2

2. Experimental

2.1. Crystal data

 $\begin{bmatrix} Cu_2(C_7H_8NO_2)_2Cl_2 \end{bmatrix} \\ M_r = 474.29 \\ Monoclinic, P2_1/n \\ a = 10.5568 (14) \text{ Å} \\ b = 4.0728 (6) \text{ Å} \\ c = 19.257 (3) \text{ Å} \\ \beta = 95.280 (3)^{\circ} \\ \end{bmatrix}$

2.2. Data collection

Bruker D8 QUEST CMOS diffractometer Absorption correction: multi-scan

(SADABS; Bruker, 2014) $T_{min} = 0.645, T_{max} = 0.745$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.108$ S = 1.041485 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots Cl1^{i}$	0.93	2.90	3.756 (6)	154
C3−H3···O2 ⁱⁱ	0.93	2.65	3.517 (7)	156
$C6-H6\cdots O2^{iii}$	0.98	2.59	3.548 (8)	165

Symmetry codes: (i) -x, -y, -z + 1; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT*; program(s) used to solve structure: *SHELXT* (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2015*b*); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010), *enCIFer* (Allen *et al.*, 2004) and *OLEX2* (Dolomanov *et al.*, 2009).

Acknowledgements

This research was financially supported by research career development grant (No. RSA5780056) from the Thailand Research Fund.

Supporting information for this paper is available from the IUCr electronic archives (Reference: CQ2013).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

- Drew, M. G. B., Nag, S., Pal, P. K. & Datta, D. (2008). Inorg. Chim. Acta, 361, 2562–2567.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Guidote, A. M. Jr, Ando, K., Kurusu, Y., Nagao, H. & Masuyama, Y. (2001). *Inorg. Chim. Acta*, **314**, 27–36.
- Mondal, K. C., Sengupta, O. & Mukherjee, P. S. (2009). *Inorg. Chem. Commun.* **12**, 682–685.
- Pijper, D., Saisaha, P., de Boer, J. W., Hoen, R., Smit, C., Meetsma, A., Hage, R., van Summeren, R. P., Alsters, P. L., Feringa, B. L. & Browne, W. R. (2010). *Dalton Trans.* 39, 10375–10381.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Wang, W., Spingler, B. & Alberto, R. (2003). Inorg. Chim. Acta, 355, 386-393.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2015). E71, m44-m45 [doi:10.1107/S2056989015001310]

Crystal structure of bis[μ -methoxy(pyridin-2-yl)methanolato- $\kappa^3 N$,O:O]bis-[chloridocopper(II)]

Sujirat Boonlue, Anchalee Sirikulkajorn and Kittipong Chainok

S1. Synthesis and crystallization

The title compound was obtained unexpectedly from the reaction of copper(I) chloride and 4-iodo-N-(2-pyridylmethylene)aniline in a mixed solvent of acetonitrile and dichloromethane. Typically, a solution of 4-iodo-N-(2-pyridylmethylene)aniline (61.6 mg, 0.2 mmol) in dry dichloromethane (2 ml) was placed in a test tube. A mixture of acetonitrile and dichloromethane solution (6 ml, 1:1, v/v) was carefully added on the top. A solution of CuCl (19.8 mg, 0.2 mmol) in dry acetonitrile (2 ml) was then carefully layered on the top of the acetonitrile/dichloromethane mixed solution. After slow diffusion at room temperature for 2 days, pale-green plate shaped crystals of the title compound were obtained.

S2. Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic CH groups, 0.96 Å for non-aromatic CH groups and 0.98 Å for CH₃ groups. The U_{iso} were constrained to be $1.5U_{eq}$ of the carrier atom for methy H atoms and $1.2U_{eq}$ for the remaining H atoms.

Figure 1

A view of the dinuclear molecule of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Partial packing diagram of the title compound showing a molecular one-dimensional chain running parallel to the *b* axis assembled from dinuclear molecules linked together through non-classical C—H···O hydrogen bonds, weak π - π stacking and weak electrostatic Cu···Cl interactions (dashed lines). Hydrogen atoms not involved in the hydrogen bonding interactions are omitted for clarity.

Figure 3

A view of the weak C—H···Cl hydrogen bonding network between adjacent dinuclear molecules in the title compound which serve to connect the chains into a three-dimensional architecture.

Bis[μ -methoxy(pyridin-2-yl)methanolato- $\kappa^3 N$,O:O]bis[chloridocopper(II)]

Crystal data [Cu₂(C₇H₈NO₂)₂Cl₂] $M_r = 474.29$ Monoclinic, $P2_1/n$ a = 10.5568 (14) Å b = 4.0728 (6) Å c = 19.257 (3) Å $\beta = 95.280$ (3)° V = 824.5 (2) Å³ Z = 2

Data collection

Bruker D8 QUEST CMOS diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2014) $T_{\min} = 0.645$, $T_{\max} = 0.745$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.108$ S = 1.041485 reflections 110 parameters 0 restraints 0 constraints Primary atom site location: structure-invariant direct methods F(000) = 476 $D_x = 1.910 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 546 reflections $\theta = 3.6-25.4^{\circ}$ $\mu = 2.92 \text{ mm}^{-1}$ T = 298 KPlate, pale-green $0.16 \times 0.10 \times 0.06 \text{ mm}$

7703 measured reflections 1485 independent reflections 1030 reflections with $I > 2\sigma(I)$ $R_{int} = 0.091$ $\theta_{max} = 25.4^\circ$, $\theta_{min} = 3.6^\circ$ $h = -12 \rightarrow 12$ $k = -4 \rightarrow 4$ $l = -23 \rightarrow 23$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0544P)^2 + 0.5475P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.52$ e Å⁻³ $\Delta\rho_{min} = -0.42$ e Å⁻³

Special details

Experimental. SADABS-2014/4 (Bruker,2014/4) was used for absorption correction. wR2(int) was 0.0681 before and 0.0535 after correction. The Ratio of minimum to maximum transmission is 0.8650. The $\lambda/2$ correction factor is 0.00150. **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against all reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cu1	0.36725 (5)	0.3633 (2)	0.49239 (3)	0.0376 (3)
C11	0.25368 (12)	-0.0100 (4)	0.42980 (7)	0.0431 (4)
01	0.4853 (3)	0.5904 (12)	0.55882 (18)	0.0542 (13)
O2	0.4934 (3)	0.5112 (11)	0.6792 (2)	0.0491 (11)
N1	0.2501 (3)	0.4522 (11)	0.5649 (2)	0.0301 (11)
C1	0.1248 (4)	0.3804 (15)	0.5620 (3)	0.0371 (14)
H1	0.0886	0.2558	0.5248	0.044*
C2	0.0492 (5)	0.4839 (17)	0.6114 (3)	0.0486 (17)
H2	-0.0368	0.4299	0.6080	0.058*
C3	0.1015 (5)	0.6680 (17)	0.6662 (3)	0.0470 (16)
H3	0.0515	0.7428	0.7003	0.056*
C4	0.2300 (5)	0.7412 (15)	0.6700 (3)	0.0399 (14)
H4	0.2677	0.8658	0.7067	0.048*
C5	0.3014 (4)	0.6271 (14)	0.6186 (2)	0.0304 (12)
C6	0.4438 (4)	0.6921 (15)	0.6201 (3)	0.0336 (13)
H6	0.4613	0.9267	0.6272	0.040*
C7	0.6176 (5)	0.6071 (19)	0.7070 (3)	0.0587 (19)
H7A	0.6792	0.5237	0.6779	0.088*
H7B	0.6344	0.5200	0.7532	0.088*
H7C	0.6227	0.8424	0.7086	0.088*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0240 (3)	0.0552 (5)	0.0340 (4)	-0.0123 (3)	0.0041 (2)	-0.0096 (4)
Cl1	0.0392 (7)	0.0395 (9)	0.0504 (9)	-0.0114 (7)	0.0034 (6)	-0.0065 (7)
01	0.0265 (18)	0.099 (4)	0.038 (2)	-0.020 (2)	0.0092 (16)	-0.025 (2)
O2	0.037 (2)	0.051 (3)	0.057 (3)	-0.0029 (19)	-0.0100 (18)	0.010(2)
N1	0.026 (2)	0.032 (3)	0.032 (2)	-0.0024 (19)	0.0013 (18)	0.006 (2)
C1	0.025 (2)	0.044 (4)	0.041 (3)	-0.002 (3)	0.000 (2)	0.007 (3)
C2	0.024 (3)	0.060 (4)	0.063 (4)	-0.003(3)	0.013 (3)	0.014 (4)
C3	0.042 (3)	0.050 (4)	0.052 (4)	0.013 (3)	0.020 (3)	0.008 (4)
C4	0.045 (3)	0.033 (4)	0.043 (3)	0.003 (3)	0.010 (3)	-0.001 (3)
C5	0.030 (2)	0.028 (3)	0.033 (3)	0.000 (2)	0.001 (2)	0.011 (3)

supporting information

C6	0.028 (2)	0.038 (4)	0.034 (3)	-0.002 (2)	0.000(2)	0.002 (3)	
C7	0.042 (3)	0.073 (5)	0.058 (4)	-0.011 (3)	-0.009 (3)	0.013 (4)	

Geometric parameters (Å, °)

3.0051 (12)	C1—C2	1.365 (7)
2.2215 (15)	C2—H2	0.9300
1.927 (3)	C2—C3	1.368 (8)
1.937 (4)	С3—Н3	0.9300
1.982 (4)	C3—C4	1.385 (7)
1.927 (3)	C4—H4	0.9300
1.361 (6)	C4—C5	1.378 (7)
1.415 (6)	C5—C6	1.524 (6)
1.424 (6)	С6—Н6	0.9800
1.351 (6)	С7—Н7А	0.9600
1.330 (6)	С7—Н7В	0.9600
0.9300	С7—Н7С	0.9600
139.33 (5)	С3—С2—Н2	120.4
38.82 (10)	С2—С3—Н3	120.6
39.07 (11)	C2—C3—C4	118.8 (5)
102.14 (12)	С4—С3—Н3	120.6
165.33 (16)	C3—C4—H4	120.4
77.89 (16)	C5—C4—C3	119.2 (5)
81.54 (15)	C5—C4—H4	120.4
158.20 (18)	N1—C5—C4	121.9 (5)
120.03 (12)	N1—C5—C6	116.0 (4)
99.59 (13)	C4—C5—C6	122.1 (5)
102.11 (16)	O1—C6—O2	114.5 (5)
118.6 (3)	O1—C6—C5	109.0 (4)
138.9 (3)	O1—C6—H6	110.2
114.8 (4)	O2—C6—C5	102.5 (4)
127.1 (4)	O2—C6—H6	110.2
114.2 (3)	С5—С6—Н6	110.2
118.4 (4)	O2—C7—H7A	109.5
118.7	O2—C7—H7B	109.5
122.5 (5)	O2—C7—H7C	109.5
118.7	H7A—C7—H7B	109.5
120.4	H7A—C7—H7C	109.5
119.1 (5)	Н7В—С7—Н7С	109.5
108.4 (4)	C1—N1—C5—C6	178.4 (5)
-79.8 (7)	C1—C2—C3—C4	-0.6 (9)
-5.7 (6)	C2—C3—C4—C5	0.0 (9)
166.1 (4)	C3—C4—C5—N1	1.0 (8)
-172.6 (4)	C3—C4—C5—C6	-178.8 (5)
172.9 (4)	C4C5C6O1	-171.8 (5)
-7.4 (6)	C4—C5—C6—O2	66.5 (7)
	$\begin{array}{c} 3.0051 (12) \\ 2.2215 (15) \\ 1.927 (3) \\ 1.937 (4) \\ 1.982 (4) \\ 1.927 (3) \\ 1.361 (6) \\ 1.415 (6) \\ 1.424 (6) \\ 1.351 (6) \\ 1.351 (6) \\ 1.330 (6) \\ 0.9300 \\ \hline \\ 139.33 (5) \\ 38.82 (10) \\ 39.07 (11) \\ 102.14 (12) \\ 165.33 (16) \\ 77.89 (16) \\ 81.54 (15) \\ 158.20 (18) \\ 120.03 (12) \\ 99.59 (13) \\ 102.11 (16) \\ 118.6 (3) \\ 138.9 (3) \\ 114.8 (4) \\ 127.1 (4) \\ 114.2 (3) \\ 118.7 \\ 122.5 (5) \\ 118.7 \\ 120.4 \\ 119.1 (5) \\ \hline \\ 108.4 (4) \\ -79.8 (7) \\ -5.7 (6) \\ 166.1 (4) \\ -172.6 (4) \\ 172.9 (4) \\ -7.4 (6) \\ \hline \end{array}$	3.0051(12) $C1-C2$ $2.2215(15)$ $C2-H2$ $1.927(3)$ $C2-C3$ $1.937(4)$ $C3-H3$ $1.982(4)$ $C3-C4$ $1.927(3)$ $C4-H4$ $1.327(3)$ $C4-H4$ $1.327(3)$ $C4-H4$ $1.327(3)$ $C4-H4$ $1.327(3)$ $C4-H4$ $1.351(6)$ $C7-H7A$ $1.330(6)$ $C7-H7B$ 0.9300 $C7-H7C$ $139.33(5)$ $C3-C2-H2$ $38.82(10)$ $C2-C3-H3$ $39.07(11)$ $C2-C3-H3$ $39.07(11)$ $C2-C3-H4$ $102.14(12)$ $C4-C3-H3$ $155.33(16)$ $C3-C4-H4$ $178.9(16)$ $C5-C4-C4$ $120.03(12)$ $N1-C5-C4$ $120.03(12)$ $N1-C5-C6$ $99.59(13)$ $C4-C5-C6$ $102.11(16)$ $01-C6-C5$ $127.1(4)$ $02-C6-C5$ $127.1(4)$ $02-C6-H6$ $114.8(4)$ $02-C7-H7R$ $122.5(5)$ $02-C7-H7C$ 118.7 $H7A-C7-H7B$

N1-C1-C2-C3	0.2 (9)	C5—N1—C1—C2	0.8 (8)
N1-C5-C6-O1	8.4 (7)	C7—O2—C6—O1	81.5 (6)
N1-C5-C6-O2	-113.2 (5)	C7—O2—C6—C5	-160.6 (5)
C1—N1—C5—C4	-1.4 (8)		

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C2—H2···Cl1 ⁱⁱ	0.93	2.90	3.756 (6)	154
С3—Н3…О2 ^{ііі}	0.93	2.65	3.517 (7)	156
C6—H6…O2 ^{iv}	0.98	2.59	3.548 (8)	165

Symmetry codes: (ii) -x, -y, -z+1; (iii) -x+1/2, y+1/2, -z+3/2; (iv) x, y+1, z.