data reports

OPEN access

Crystal structure of betulinic acid methanol monosolvate

Wei Tang, Neng-Hua Chen, Guo-Oiang Li, Guo-Cai Wang and Yao-Lan Li*

Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China. *Correspondence e-mail: tlivl@jnu.edu.cn

Received 1 October 2014; accepted 29 October 2014

Edited by G. Smith, Queensland University of Technology, Australia

The title compound [systematic name: 3β -hydroxylup-20(29)en-28-oic acid methanol monosolvate], C₃₀H₄₈O₃·CH₃OH, is a solvent pseudopolymorph of a naturally occurring plantderived lupane-type pentacyclic triterpenoid, which was isolated from the traditional Chinese medicinal plant Syzygium jambos (L.) Alston. The dihedral angle between the planes of the carboxylic acid group and the olefinic group is 12.17 (18)°. The A/B, B/C, C/D and D/E ring junctions are all *trans*-fused. In the crystal, $O-H \cdots O$ hydrogen bonds involving the hydroxy and carboxylic acid groups and the methanol solvent molecule give rise to a two-dimensional network structure lying parallel to (001).

Keywords: crystal structure; betulinic acid; lup-20(29)-en-28-oic acid; Syzygium jambos (L.) Alston; hydrogen bonding; natural product.

CCDC reference: 1031558

1. Related literature

For general background to the synthesis, extraction and pharmceutical activities of the title compound, see: Kashiwada et al. (1996); Fulda et al. (1999); Liu et al. (2009); Safe et al. (2012); Babalola et al. (2013); Heidary Navid et al. (2014); Yadav & Gupta (2014). For the structure of another methanol solvate of betulinic acid, see: Wang et al. (2014).

2. Experimental

2.1. Crystal data

C30H48O3·CH4O $M_{\rm w} = 488.73$ Orthorhombic, $P2_12_12_1$ a = 7.0988 (2) Å b = 12.3864 (3) Å c = 33.2745 (9) Å

V = 2925.78 (13) Å³ 7 - 4Cu Ka radiation $\mu = 0.55 \text{ mm}^{-3}$ T = 293 K $0.28 \times 0.25 \times 0.20 \text{ mm}$

2.2. Data collection

2.3. Refinement

Oxford Diffraction Gemini S Ultra CCD-detector diffractometer Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) $T_{\min} = 0.748, T_{\max} = 1.000$

 $R_{\rm int} = 0.030$

8319 measured reflections

4343 independent reflections

3796 reflections with $I > 2\sigma(I)$

$R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.112$ S = 1.05 4342 reflections	326 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.15 \text{ e } \text{\AA}^{-3}$
4343 reflections	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O3-H3A\cdots O4$	0.82	1.76	2.571 (3)	170
$O1-H1\cdots O2^{i}$	0.82	1.95	2.753 (3)	165
$O4-H4\cdots O1^{ii}$	0.82	1.83	2.640 (3)	168

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 2, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Acknowledgements

This work was supported by grants from the Natural Science Foundation of Guangdong Province (No·S2013020012864), the National Natural Science Foundation of China (Nos. 81273390, 81202429, 81473116) and the Program of the Pearl River Young Talents of Science and Technology in Guangzhou, China (2013J2200051).

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2317).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.

- Babalola, I. T., Shode, F. O., Adelakun, E. A., Opoku, A. R. & Mosa, R. A. (2013). J. Pharmacogn. Phytochem. 1, 54–60.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Fulda, S., Jeremias, I., Steiner, H. H., Pietsch, T. & Debatin, K. M. (1999). *Int. J. Cancer*, **82**, 435–441.
- Heidary Navid, M., Laszczyk-Lauer, M. N., Reichling, J. & Schnitzler, P. (2014). *Phytomedicine*, **21**, 1273–1280.
- Kashiwada, Y., Hashimoto, F., Cosentino, L. M., Chen, C. H., Garrett, P. E. & Lee, K. H. (1996). *Planta Med.* 65, 740–743.
- Liu, J., Zhang, H. F., He, G. Q., Li, X. L., Fu, M. L. & Chen, Q. H. (2009). Sci. Technol. Food Ind. 10, 360–366.
- Safe, H., Prather, P. L., Brents, L. K., Chadalapaka, G. & Jutooru, I. (2012). Anti-Cancer Agent Med. Chem. 12, 1211–1220
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, X. Y., Gong, N. B., Yang, S. Y., Du, G. H. & Lu, Y. (2014). J. Pharm. Sci. 103, 2696–2703.
- Yadav, A. K. & Gupta, M. M. (2014). JPC J. Planar Chromatogr. Mod. TLC, 27, 174–180.

supporting information

Acta Cryst. (2014). E70, o1242-o1243 [doi:10.1107/S1600536814023848]

Crystal structure of betulinic acid methanol monosolvate

Wei Tang, Neng-Hua Chen, Guo-Qiang Li, Guo-Cai Wang and Yao-Lan Li

S1. Comment

The title compound $C_{30}H_{48}O_3$.CH₃OH (Fig. 1) is a lupane-type pentacyclic triterpenoid [systematic name: 3β -hydroxylup-20 (29)-en-28-oic acid], which is a natural product isolated from plants of, e.g. *Betula spp., Diospyros spp., Paeonia spp., Sambucus spp., Syzygium spp.* and *Ziziphus spp.* (Wang *et al.*, 2014) but mainly from the bark of *Betula pubescens*. It also may be obtained from the partial synthesis of betulin or preparation by biological fermentation with betulin. Betulinic acid has been demonstrated to have very high pharmacological values (Liu *et al.*, 2009), such as anti-HIV (Kashiwada *et al.*, 1996), anti-HSV-1 (Heidary *et al.*, 2014), anti-tumor (Fulda *et al.*, 1999), anti-platelet-aggregation (Babalola *et al.*, 2013) and anti-cancer activities (Safe *et al.*, 2012), together with anti-inflammatory (Yadav & Gupta, 2014), and antimalarial activities (Wang *et al.*, 2014).

Five crystalline pseudopolymorphic forms of betulinic acid have been reported, including a triclinic methanol solvate (space group *P*1 with *Z* = 1), obtained from a saturated methanolic solution (Wang *et al.*, 2014). The title compound, the methanol monosolvate $C_{30}H_{48}O_3$. CH₃OH represents another pseudopolymorph which crystallizes in the orthorhombic space group *P*2₁2₁2₁ with *Z* = 4. This compound (Fig. 1) is composed of five rings (*A*–*E*), one five-membered *E* the others six-membered. The five-membered ring adopts a boat conformation, which has puckering parameters, $\varphi = 0.2$ (4)°. The six-membered ring *A* adopts a chair conformation with puckering parameters Q = 0.546 (3)Å, $\theta = 2.7$ (3)°, $\varphi = 100$ (4)°. Rings *B*, *C* and *D* adopt chair conformations with puckering parameters Q = 0.575 (2)Å, $\theta = 10.9$ (2)°, $\varphi = 3.6$ (12)°; Q = 0.607 (2)Å, $\theta = 8.12$ (19)°, $\varphi = 330.0$ (16)°; Q = 0.580 (2)Å, $\theta = 170.7$ (2)°, $\varphi = 88.9$ (15)Å, respectively. The *A/B*, *B/C*, *C/D* and *D/E* ring junctions are all *trans*-fused. The dihedral angle between the planes of the carboxylic group and the olefinic group is 12.17 (18)°.

In the crystal, an intermolecular hydroxy O1—H···O2ⁱ_{carboxyl} hydrogen bond (Table 1) links the betulinic acid molecules into a zig-zag chain which extends along *b*. The methanol solvent molecule is linked to the parent molecule by a carboxylic acid O3—H···O4_{methanol} hydrogen bond while the methanol molecule extends the structure through an O4—H···O1ⁱⁱ interaction, giving a two-dimensional network structure lying parallel to (001). The absolute configuration determined for betulinic acid (Wang *et al.*, 2014) was invoked, giving the assignments C3(*S*),C5(*R*),C8(*R*),C9(*R*), C10(*R*), C13(*R*),C14(*R*),C17(*S*),C18(*R*), C19(*R*) for the 10 chiral centres in the molecule (using the arbitrary atom numbering scheme employed in Fig.1.

S2. Experimental

The title compound was isolated from the herbs of the traditional Chinese medicine *Syzygium jambos* (L.) Alston. The herbs of *Syzygium jambos* (L.) Alston (5 kg) was extracted with 95% ethanol at room temperature and the extracted solution was concentrated by rotary evaporator. The crude extract was suspended in distilled water and partitioned with petroleum ether, ethyl acetate and *n*-butanol. The title compound (50 mg) was isolated from the petroleum ether fraction through silica gel column chromatography and crystals were obtained after slow evaporation of a saturated methanol

solution at room temperature.

S3. Refinement

All H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H = 0.96 Å (CH₃) and $U_{iso}(H) = 1.5U_{eq}(C)$; 0.97 Å (CH₂) and $U_{iso}(H) = 1.2U_{eq}(C)$; 0.93 Å (aryl H) and $U_{iso}(H) = 1.2U_{eq}(C)$; O—H = 0.82 Å and $U_{iso}(H) = 1.5U_{eq}(O)$. The configuration of the 10 chiral centres in the betulinic acid [C3(*S*),C5(*R*),C8(*R*),C9(*R*), C10(*R*), C13(*R*),C14(*R*),C17(*S*),C18(*R*), C19(*R*)] was invoked, giving a Flack parameter of 0.3 (3) for 1624 Friedel pairs (Flack, 1983) for the arbitrary atom numbering scheme used in this article.

Figure 1

The molecular structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.

3β-Hydroxylup-20 (29)-en-28-oic acid methanol monosolvate

Crystal data	
$C_{30}H_{48}O_{3} \cdot CH_{4}O$ $M_{r} = 488.73$ Orthorhombic, $P2_{1}2_{1}2_{1}$ $a = 7.0988 (2) Å$ $b = 12.3864 (3) Å$ $c = 33.2745 (9) Å$ $V = 2925.78 (13) Å^{3}$ $Z = 4$ $F(000) = 1080$	$D_x = 1.110 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 3107 reflections $\theta = 3.8-62.4^{\circ}$ $\mu = 0.55 \text{ mm}^{-1}$ T = 293 K Block, colourless $0.28 \times 0.25 \times 0.20 \text{ mm}$
Data collection	
Oxford Diffraction Gemini S Ultra CCD- detector diffractometer	Radiation source: Enhance Ultra (Cu) X-ray source Mirror monochromator

Detector resolution: 16.0288 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2011) $T_{min} = 0.748, T_{max} = 1.000$ 8319 measured reflections 4343 independent reflections	3796 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 62.8^{\circ}, \ \theta_{min} = 3.8^{\circ}$ $h = -8 \rightarrow 6$ $k = -14 \rightarrow 14$ $l = -38 \rightarrow 30$
RefinementRefinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.112$ $S = 1.05$ 4343 reflections326 parameters0 restraintsPrimary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0489P)^2 + 0.2568P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.15$ e Å ⁻³ $\Delta\rho_{min} = -0.19$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.8725 (3)	0.2245 (2)	0.29320 (7)	0.0558 (5)
H1A	1.0010	0.2303	0.2836	0.067*
H1B	0.8028	0.2859	0.2828	0.067*
C2	0.8736 (4)	0.2301 (2)	0.33899 (8)	0.0599 (6)
H2A	0.9553	0.1741	0.3495	0.072*
H2B	0.9236	0.2994	0.3474	0.072*
C3	0.6797 (3)	0.21606 (19)	0.35581 (7)	0.0529 (5)
Н3	0.6016	0.2751	0.3455	0.063*
C4	0.5845 (3)	0.10912 (18)	0.34382 (7)	0.0473 (5)
C5	0.5903 (3)	0.10297 (16)	0.29712 (7)	0.0418 (4)
Н5	0.5147	0.1648	0.2883	0.050*
C6	0.4890 (3)	0.00515 (18)	0.27942 (7)	0.0495 (5)
H6A	0.5679	-0.0583	0.2822	0.059*
H6B	0.3730	-0.0076	0.2941	0.059*
C7	0.4445 (3)	0.02402 (17)	0.23522 (7)	0.0489 (5)
H7A	0.3558	0.0833	0.2331	0.059*
H7B	0.3836	-0.0399	0.2245	0.059*
C8	0.6183 (3)	0.04992 (15)	0.20917 (7)	0.0427 (4)
C9	0.7414 (3)	0.13761 (16)	0.23044 (6)	0.0423 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Н9	0.6640	0.2031	0.2297	0.051*
C10	0.7845 (3)	0.11993 (17)	0.27634 (7)	0.0438 (5)
C11	0.9151 (3)	0.1655 (2)	0.20478 (7)	0.0563 (6)
H11A	0.9845	0.2234	0.2177	0.068*
H11B	0.9971	0.1030	0.2035	0.068*
C12	0.8635 (3)	0.2003 (2)	0.16204 (7)	0.0543 (5)
H12A	0.8006	0.2698	0.1630	0.065*
H12B	0.9779	0.2089	0.1464	0.065*
C13	0.7357 (3)	0.11911 (17)	0.14128 (7)	0.0458 (5)
H13	0.8056	0.0509	0.1402	0.055*
C14	0.5543 (3)	0.09684 (16)	0.16666 (7)	0.0424 (4)
C15	0.4247 (3)	0.01587 (18)	0.14456 (7)	0.0519 (5)
H15A	0.4808	-0.0554	0.1464	0.062*
H15B	0.3048	0.0133	0.1585	0.062*
C16	0.3869 (3)	0.0408 (2)	0.10007 (8)	0.0564 (5)
H16A	0.3162	-0.0180	0.0881	0.068*
H16B	0.3122	0.1061	0.0979	0.068*
C17	0.5722 (3)	0.05540 (19)	0.07771(7)	0.0523 (5)
C18	0.6821(3)	0.14719 (17)	0.09793 (7)	0.0479 (5)
H18	0.5934	0.2076	0.0999	0.057*
C19	0.8349 (3)	0.1842 (2)	0.06760 (7)	0.0553 (5)
H19	0.9505	0.1429	0.0724	0.066*
C20	0.8807(4)	0.3028(2)	0.06820(8)	0.0686 (7)
C21	0.7510 (4)	0.1508(2)	0.02599(8)	0.0705 (7)
H21A	0.7358	0.2137	0.0090	0.085*
H21B	0.8343	0.1002	0.0126	0.085*
C22	0.5582(4)	0.0977(2)	0.03415(8)	0.0651 (6)
H22A	0.5354	0.0389	0.0155	0.0091 (0)
H22R H22B	0.4573	0.1501	0.0135	0.078*
C23	0.3767(3)	0.1361 0.1168 (2)	0.35735 (8)	0.078
H23A	0.3143	0.1724	0.3423	0.0048 (0)
H23R	0.3716	0.1338	0.3425	0.097*
H23C	0.3152	0.0490	0.3527	0.097*
C24	0.5152 0.6753 (4)	0.0490	0.36544 (8)	0.057
С24 Н244	0.6765	-0.0530	0.3546	0.0040(0)
H24R	0.6205	0.0550	0.3936	0.097*
H24C	0.8094	0.0154	0.3530	0.097*
C25	0.0074	0.0134	0.3017	0.0589 (6)
U25	0.9274 (3)	0.0275(2) 0.0372	0.2000 (0)	0.0389 (0)
H25R	1.0217	0.0372	0.2630	0.088*
H25C	0.8628	-0.0280	0.2030	0.088*
C26	0.8028 0.7285 (4)	-0.05744(18)	0.2032	0.088°
U20	0.7285 (4)	-0.0087	0.20302 (8)	0.0377 (0)
1120A 1120A	0.0720	-0.0987	0.1024	0.007*
1120D	0.7244	-0.0419	0.2202	0.007*
C27	0.03/1 0.4207 (2)	-0.0418	0.1709	0.007
U27A	0.4397 (3)	0.20241(17) 0.1017	0.1/149(/)	0.0490 (3)
П2/А 1127D	0.3419	0.1917	0.1910	0.074*
п∠/В	0.3843	0.221/	0.1401	0.074*

H27C	0.5217	0.2593	0.1803	0.074*
C28	0.6745 (4)	-0.0533 (2)	0.07527 (7)	0.0577 (6)
C29	1.0572 (6)	0.3352 (3)	0.07162 (10)	0.0984 (12)
H29A	1.0859	0.4083	0.0703	0.118*
H29B	1.1527	0.2848	0.0754	0.118*
C30	0.7208 (7)	0.3804 (3)	0.06214 (16)	0.1213 (16)
H30A	0.6549	0.3625	0.0378	0.182*
H30B	0.7693	0.4526	0.0602	0.182*
H30C	0.6358	0.3758	0.0845	0.182*
C31	0.9582 (9)	-0.3072 (4)	0.0316 (2)	0.154 (2)
H31A	0.8962	-0.2769	0.0086	0.232*
H31B	0.8714	-0.3521	0.0461	0.232*
H31C	1.0637	-0.3498	0.0230	0.232*
O1	0.6889 (3)	0.22739 (17)	0.39892 (5)	0.0708 (5)
H1	0.5933	0.2576	0.4070	0.106*
O2	0.5943 (3)	-0.13820 (15)	0.07479 (8)	0.0919 (7)
O3	0.8560 (3)	-0.04848 (17)	0.07166 (10)	0.0961 (8)
H3A	0.8982	-0.1095	0.0683	0.144*
O4	1.0176 (5)	-0.2288 (2)	0.05516 (11)	0.1310 (12)
H4	1.1022	-0.2514	0.0697	0.197*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
C1	0.0482 (11)	0.0607 (13)	0.0586 (12)	-0.0167 (11)	0.0012 (11)	-0.0014 (11)
C2	0.0538 (12)	0.0635 (14)	0.0624 (13)	-0.0131 (11)	-0.0032 (12)	-0.0061 (12)
C3	0.0494 (11)	0.0542 (12)	0.0551 (12)	0.0044 (10)	-0.0024 (10)	-0.0023 (10)
C4	0.0382 (10)	0.0501 (11)	0.0536 (11)	0.0031 (9)	0.0006 (10)	0.0055 (10)
C5	0.0333 (9)	0.0362 (9)	0.0558 (11)	0.0030 (8)	-0.0002 (9)	0.0064 (9)
C6	0.0418 (10)	0.0434 (10)	0.0633 (13)	-0.0080 (9)	0.0052 (10)	0.0061 (10)
C7	0.0391 (9)	0.0451 (11)	0.0624 (12)	-0.0124 (9)	0.0012 (10)	0.0008 (10)
C8	0.0339 (9)	0.0364 (9)	0.0577 (12)	0.0011 (8)	0.0019 (9)	-0.0014 (9)
C9	0.0308 (9)	0.0417 (10)	0.0544 (11)	-0.0009 (8)	-0.0008 (9)	0.0001 (9)
C10	0.0313 (9)	0.0450 (10)	0.0552 (11)	0.0001 (9)	0.0003 (9)	0.0018 (9)
C11	0.0365 (10)	0.0771 (15)	0.0554 (12)	-0.0146 (11)	0.0012 (10)	0.0001 (12)
C12	0.0413 (10)	0.0671 (14)	0.0545 (12)	-0.0157 (10)	0.0043 (10)	0.0011 (11)
C13	0.0360 (9)	0.0471 (10)	0.0543 (11)	0.0006 (9)	0.0025 (9)	-0.0007 (10)
C14	0.0334 (8)	0.0382 (9)	0.0554 (11)	-0.0008 (8)	0.0023 (9)	0.0001 (9)
C15	0.0421 (10)	0.0515 (11)	0.0621 (13)	-0.0098 (9)	-0.0009 (10)	-0.0032 (11)
C16	0.0453 (11)	0.0591 (12)	0.0649 (13)	-0.0047 (10)	-0.0115 (11)	-0.0046 (11)
C17	0.0506 (11)	0.0522 (11)	0.0540 (12)	-0.0008 (10)	-0.0075 (10)	0.0000 (10)
C18	0.0441 (10)	0.0452 (11)	0.0543 (12)	-0.0007 (9)	0.0005 (10)	0.0002 (10)
C19	0.0563 (12)	0.0568 (12)	0.0528 (12)	-0.0060 (11)	0.0053 (11)	-0.0016 (11)
C20	0.0894 (19)	0.0612 (14)	0.0554 (13)	-0.0172 (15)	0.0160 (14)	-0.0033 (12)
C21	0.0819 (17)	0.0765 (16)	0.0532 (13)	-0.0124 (15)	0.0004 (14)	0.0000 (13)
C22	0.0743 (15)	0.0646 (14)	0.0564 (13)	-0.0050 (13)	-0.0122 (13)	0.0033 (12)
C23	0.0435 (11)	0.0870 (17)	0.0638 (14)	0.0008 (12)	0.0080 (11)	0.0005 (14)
C24	0.0694 (15)	0.0607 (14)	0.0638 (14)	0.0060 (12)	-0.0038 (13)	0.0145 (12)

supporting information

C25	0.0409 (10)	0.0737 (15)	0.0621 (13)	0.0179 (11)	-0.0013 (11)	0.0006 (12)
C26	0.0615 (13)	0.0457 (11)	0.0659 (13)	0.0131 (11)	-0.0074 (12)	-0.0047 (11)
C27	0.0421 (10)	0.0464 (11)	0.0602 (12)	0.0072 (9)	0.0012 (10)	0.0027 (10)
C28	0.0654 (14)	0.0521 (13)	0.0555 (12)	-0.0026 (12)	0.0008 (11)	-0.0065 (11)
C29	0.127 (3)	0.100(2)	0.0679 (17)	-0.058 (2)	-0.011 (2)	0.0139 (17)
C30	0.139 (3)	0.0624 (17)	0.162 (4)	0.013 (2)	0.058 (3)	0.019 (2)
C31	0.161 (5)	0.122 (4)	0.180 (5)	0.010 (4)	-0.045 (5)	-0.058 (4)
01	0.0632 (10)	0.0922 (13)	0.0571 (9)	0.0064 (10)	0.0017 (8)	-0.0142 (9)
O2	0.1020 (15)	0.0548 (10)	0.1188 (17)	-0.0123 (11)	0.0369 (15)	-0.0120 (11)
O3	0.0664 (11)	0.0634 (10)	0.159 (2)	0.0099 (9)	-0.0085 (14)	-0.0236 (14)
O4	0.135 (2)	0.1133 (19)	0.144 (2)	0.0652 (18)	-0.068 (2)	-0.0608 (19)

Geometric parameters (Å, °)

C1—C2	1.525 (3)	C16—H16B	0.9700
C1-C10	1.544 (3)	C17—C28	1.532 (3)
C1—H1A	0.9700	C17—C18	1.534 (3)
C1—H1B	0.9700	C17—C22	1.544 (4)
C2—C3	1.496 (3)	C18—C19	1.551 (3)
C2—H2A	0.9700	C18—H18	0.9800
C2—H2B	0.9700	C19—C20	1.505 (4)
C3—O1	1.443 (3)	C19—C21	1.563 (4)
C3—C4	1.540 (3)	C19—H19	0.9800
С3—Н3	0.9800	C20—C29	1.320 (5)
C4—C24	1.532 (3)	C20—C30	1.501 (5)
C4—C23	1.545 (3)	C21—C22	1.542 (4)
C4—C5	1.556 (3)	C21—H21A	0.9700
С5—С6	1.527 (3)	C21—H21B	0.9700
C5—C10	1.557 (3)	C22—H22A	0.9700
С5—Н5	0.9800	C22—H22B	0.9700
С6—С7	1.522 (3)	C23—H23A	0.9600
С6—Н6А	0.9700	C23—H23B	0.9600
C6—H6B	0.9700	C23—H23C	0.9600
С7—С8	1.542 (3)	C24—H24A	0.9600
C7—H7A	0.9700	C24—H24B	0.9600
С7—Н7В	0.9700	C24—H24C	0.9600
C8—C26	1.554 (3)	C25—H25A	0.9600
С8—С9	1.563 (3)	C25—H25B	0.9600
C8—C14	1.595 (3)	C25—H25C	0.9600
C9—C11	1.539 (3)	C26—H26A	0.9600
C9—C10	1.573 (3)	C26—H26B	0.9600
С9—Н9	0.9800	C26—H26C	0.9600
C10—C25	1.549 (3)	C27—H27A	0.9600
C11—C12	1.531 (3)	C27—H27B	0.9600
C11—H11A	0.9700	C27—H27C	0.9600
C11—H11B	0.9700	C28—O2	1.196 (3)
C12—C13	1.521 (3)	C28—O3	1.295 (3)
C12—H12A	0.9700	C29—H29A	0.9300

C12—H12B	0.9700	С29—Н29В	0.9300
C13—C18	1.532 (3)	С30—Н30А	0.9600
C13—C14	1.564 (3)	С30—Н30В	0.9600
С13—Н13	0.9800	С30—Н30С	0.9600
C14—C15	1.547 (3)	C31—O4	1.317 (6)
C14—C27	1.548 (3)	C31—H31A	0.9600
C15—C16	1.536 (4)	C31—H31B	0.9600
C15—H15A	0.9700	C31—H31C	0.9600
C15—H15B	0.9700	01—H1	0.8200
C16-C17	1 522 (3)	03—H3A	0.8200
C16 H16A	0.9700	$O_4 H_4$	0.8200
	0.9700	04—114	0.8200
C2—C1—C10	113.8 (2)	C17—C16—C15	110.12 (18)
C2—C1—H1A	108.8	C17—C16—H16A	109.6
C10—C1—H1A	108.8	C15—C16—H16A	109.6
C2—C1—H1B	108.8	C17—C16—H16B	109.6
C10—C1—H1B	108.8	C15—C16—H16B	109.6
H1A-C1-H1B	107.7	H16A—C16—H16B	108.2
$C_{3}-C_{2}-C_{1}$	111 3 (2)	$C_{16} - C_{17} - C_{28}$	109.31 (19)
$C_3 - C_2 - H_2 A$	109.4	$C_{16} - C_{17} - C_{18}$	108 26 (19)
C1 - C2 - H2A	109.1	C_{28} C_{17} C_{18}	100.20(19) 115 70(19)
$C_3 - C_2 - H_2B$	109.1	$C_{16} - C_{17} - C_{22}$	1163(2)
$C_1 = C_2 = H_2 B$	109.4	$C_{10} = C_{17} = C_{22}$	110.3(2) 106.2(2)
H_{2} H_{2	109.4	$C_{26} = C_{17} = C_{22}$	100.2(2)
$\Pi_{2}A - C_{2} - \Pi_{2}B$	108.0 108.62(10)	$C_{10} - C_{17} - C_{22}$	101.12(19) 111.77(19)
$01 - C_2 - C_2$	106.02(19)	$C_{13} = C_{18} = C_{17}$	111.77(10) 120.42(10)
01 - 03 - 04	111.2(2)	C13 - C18 - C19	120.43 (18)
$C_2 = C_3 = C_4$	114.0 (2)	C17 - C18 - C19	106.80 (18)
OI = C3 = H3	107.6	C13—C18—H18	105.6
C2—C3—H3	107.6	C17—C18—H18	105.6
C4—C3—H3	107.6	C19—C18—H18	105.6
C24—C4—C3	111.19 (19)	C20—C19—C18	115.5 (2)
C24—C4—C23	108.2 (2)	C20—C19—C21	110.7 (2)
C3—C4—C23	106.88 (19)	C18—C19—C21	103.41 (19)
C24—C4—C5	114.82 (19)	С20—С19—Н19	109.0
C3—C4—C5	106.82 (18)	C18—C19—H19	109.0
C23—C4—C5	108.60 (18)	С21—С19—Н19	109.0
C6—C5—C4	114.31 (18)	C29—C20—C30	122.4 (3)
C6—C5—C10	110.66 (17)	C29—C20—C19	120.2 (3)
C4—C5—C10	117.39 (17)	C30—C20—C19	117.4 (3)
С6—С5—Н5	104.3	C22—C21—C19	107.2 (2)
С4—С5—Н5	104.3	C22—C21—H21A	110.3
С10—С5—Н5	104.3	C19—C21—H21A	110.3
C7—C6—C5	110.40 (18)	C22—C21—H21B	110.3
С7—С6—Н6А	109.6	C19—C21—H21B	110.3
С5—С6—Н6А	109.6	H21A—C21—H21B	108.5
С7—С6—Н6В	109.6	C21—C22—C17	104.6 (2)
С5—С6—Н6В	109.6	C21—C22—H22A	110.8
Н6А—С6—Н6В	108.1	C17—C22—H22A	110.8

С6—С7—С8	114.14 (18)	C21—C22—H22B	110.8
С6—С7—Н7А	108.7	C17—C22—H22B	110.8
С8—С7—Н7А	108.7	H22A—C22—H22B	108.9
С6—С7—Н7В	108.7	C4—C23—H23A	109.5
С8—С7—Н7В	108.7	C4—C23—H23B	109.5
H7A—C7—H7B	107.6	H23A—C23—H23B	109.5
C7—C8—C26	106.96 (18)	C4—C23—H23C	109.5
С7—С8—С9	109.73 (17)	H23A—C23—H23C	109.5
C26—C8—C9	111.53 (16)	H23B—C23—H23C	109.5
C7—C8—C14	110.27 (16)	C4—C24—H24A	109.5
C26—C8—C14	110.46 (18)	C4—C24—H24B	109.5
C9—C8—C14	107.91 (15)	H24A—C24—H24B	109.5
С11—С9—С8	110.68 (18)	C4—C24—H24C	109.5
C11—C9—C10	114.46 (16)	H24A—C24—H24C	109.5
C8—C9—C10	116.83 (17)	H24B—C24—H24C	109.5
С11—С9—Н9	104.4	C10—C25—H25A	109.5
С8—С9—Н9	104.4	C10-C25-H25B	109.5
С10—С9—Н9	104.4	H25A—C25—H25B	109.5
C1-C10-C25	107.34 (18)	C10—C25—H25C	109.5
C1—C10—C5	108.07 (18)	H25A—C25—H25C	109.5
C25—C10—C5	114.23 (18)	H25B—C25—H25C	109.5
C1—C10—C9	108.34 (17)	C8—C26—H26A	109.5
С25—С10—С9	112.54 (18)	C8—C26—H26B	109.5
С5—С10—С9	106.13 (16)	H26A—C26—H26B	109.5
С12—С11—С9	112.75 (18)	C8—C26—H26C	109.5
C12—C11—H11A	109.0	H26A—C26—H26C	109.5
C9-C11-H11A	109.0	H26B—C26—H26C	109.5
C12-C11-H11B	109.0	C14—C27—H27A	109.5
C9—C11—H11B	109.0	C14—C27—H27B	109.5
H11A—C11—H11B	107.8	H27A—C27—H27B	109.5
C13—C12—C11	112.25 (19)	C14—C27—H27C	109.5
C13—C12—H12A	109.2	H27A—C27—H27C	109.5
C11—C12—H12A	109.2	H27B—C27—H27C	109.5
C13—C12—H12B	109.2	O2—C28—O3	120.8 (3)
C11—C12—H12B	109.2	O2—C28—C17	123.2 (2)
H12A—C12—H12B	107.9	O3—C28—C17	115.8 (2)
C12—C13—C18	115.19 (18)	C20—C29—H29A	120.0
C12—C13—C14	111.25 (18)	C20—C29—H29B	120.0
C18—C13—C14	110.13 (17)	H29A—C29—H29B	120.0
C12-C13-H13	106.6	C20—C30—H30A	109.5
C18—C13—H13	106.6	C20—C30—H30B	109.5
C14—C13—H13	106.6	H30A—C30—H30B	109.5
C15—C14—C27	106.52 (17)	C20—C30—H30C	109.5
C15—C14—C13	110.32 (17)	H30A—C30—H30C	109.5
C27—C14—C13	109.85 (16)	H30B—C30—H30C	109.5
C15—C14—C8	110.77 (16)	O4—C31—H31A	109.5
C27—C14—C8	111.42 (17)	O4—C31—H31B	109.5
C13—C14—C8	107.97 (15)	H31A—C31—H31B	109.5

C16—C15—C14	115.59 (19)	O4—C31—H31C	109.5
C16—C15—H15A	108.4	H31A—C31—H31C	109.5
C14—C15—H15A	108.4	H31B—C31—H31C	109.5
C16—C15—H15B	108.4	C3—O1—H1	109.5
C14—C15—H15B	108.4	C28—O3—H3A	109.5
H15A—C15—H15B	107.4	C31—O4—H4	109.5
C10—C1—C2—C3	-55.7 (3)	C18—C13—C14—C27	-67.3 (2)
C1—C2—C3—O1	-177.2 (2)	C12—C13—C14—C8	-60.0 (2)
C1—C2—C3—C4	58.2 (3)	C18—C13—C14—C8	171.05 (17)
O1—C3—C4—C24	-51.5 (2)	C7—C8—C14—C15	-57.9 (2)
C2—C3—C4—C24	71.7 (3)	C26—C8—C14—C15	60.2 (2)
O1—C3—C4—C23	66.4 (2)	C9—C8—C14—C15	-177.70 (16)
C2—C3—C4—C23	-170.4(2)	C7—C8—C14—C27	60.5 (2)
O1—C3—C4—C5	-177.52 (17)	C26—C8—C14—C27	178.54 (17)
C2—C3—C4—C5	-54.3 (2)	C9—C8—C14—C27	-59.3 (2)
C24—C4—C5—C6	60.3 (2)	C7—C8—C14—C13	-178.75 (16)
C3—C4—C5—C6	-175.89 (17)	C26—C8—C14—C13	-60.7 (2)
C23—C4—C5—C6	-60.9 (2)	C9—C8—C14—C13	61.41 (19)
C24—C4—C5—C10	-71.7 (2)	C27—C14—C15—C16	70.8 (2)
C3—C4—C5—C10	52.0 (2)	C13—C14—C15—C16	-48.4 (2)
C23—C4—C5—C10	166.98 (19)	C8—C14—C15—C16	-167.85 (18)
C4—C5—C6—C7	161.11 (17)	C14—C15—C16—C17	53.2 (3)
C10—C5—C6—C7	-63.7 (2)	C15—C16—C17—C28	68.7 (2)
C5—C6—C7—C8	56.8 (2)	C15—C16—C17—C18	-58.1 (2)
C6—C7—C8—C26	74.0 (2)	C15—C16—C17—C22	-171.1 (2)
C6—C7—C8—C9	-47.1 (2)	C12—C13—C18—C17	173.50 (19)
C6—C7—C8—C14	-165.83 (17)	C14—C13—C18—C17	-59.7 (2)
C7—C8—C9—C11	-179.51 (18)	C12—C13—C18—C19	47.0 (3)
C26—C8—C9—C11	62.2 (2)	C14—C13—C18—C19	173.75 (18)
C14—C8—C9—C11	-59.3 (2)	C16—C17—C18—C13	63.8 (2)
C7—C8—C9—C10	47.1 (2)	C28—C17—C18—C13	-59.2 (3)
C26—C8—C9—C10	-71.2 (2)	C22-C17-C18-C13	-173.45 (19)
C14—C8—C9—C10	167.28 (16)	C16—C17—C18—C19	-162.52 (18)
C2-C1-C10-C25	-73.5 (3)	C28—C17—C18—C19	74.4 (2)
C2-C1-C10-C5	50.1 (3)	C22—C17—C18—C19	-39.8 (2)
C2-C1-C10-C9	164.69 (19)	C13—C18—C19—C20	-85.4 (3)
C6-C5-C10-C1	175.72 (18)	C17—C18—C19—C20	145.8 (2)
C4C5C10C1	-50.6 (2)	C13—C18—C19—C21	153.6 (2)
C6-C5-C10-C25	-64.9 (2)	C17—C18—C19—C21	24.8 (2)
C4—C5—C10—C25	68.8 (2)	C18—C19—C20—C29	128.0 (3)
C6C5C10C9	59.7 (2)	C21—C19—C20—C29	-114.9 (3)
C4—C5—C10—C9	-166.61 (17)	C18—C19—C20—C30	-55.8 (4)
C11—C9—C10—C1	59.3 (2)	C21—C19—C20—C30	61.3 (4)
C8—C9—C10—C1	-169.06 (17)	C20-C19-C21-C22	-124.1 (2)
C11—C9—C10—C25	-59.3 (2)	C18—C19—C21—C22	0.2 (3)
C8—C9—C10—C25	72.4 (2)	C19—C21—C22—C17	-24.6 (3)
C11—C9—C10—C5	175.12 (18)	C16—C17—C22—C21	155.9 (2)

C8—C9—C10—C5	-53.2 (2)	C28—C17—C22—C21	-82.2 (2)
C8—C9—C11—C12	55.0 (3)	C18—C17—C22—C21	38.9 (3)
C10—C9—C11—C12	-170.47 (19)	C16—C17—C28—O2	28.9 (3)
C9—C11—C12—C13	-52.4 (3)	C18—C17—C28—O2	151.4 (3)
C11—C12—C13—C18	-178.50 (19)	C22—C17—C28—O2	-97.3 (3)
C11—C12—C13—C14	55.3 (3)	C16—C17—C28—O3	-154.5 (3)
C12—C13—C14—C15	178.84 (18)	C18—C17—C28—O3	-32.0 (4)
C18—C13—C14—C15	49.9 (2)	C22—C17—C28—O3	79.3 (3)
C12—C13—C14—C13 C12—C13—C14—C27	49.9 (2) 61.7 (2)	05	79.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H3 <i>A</i> …O4	0.82	1.76	2.571 (3)	170
O1—H1···O2 ⁱ	0.82	1.95	2.753 (3)	165
O4—H4…O1 ⁱⁱ	0.82	1.83	2.640 (3)	168

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1/2; (ii) -*x*+2, *y*-1/2, -*z*+1/2.