

OPEN d ACCESS

Crystal structure of bis[1-(4-bromobenzyl)pyridinium] bis(1,2-dicyanoethene-1,2-dithiolato- $\kappa^2 S_s(S')$ nickelate(II)

Dong Zeng, Shui-Bin Yang and Zheng-Fang Tian*

Hubei Key Laboratory for Processing and Application of, Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 438000, People's Republic of China. *Correspondence e-mail: tzf7801@163.com

Received 14 October 2014; accepted 3 November 2014

Edited by M. Weil, Vienna University of Technology, Austria

The asymmetric unit of the title salt, $(C_{12}H_{11}BrN)_2$ -[Ni(C₄N₂S₂)₂], consists of one 1-(4-bromobenzyl)pyridinium cation and one half of a complex [Ni(mnt)₂]²⁻ (mnt²⁻ is the maleonitriledithiolate dianion). The Ni²⁺ ion is located on an inversion centre and is coordinated by four S atoms from two mnt²⁻ ligands, exhibiting a square-planar coordination environment. In the cation, the planes of the pyridinium and benzene rings make a dihedral angle of 69.86 (19)°. The cations and anions are alternately arranged in layers parallel to (001) and are held together by non-classical C-H···N hydrogen bonds.

Keywords: crystal structure; 1-(4-bromobenzyl)pyridinium cation; maleonitriledithiolate dianion; square-planar bis-1,2-dithiolate complex; Ni²⁺ ion; hydrogen bonding.

CCDC reference: 1032163

1. Related literature

For general background to square-planar bis-1,2-dithiolate complexes of transition metals showing potential application as magnetic materials and conductors besides others, see: Duan *et al.* (2010); Pei *et al.* (2011); Ren *et al.* (2002). For the structure of a closely related compound, see: Zhang *et al.* (2011). For synthetic aspects, see: Davison & Holm (1967).

2. Experimental

2.1. Crystal data $(C_{12}H_{11}BrN)_{2}[Ni(C_{4}N_{2}S_{2})_{2}]$ $M_{r} = 837.29$ Monoclinic, $P2_{1}/n$ a = 9.783 (2) Å b = 11.962 (3) Å c = 14.858 (3) Å $\beta = 97.385$ (7)°

2.2. Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) T_{min} = 0.571, T_{max} = 0.649

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.102$ S = 1.033040 reflections 14683 measured reflections 3040 independent reflections 2204 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.061$

V = 1724.3 (6) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.15 \times 0.15 \mbox{ mm}$

 $\mu = 3.16 \text{ mm}^{-1}$

T = 296 K

Z = 2

205 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.44 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.91 \text{ e } \text{\AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C16−H16···N2	0.93	2.49	3.384 (6)	162

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

Acknowledgements

This work was supported by the Educational Commission of Hubei Province of China (grant No. Q20082702).

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5078).

References

- Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Davison, A. & Holm, H. R. (1967). Inorg. Synth. 10, 8-26.
- Duan, H. B., Ren, X. M. & Meng, Q. J. (2010). Coord. Chem. Rev. 254, 1509– 1522.
- Pei, W. B., Wu, J. S., Tian, Z. F., Ren, X. M. & Song, Y. (2011). *Inorg. Chem.* 50, 3970–3980.
- Ren, X. M., Meng, Q. J., Song, Y., Hu, C. J., Lu, C. S., Chen, X. Y. & Xue, Z. L. (2002). Inorg. Chem. 41, 5931–5933.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhang, H., Pei, W.-B., Yu, S.-S. & Ren, X.-M. (2011). Acta Cryst. E67, m943.

supporting information

Acta Cryst. (2014). E70, m395-m396 [doi:10.1107/S1600536814024222]

Crystal structure of bis[1-(4-bromobenzyl)pyridinium] bis(1,2-dicyanoethene-1,2-dithiolato- $\kappa^2 S, S'$)nickelate(II)

Dong Zeng, Shui-Bin Yang and Zheng-Fang Tian

S1. Experimental

Disodium maleonitriledithiolate (456 mg, 2.5 mmol) and nickel chloride hexahydrate (297 mg, 1.25 mmol) were mixed under stirring in water (20 ml) and heated to boiling for about 20 min. The resuting red solution was filtered and to the filtrate was added dropwise to an aqueous solution of 1-(4'-bromobenzyl)pyridinium chloride (711.5 mg, 2.5 mmol). The dark red precipitate was filtered off, washed with water three times and dried in vacuum. The crude product was recrystallized from acetone to give red crystals (yield: 76%) with a block-like form.

S2. Refinement

The H atoms were placed on idealized positions (C—H = 0.93 Å for aromatic and 0.97 Å for methylene H atoms) and refined as riding atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular components of the title structure. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) = 1 - x, 1 - y, -z).]

Figure 2

Packing diagram of the title structure viewed along [100]. The origin is at the upper right corner of the unit cell.

3040 independent reflections 2204 reflections with $I > 2\sigma(I)$

Bis[1-(4-bromobenzyl)pyridinium] bis(1,2-dicyanoethene-1,2-dithiolato- $\kappa^2 S, S'$)nickelate(II)

Crystal data	
$(C_{12}H_{11}BrN)_2[Ni(C_4N_2S_2)_2]$	F(000) = 836
$M_r = 837.29$	$D_{\rm x} = 1.613 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Melting point: 473 K
Hall symbol: -P 2yn	Mo Ka radiation, $\lambda = 0.71073$ Å
a = 9.783 (2) Å	Cell parameters from 14683 reflections
b = 11.962 (3) Å	$\theta = 2.2 - 25.0^{\circ}$
c = 14.858 (3) Å	$\mu = 3.16 \text{ mm}^{-1}$
$\beta = 97.385 (7)^{\circ}$	T = 296 K
V = 1724.3 (6) Å ³	Block, red
<i>Z</i> = 2	$0.20\times0.15\times0.15~mm$
Data collection	
Bruker SMART CCD	Absorption correction: multi-scan
diffractometer	(SADABS; Bruker, 2000)
Radiation source: fine-focus sealed tube	$T_{\min} = 0.571, T_{\max} = 0.649$
Graphite monochromator	14683 measured reflections

phi and ω scans

$R_{\rm int} = 0.061$	$k = -14 \rightarrow 14$
$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 2.2^{\circ}$	$l = -17 \rightarrow 17$
$h = -11 \rightarrow 11$	

Refinement

5	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.102$	neighbouring sites
<i>S</i> = 1.03	H-atom parameters constrained
3040 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0517P)^2 + 0.2393P]$
205 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.91 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ni1	0.5000	0.5000	0.0000	0.03497 (19)
Br1	-0.05497 (5)	0.44064 (4)	0.19128 (4)	0.0857 (2)
S1	0.68740 (9)	0.59888 (8)	0.02861 (6)	0.0445 (3)
S2	0.37034 (9)	0.64490 (8)	0.01000 (7)	0.0479 (3)
C3	0.4306 (4)	0.8595 (3)	0.0544 (3)	0.0472 (9)
N2	0.3771 (4)	0.9425 (3)	0.0661 (3)	0.0651 (10)
C8	0.1115 (3)	0.8032 (3)	0.2369 (3)	0.0438 (9)
C1	0.6257 (3)	0.7321 (3)	0.0478 (2)	0.0398 (8)
N3	0.0716 (3)	1.0079 (2)	0.2122 (2)	0.0426 (7)
C11	0.1688 (4)	0.9204 (3)	0.2526 (3)	0.0532 (10)
H11A	0.1894	0.9335	0.3173	0.064*
H11B	0.2544	0.9263	0.2264	0.064*
C9	0.0500 (4)	0.7490 (3)	0.3036 (3)	0.0563 (11)
Н9	0.0417	0.7855	0.3579	0.068*
C5	0.0120 (4)	0.5898 (3)	0.2097 (3)	0.0537 (11)
C10	0.0009 (4)	0.6417 (4)	0.2903 (3)	0.0620 (11)
H10	-0.0392	0.6051	0.3355	0.074*
C2	0.4878 (3)	0.7516 (3)	0.0400 (2)	0.0401 (8)
C14	-0.1102 (5)	1.1646 (3)	0.1387 (3)	0.0698 (13)
H14	-0.1726	1.2181	0.1132	0.084*
C4	0.7257 (4)	0.8173 (3)	0.0722 (3)	0.0501 (9)
C15	0.0006 (5)	1.1360 (4)	0.0964 (3)	0.0710 (13)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H15	0.0142	1.1702	0.0420	0.085*	
C16	0.0911 (4)	1.0574 (3)	0.1337 (3)	0.0586 (11)	
H16	0.1666	1.0380	0.1049	0.070*	
C12	-0.0375 (4)	1.0353 (3)	0.2544 (3)	0.0546 (10)	
H12	-0.0503	0.9998	0.3084	0.066*	
C6	0.0723 (4)	0.6405 (3)	0.1425 (3)	0.0622 (11)	
H6	0.0794	0.6036	0.0881	0.075*	
N1	0.8110 (4)	0.8818 (3)	0.0910 (3)	0.0770 (11)	
C13	-0.1290 (4)	1.1141 (4)	0.2192 (3)	0.0632 (12)	
H13	-0.2034	1.1335	0.2491	0.076*	
C7	0.1227 (4)	0.7476 (3)	0.1569 (3)	0.0566 (11)	
H7	0.1649	0.7828	0.1120	0.068*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0332 (3)	0.0344 (4)	0.0365 (4)	0.0045 (3)	0.0013 (3)	-0.0016 (3)
Br1	0.0699 (4)	0.0431 (3)	0.1335 (5)	-0.0074 (2)	-0.0270 (3)	-0.0002 (3)
S1	0.0350 (5)	0.0405 (5)	0.0563 (6)	0.0044 (4)	-0.0003 (4)	-0.0029 (5)
S2	0.0349 (5)	0.0382 (5)	0.0699 (7)	0.0047 (4)	0.0047 (5)	-0.0076 (5)
C3	0.040 (2)	0.044 (2)	0.057 (2)	-0.0019 (18)	0.0059 (18)	-0.004 (2)
N2	0.063 (2)	0.048 (2)	0.086 (3)	0.0080 (18)	0.013 (2)	-0.010 (2)
C8	0.037 (2)	0.040 (2)	0.052 (2)	0.0020 (16)	-0.0039 (17)	0.000 (2)
C1	0.041 (2)	0.038 (2)	0.039 (2)	-0.0011 (16)	0.0011 (16)	-0.0029 (16)
N3	0.0439 (18)	0.0342 (17)	0.0487 (18)	-0.0015 (14)	0.0017 (14)	-0.0087 (16)
C11	0.048 (2)	0.047 (2)	0.061 (3)	-0.0023 (18)	-0.0080 (19)	-0.002 (2)
C9	0.069 (3)	0.049 (3)	0.048 (2)	-0.002 (2)	-0.001 (2)	-0.002 (2)
C5	0.038 (2)	0.039 (2)	0.079 (3)	0.0039 (17)	-0.014 (2)	0.005 (2)
C10	0.069 (3)	0.053 (3)	0.063 (3)	-0.004 (2)	0.005 (2)	0.014 (2)
C2	0.043 (2)	0.038 (2)	0.0396 (19)	0.0048 (16)	0.0044 (15)	-0.0023 (17)
C14	0.071 (3)	0.039 (2)	0.092 (4)	0.010 (2)	-0.020 (3)	-0.003 (3)
C4	0.047 (2)	0.045 (2)	0.056 (2)	0.004 (2)	0.0011 (19)	-0.005 (2)
C15	0.086 (3)	0.053 (3)	0.075 (3)	0.009 (3)	0.010 (3)	0.013 (2)
C16	0.066 (3)	0.049 (3)	0.065 (3)	-0.003 (2)	0.025 (2)	0.005 (2)
C12	0.054 (3)	0.061 (3)	0.048 (2)	-0.003 (2)	0.005 (2)	-0.009 (2)
C6	0.063 (3)	0.055 (3)	0.069 (3)	-0.003 (2)	0.012 (2)	-0.017 (2)
N1	0.059 (2)	0.064 (3)	0.103 (3)	-0.011 (2)	-0.011 (2)	-0.016 (2)
C13	0.052 (3)	0.062 (3)	0.074 (3)	0.009 (2)	0.002 (2)	-0.020 (3)
C7	0.056 (2)	0.050 (3)	0.065 (3)	-0.005 (2)	0.016 (2)	-0.004 (2)

Geometric parameters (Å, °)

Ni1-S2 ⁱ	2.1642 (9)	C9—C10	1.376 (5)	
Nil—S2	2.1642 (9)	С9—Н9	0.9300	
Nil—S1	2.1773 (9)	C5—C10	1.366 (6)	
Ni1—S1 ⁱ	2.1773 (9)	C5—C6	1.366 (6)	
Br1—C5	1.908 (4)	C10—H10	0.9300	
S1—C1	1.740 (3)	C14—C15	1.366 (6)	

S2—C2	1.737 (3)	C14—C13	1.373 (6)
C3—N2	1.146 (4)	C14—H14	0.9300
C3—C2	1.433 (5)	C4—N1	1.144 (5)
C8—C7	1.379 (5)	C15—C16	1.360 (6)
C8—C9	1.385 (5)	C15—H15	0.9300
C8—C11	1.517 (5)	C16—H16	0.9300
C1—C2	1.360 (5)	C12—C13	1.358 (6)
C1—C4	1.427 (5)	C12—H12	0.9300
N3—C16	1.343 (5)	C6—C7	1.379 (5)
N3—C12	1.346 (5)	С6—Н6	0.9300
N3—C11	1.487 (4)	C13—H13	0.9300
C11—H11A	0.9700	С7—Н7	0.9300
C11—H11B	0.9700		
S2 ⁱ —Ni1—S2	180.00 (5)	C6—C5—Br1	118.9 (3)
S2 ⁱ —Ni1—S1	87.84 (4)	C5—C10—C9	119.0 (4)
S2—Ni1—S1	92.16 (4)	C5—C10—H10	120.5
S2 ⁱ —Ni1—S1 ⁱ	92.16 (4)	C9—C10—H10	120.5
S2—Ni1—S1 ⁱ	87.84 (4)	C1—C2—C3	123.0 (3)
S1-Ni1-S1 ⁱ	180.0	C1—C2—S2	120.8 (3)
C1—S1—Ni1	103.21 (11)	C3—C2—S2	116.2 (3)
C2—S2—Ni1	103.42 (12)	C15—C14—C13	119.6 (4)
N2—C3—C2	175.7 (4)	C15—C14—H14	120.2
С7—С8—С9	118.7 (4)	C13—C14—H14	120.2
C7—C8—C11	120.7 (3)	N1—C4—C1	176.5 (4)
C9—C8—C11	120.6 (3)	C16—C15—C14	119.9 (4)
C2—C1—C4	122.6 (3)	C16—C15—H15	120.0
C2-C1-S1	120.3 (3)	C14—C15—H15	120.0
C4—C1—S1	117.1 (2)	N3—C16—C15	120.2 (4)
C16—N3—C12	120.4 (3)	N3—C16—H16	119.9
C16—N3—C11	120.4 (3)	C15-C16-H16	119.9
C12—N3—C11	119.2 (3)	N3—C12—C13	120.9 (4)
N3—C11—C8	112.6 (3)	N3—C12—H12	119.6
N3—C11—H11A	109.1	C13—C12—H12	119.6
C8—C11—H11A	109.1	C5—C6—C7	118.5 (4)
N3—C11—H11B	109.1	С5—С6—Н6	120.7
C8—C11—H11B	109.1	С7—С6—Н6	120.7
H11A—C11—H11B	107.8	C12—C13—C14	119.0 (4)
С10—С9—С8	120.7 (4)	C12—C13—H13	120.5
С10—С9—Н9	119.7	C14—C13—H13	120.5
С8—С9—Н9	119.7	C8—C7—C6	121.1 (4)
C10—C5—C6	122.0 (4)	С8—С7—Н7	119.4
C10C5Br1	119.1 (3)	С6—С7—Н7	119.4

Symmetry code: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	D—H…A
C16—H16···N2	0.93	2.49	3.384 (6)	162