

Received 29 October 2014 Accepted 13 November 2014

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: crystal structure; cobalt; phosphine ligand; metallacycle

CCDC reference: 1033917 **Supporting information**: this article has supporting information at journals.iucr.org/e

Crystal structure of tricarbonyl(*N*-diphenylphosphanyl-*N*,*N*'-diisopropyl-*P*-phenylphosphonous diamide- $\kappa^2 P$,*P*')cobalt(I) tetracarbonylcobaltate(-I) toluene 0.25-solvate

Laura Dura, Anke Spannenberg and Torsten Beweries*

Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany. *Correspondence e-mail: torsten.beweries@catalysis.de

The asymmetric unit of the title compound, $[Co(C_{24}H_{30}N_2P_2)(CO)_3][Co(CO)_4]$ -0.25C₇H₈, consists of two crystallographically independent cations with similar conformations, two anions, and one-half of a toluene molecule disordered about an inversion centre. In the cations, a Co/P/N/P four-membered slightly bent metallacycle is the key structural element. The pendant NH group is not coordinated to the Co^I atom, which displays a distorted trigonal-bipyramidal coordination geometry. Weak interionic hydrogen bonds are observed between the NH groups and a carbonyl group of the tetrahedral $[Co(CO)_4]^-$ anions.

1. Chemical context

Reaction of the PNPNH ligand N-(diphenylphosphanyl)--N,N'-diisopropyl-diaminophenylphosphine, Ph₂PN(*i*-Pr)-P(Ph)N(H)i-Pr, with the cobalt precursor $Co_2(CO)_8$ was performed to prepare a noble-metal-free catalyst for lightdriven water reduction to produce hydrogen. These compounds are attractive in terms of environmental acceptability as well as for economic reasons. Several very active intermolecular water-reduction systems using 3d metal complexes as catalytically active centres are known, examples include work on iron (e.g. Mejía et al., 2013), nickel (e.g. Zhang et al., 2011) and cobalt (e.g. Tong et al., 2014) complexes. It is likely that the NH group of the ligand and the Co atom cooperate in the proton-reduction process as has been reported for other water-reduction complexes (Han et al., 2012). We found that, apart from the previously described catalytically active dinuclear CO-bridged product Co₂(CO)₆(PNPNH) (Hansen et al., 2013), an ionic complex is also formed in this reaction. Both complexes can be separated by fractionated crystallization from toluene. It should be noted that in solution, the title compound is rapidly converted into the neutral dinuclear species Co₂(CO)₆(PNPNH) and therefore the IR and NMR spectra were measured only from freshly prepared samples.

research communications

Figure 1

The asymmetric unit of the title compound. Hydrogen atoms are omitted for clarity. Displacement ellipsoids correspond to the 30% probability level. Only one orientation of the disordered toluene molecule is shown.

2. Structural commentary

The title compound crystallizes in the monoclinic space group $P2_1/n$ with eight cations, eight anions as well as two molecules of toluene in the unit cell. The toluene solvent molecules are found to be disordered about inversion centres. The asymmetric unit is shown in Fig. 1. In the cation, the Co^I atom is fivefold coordinated by three carbonyl ligands and the PNPNH ligand, which is bound *via* both P atoms (Fig. 2). Thus, the bidentate ligand forms a four-membered metallacycle at the Co^I atom with the central N atom being tilted out of the plane formed by the Co and the two P atoms [the dihedral angles between the CoP₂ and NP₂ planes are 15.73 (10) and 14.44 (9)°]. The terminal secondary amine is not involved in complexation with the Co^I atom and acts as a spectator group.

Figure 2

Interionic N-H···O hydrogen bond (dashed line) connecting an ion-pair in the title compound. Hydrogen atoms not involved in hydrogen bonding, the co-crystallized toluene molecule and the second ion-pair of the asymmetric unit are omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N1 - H1 \cdots O10^{i} \\ N3 - H3 \cdots O13^{ii} \end{array}$	0.87 (1)	2.22 (2)	3.041 (3)	159 (3)
	0.86 (1)	2.27 (1)	3.101 (3)	163 (3)

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1.

In the cyclic units the following bond lengths are observed: Co1-P1 2.1948 (7), P1-N2 1.698 (2), N2-P2 1.695 (2), P2-Co1 2.1800 (7), Co2-P3 2.1884 (7), P3-N4 1.695 (2), N4-P4 1.702 (2), P4-Co2 2.1971 (7) Å. A similar coordination mode was previously found for this ligand in a variety of transition metal complexes (Aluri et al., 2010). In the cationic parts, one of the Co-C distances [Co1-C3 1.821 (3) and Co2-C30 1.832 (3) Å] is slightly longer than the other two values. In the anion, the geometry at the cobalt atom is found to be distorted tetrahedral; all C-Co-C angles are found to be between 105.75 (13) and 111.89 (14) $^{\circ}$, thus indicating a minor deviation from ideal T_d symmetry. The Co-C bond lengths in the anions vary from 1.754 (4)-1.770 (3) Å and are comparable to those observed for a range of complexes displaying tetracarbonylcobaltate anions (vide supra), including ionic salts of tetracarbonylcobaltate with alkali (Klüfers, 1984a,b) and ammonium cations (Brammer et al. 1992; Brammer & Zhao, 1995).

3. Supramolecular features

A weak hydrogen-bonding interaction is observed between the NH group of the cation and one of the O atoms of the tetracarbonylcobaltate(-I) anions (Table 1). Other than in the literature-known compound [Et₃NH][Co(CO)₄] (Brammer *et al.*, 1992), no 3*c*-4*e* hydrogen-bond-like N-H···Co interaction has been found.

4. Database survey

For a similar, carbonyl-bridged dinuclear cobalt complex with this PNPNH ligand, see: Hansen *et al.* (2013). Examples for structural reports of other $\text{Co}^{\text{I}}\text{-}\text{Co}^{-\text{I}}$ ion-pair complexes can be found in Fellmann *et al.* (1983), Bockman & Kochi (1989), Zhang *et al.* (1994), Uehara *et al.* (2005), van Rensburg *et al.* (2007) and Azhakar *et al.* (2012). Other transition metal complexes with this ligand are described in Aluri *et al.* (2010) and Dulai *et al.* (2011).

5. Synthesis and crystallization

General: *N*-(diphenylphosphanyl)-*N*,*N'*-diisopropyl-diaminophenylphosphine was synthesized by a literature method (Peitz *et al.*, 2010). $Co_2(CO)_8$ was purchased from Strem and used without further purification. Toluene was dried over CaH₂ and distilled prior to use. Synthesis: A solution of $Co_2(CO)_8$ (0.30 g, 0.88 mmol) in toluene (10 ml) was added to *N*-(diphenylphosphanyl)-*N*,*N'*-diisopropyl-diaminophenylphosphine, Ph₂PN(*i*-Pr)P(Ph)N(H)*i*-Pr (0.36 g, 0.88 mmol) in a glove box. After gas evolution subsided, the 50 ml Schlenk flask was closed and heated to 383 K for 35 min without stirring to preserve the two-phase system. After crystallization from toluene at room temperature for three days, two crystal fractions were separated from the solvent and washed with *n*-hexane $(2 \times 5 \text{ ml})$. The fraction of cubic brown crystals showed space-group and lattice parameters identical to X-ray diffraction data published previously (Hansen et al., 2013). The second fraction contained yellow needles with the crystal structure presented here. Further isolation of this new complex was not possible as it inevitably forms the known dinuclear product when dissolved in organic solvents. Manual picking of the crystals was difficult as the material proved too delicate. Analytics: ³¹P NMR (297 K, THF- d_8 , 162 Hz): δ (p.p.m) 61.8 (d, J = 150 Hz), 59.9 (d, J = 150 Hz); IR (ATR, THF): v^{-1} [cm⁻¹] 3335 (w), 3191 (w), 3058 (w), 2975 (m), 2869 (m), 2081 [s, Co(CO)₃⁺], 2021 [s, Co(CO)₃⁺], 1979 (w), 1872 [s, $Co(CO)_4^{-1}$, 1586 (w), 1462 (w), 1436 (m), 1390 (w), 1369 (w), 1311(w), 1165 (w), 1125 (m), 1097 (m), 1064 (m), 999 (w), 896 (m), 869 (m), 747 (m), 716 (w), 694 (m), 631 (w), 612 (w), 550(s), 501 (m), 426 (m).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Atoms H1 and H3 were located in a difference Fourier map and their coordinates were refined with the restraint N-H = 0.87 (1) Å. All other H atoms were placed in idealized positions with d(C-H) = 0.95-1.00 (CH) and 0.98 Å (CH₃) and refined using a riding model with $U_{iso}(H)$ fixed at 1.2 $U_{eq}(C)$ for CH and 1.5 $U_{eq}(C)$ for CH₃. The ring of the half-occupied toluene molecule was constrained to resemble an ideal hexagon with C-C distances of 1.39 Å. SADI instructions were used to improve the geometry of one phenyl ring (C24-C25, C25-C26) and one *i*-propyl group (C13-C14, C13-C15).

Acknowledgements

Financial support by the BMBF (project 'Light2Hydrogen') is gratefully acknowledged. TB would like to thank Professor Uwe Rosenthal for support.

References

- Aluri, B., Peulecke, N., Peitz, S., Spannenberg, A., Müller, B. H., Schulz, S., Drexler, H.-J., Heller, D., Al-Hazmi, M. H., Mosa, F. M., Wöhl, A., Müller, W. & Rosenthal, U. (2010). *Dalton Trans.* 39, 7911–7920.
- Azhakar, R., Ghadwal, R. S., Roesky, H. W., Hey, J. & Stalke, D. (2012). *Chem. Asian J.* **7**, 528–533.
- Bockman, T. M. & Kochi, J. K. (1989). J. Am. Chem. Soc. 111, 4669–4683.
- Brammer, L., McCann, M. C., Bullock, R. M., McMullan, R. K. & Sherwood, P. (1992). Organometallics, 11, 2339–2341.
- Brammer, L. & Zhao, D. (1995). Acta Cryst. C51, 45-48.

Table 2	
Experimental details.	

Crystal data	
Chemical formula	$[Co(C_{24}H_{30}N_2P_2)(CO)_3]$ -
	$[Co(CO)_4] \cdot 0.25C_7H_8$
$M_{\rm r}$	745.40
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	22.1602 (6), 12.9730 (3), 24.7883 (6)
β (°)	103.9330 (12)
$V(Å^3)$	6916.6 (3)
Ζ	8
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	8.79
Crystal size (mm)	$0.43 \times 0.11 \times 0.05$
Data collection	
Diffractometer	Bruker Kappa APEXII DUO
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2011)
T_{\min}, T_{\max}	0.12, 0.65
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	89837, 12171, 11080
R _{int}	0.044
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.100, 1.03
No. of reflections	12171
No. of parameters	825
No. of restraints	4
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} \ {\rm \AA}^{-3})$	0.93, -0.57

Computer programs: APEX2 and SAINT (Bruker, 2011), SHELXS97, SHELXL2014 and SHELXTL (Sheldrick, 2008).

- Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dulai, A., McMullin, C. L., Tenza, K. & Wass, D. F. (2011). Organometallics, 30, 935–941.
- Fellmann, J. D., Garrou, P. E., Withers, H. P., Seyferth, D. & Traficante, D. D. (1983). Organometallics, 2, 818–825.
- Han, Z., McNamara, W. R., Eum, M.-S., Holland, P. L. & Eisenberg, R. (2012). Angew. Chem. Int. Ed. 51, 1667–1670.
- Hansen, S., Pohl, M.-M., Klahn, M., Spannenberg, A. & Beweries, T. (2013). *ChemSusChem*, **6**, 92–101.
- Klüfers, P. (1984a). Z. Kristallogr. 167, 253-260.
- Klüfers, P. (1984b). Z. Kristallogr. 167, 275-286.
- Mejía, E., Luo, S.-P., Karnahl, M., Friedrich, A., Tschierlei, S., Surkus, A.-E., Junge, H., Gladiali, S., Lochbrunner, S. & Beller, M. (2013). *Chem. Eur. J.* 19, 15972–15978.
- Peitz, S., Peulecke, N., Aluri, B. R., Hansen, S., Müller, B. H., Spannenberg, A., Rosenthal, U., Al-Hazmi, M. H., Mosa, F. M., Wöhl, A. & Müller, W. (2010). *Eur. J. Inorg. Chem.* pp. 1167–1171.
- Rensburg, H. van, Tooze, R. P., Foster, D. F. & Otto, S. (2007). *Inorg. Chem.* 46, 1963–1965.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tong, L., Zong, R. & Thummel, R. P. (2014). J. Am. Chem. Soc. 136, 4881–4884.
- Uehara, K., Hikichi, S., Inagaki, A. & Akita, M. (2005). *Chem. Eur. J.* **11**, 2788–2809.
- Zhang, W., Hong, J., Zheng, J., Huang, Z., Zhou, J. (S.) & Xu, R. (2011). J. Am. Chem. Soc. 133, 20680–20683.
- Zhang, Z.-Z., Yu, A., Xi, H.-P., Wang, R.-J. & Wang, H.-G. (1994). J. Organomet. Chem. 470, 223–229.

supporting information

Acta Cryst. (2014). E70, 533-535 [doi:10.1107/S1600536814024908]

Crystal structure of tricarbonyl(*N*-diphenylphosphanyl-*N*,*N*'-diisopropyl-*P*-phenylphosphonous diamide- $\kappa^2 P$,*P*')cobalt(I) tetracarbonylcobaltate(-I) toluene 0.25-solvate

Laura Dura, Anke Spannenberg and Torsten Beweries

Computing details

Data collection: *APEX2* (Bruker, 2011); cell refinement: *SAINT* (Bruker, 2011); data reduction: *SAINT* (Bruker, 2011); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Tricarbonyl(*N*-diphenylphosphanyl-*N*,*N'*-diisopropyl-*P*-phenylphosphonous diamide- $\kappa^2 P$,*P'*)cobalt(I) tetracarbonylcobaltate(-I) toluene 0.25-solvate

Crystal data

 $[Co(C_{24}H_{30}N_2P_2)(CO)_3][Co(CO)_4] \cdot 0.25C_7H_8$ $M_r = 745.40$ Monoclinic, $P2_1/n$ a = 22.1602 (6) Å b = 12.9730 (3) Å c = 24.7883 (6) Å $\beta = 103.9330$ (12)° V = 6916.6 (3) Å³ Z = 8

Data collection

Bruker Kappa APEXII DUO diffractometer Radiation source: microfocus Multilayer monochromator Detector resolution: 8.3333 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2011) $T_{\min} = 0.12, T_{\max} = 0.65$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.100$ S = 1.0312171 reflections F(000) = 3060 $D_x = 1.432 \text{ Mg m}^{-3}$ Cu *Ka* radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9777 reflections $\theta = 3.7-66.7^{\circ}$ $\mu = 8.79 \text{ mm}^{-1}$ T = 150 KNeedle, yellow $0.43 \times 0.11 \times 0.05 \text{ mm}$

89837 measured reflections 12171 independent reflections 11080 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{max} = 66.5^{\circ}, \ \theta_{min} = 2.4^{\circ}$ $h = -26 \rightarrow 25$ $k = -15 \rightarrow 14$ $l = -23 \rightarrow 29$

825 parameters4 restraintsHydrogen site location: mixedH atoms treated by a mixture of independent and constrained refinement

$w = 1/[\sigma^2(F_o^2) + (0.0494P)^2 + 7.7784P]$	$\Delta \rho_{\rm max} = 0.93 \text{ e} \text{ Å}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta ho_{ m min} = -0.57 \ m e \ m \AA^{-3}$
$(\Delta/\sigma)_{\rm max} = 0.001$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.26645 (13)	0.8434 (2)	0.15492 (12)	0.0349 (6)	
C2	0.25541 (13)	0.7575 (2)	0.05615 (13)	0.0368 (7)	
C3	0.25514 (13)	0.6280 (2)	0.15325 (14)	0.0384 (7)	
C4	0.12520 (16)	0.9773 (2)	0.10407 (12)	0.0387 (7)	
H4	0.1533	0.9488	0.0816	0.046*	
C5	0.1505 (2)	1.0822 (3)	0.12626 (17)	0.0603 (11)	
H5A	0.1226	1.1132	0.1470	0.090*	
H5B	0.1531	1.1271	0.0951	0.090*	
H5C	0.1919	1.0737	0.1510	0.090*	
C6	0.06036 (18)	0.9842 (3)	0.06670 (15)	0.0571 (10)	
H6A	0.0472	0.9159	0.0514	0.086*	
H6B	0.0603	1.0324	0.0363	0.086*	
H6C	0.0315	1.0087	0.0883	0.086*	
C7	0.15272 (13)	0.7513 (2)	0.22363 (11)	0.0292 (6)	
C8	0.13489 (14)	0.6542 (2)	0.23867 (12)	0.0348 (6)	
H8	0.1163	0.6062	0.2107	0.042*	
С9	0.14415 (16)	0.6277 (3)	0.29406 (13)	0.0446 (8)	
H9	0.1315	0.5619	0.3040	0.053*	
C10	0.17175 (17)	0.6966 (3)	0.33486 (13)	0.0503 (9)	
H10	0.1781	0.6782	0.3729	0.060*	
C11	0.19017 (17)	0.7918 (3)	0.32061 (13)	0.0480 (8)	
H11	0.2094	0.8390	0.3489	0.058*	
C12	0.18085 (14)	0.8195 (2)	0.26511 (12)	0.0374 (7)	
H12	0.1938	0.8854	0.2555	0.045*	
C13	0.02566 (11)	0.70193 (17)	0.10262 (9)	0.0246 (5)	
H13	0.0072	0.7400	0.0674	0.029*	
C14	0.00085 (14)	0.7512 (3)	0.14945 (13)	0.0432 (8)	
H14A	0.0192	0.7164	0.1847	0.065*	
H14B	-0.0445	0.7442	0.1409	0.065*	
H14C	0.0120	0.8244	0.1526	0.065*	
C15	0.00114 (14)	0.5900(2)	0.09563 (15)	0.0422 (7)	
H15A	0.0162	0.5560	0.0661	0.063*	
H15B	-0.0444	0.5906	0.0858	0.063*	
H15C	0.0161	0.5524	0.1306	0.063*	
C16	0.09747 (12)	0.72904 (19)	-0.00255 (10)	0.0247 (5)	
C17	0.11839 (13)	0.8191 (2)	-0.02320 (11)	0.0283 (6)	

H17	0 1535	0 8546	-0.0017	0.034*
C18	0.1333 0.08784(14)	0.8567(2)	-0.07507(11)	0.0337 (6)
H18	0.1026	0.0307 (2)	-0.0891	0.040*
C19	0.03626 (14)	0.8065 (2)	-0.10626(12)	0.040
U19	0.0155	0.8005 (2)	-0.1417	0.0308(7)
C20	0.0133	0.0320 0.7182 (2)	0.1417 -0.08507 (12)	0.044
C20	0.01467 (14)	0.7103(3)	-0.08397(12)	0.0392(7)
H20	-0.0209	0.0042	-0.1075	0.047
C21	0.04331 (13)	0.0795 (2)	-0.034/0 (11)	0.0329 (0)
H21	0.0306	0.6180	-0.0213	0.039*
C22	0.14085 (12)	0.54130 (19)	0.05436 (10)	0.0237(5)
C23	0.15779 (14)	0.5072 (2)	0.00688 (11)	0.0329 (6)
H23	0.1593	0.5542	-0.0221	0.039*
C24	0.17251 (16)	0.4042 (2)	0.00199 (12)	0.0411 (7)
H24	0.1841	0.3808	-0.0304	0.049*
C25	0.17039 (15)	0.3355 (2)	0.04412 (10)	0.0421 (7)
H25	0.1805	0.2651	0.0407	0.050*
C26	0.15350 (15)	0.3695 (2)	0.09130 (12)	0.0379 (7)
H26	0.1517	0.3220	0.1200	0.046*
C27	0.13923 (13)	0.4717 (2)	0.09699 (11)	0.0299 (6)
H27	0.1283	0.4947	0.1298	0.036*
C28	0.58062 (13)	0.4567 (2)	0.27082 (11)	0.0308 (6)
C29	0.67739 (12)	0.5553 (2)	0.25305 (10)	0.0277 (6)
C30	0.69210 (14)	0.3421 (2)	0.26735 (11)	0.0335 (6)
C31	0.58671 (12)	0.6413 (2)	0.12397 (11)	0.0259 (5)
H31	0.5690	0.6143	0.1547	0.031*
C32	0.53701 (14)	0.6327 (3)	0.06988 (12)	0.0399 (7)
H32A	0.5535	0.6585	0.0392	0.060*
H32B	0.5007	0.6737	0.0725	0.060*
H32C	0.5248	0.5604	0.0631	0.060*
C33	0.60641 (15)	0.7521 (2)	0.13732 (13)	0.0380 (7)
H33A	0.6385	0.7545	0.1723	0.057*
H33B	0.5704	0.7928	0.1410	0.057*
H33C	0.6231	0.7806	0.1073	0.057*
C34	0.73787(11)	0.4484(2)	0.14454(10)	0.0238(5)
C35	0.76054 (13)	0.3498(2)	0.13827(11)	0.0320 (6)
H35	0.7337	0.2918	0.1348	0.0328 (0)
C36	0.82267 (14)	0.3365 (3)	0.13713(12)	0.0399(7)
H36	0.8381	0.2694	0.13715 (12)	0.0377 (7)
C37	0.86170 (13)	0.2094	0.1320 0.14227(12)	0.040
U37	0.00170 (15)	0.4201 (3)	0.14227(12) 0.1412	0.0400(7)
C38	0.9039	0.4107 0.5175 (3)	0.1412 0.14803 (12)	0.079 0.0382 (7)
C38	0.85978 (15)	0.5175 (5)	0.14095 (12)	0.0382 (7)
П38 С20	0.80/1 0.77817 (12)	0.5750	0.1520 0.15025 (11)	0.040°
0.39	0.7/81/(15)	0.5525 (2)	0.15025 (11)	0.0296 (0)
П 39	0.7034	0.3990	0.100	0.030*
C40	0.59574(12)	0.3382 (2)	0.05627 (10)	0.0267(5)
H40	0.5505	0.3551	0.0435	0.032*
C41	0.60339 (16)	0.2242 (2)	0.04650 (12)	0.0372 (7)
H41A	0.6474	0.2055	0.0587	0.056*

H41B	0.5883	0.2089	0.0068	0.056*
H41C	0.5794	0.1843	0.0677	0.056*
C42	0.63040 (15)	0.4023 (2)	0.02205 (11)	0.0345 (6)
H42A	0.6215	0.4755	0.0260	0.052*
H42B	0.6168	0.3824	-0.0172	0.052*
H42C	0.6752	0.3902	0.0352	0.052*
C43	0.58053 (13)	0.2016 (2)	0.18317 (10)	0.0276 (6)
C44	0.53245 (15)	0.1575 (2)	0.20273 (12)	0.0364 (7)
H44	0.4973	0.1977	0.2051	0.044*
C45	0.53624 (17)	0.0543 (3)	0.21875 (13)	0.0458 (8)
H45	0.5037	0.0240	0.2322	0.055*
C46	0.58709 (18)	-0.0042 (2)	0.21511 (12)	0.0458 (8)
H46	0.5892	-0.0747	0.2257	0.055*
C47	0.63477 (16)	0.0394 (2)	0.19621 (12)	0.0405 (7)
H47	0.6697	-0.0013	0.1938	0.049*
C48	0.63226 (14)	0.1421 (2)	0.18073 (11)	0.0332 (6)
H48	0.6657	0.1720	0.1685	0.040*
C49	0.49608 (12)	0.3638 (2)	0.13700 (10)	0.0263 (5)
C50	0.46769 (12)	0.4538 (2)	0.14867 (11)	0.0296 (6)
H50	0.4899	0.5005	0.1758	0.036*
C51	0.40676 (13)	0.4755 (2)	0.12067 (12)	0.0367 (7)
H51	0.3875	0.5371	0.1286	0.044*
C52	0.37425 (14)	0.4077 (3)	0.08138 (13)	0.0404 (7)
H52	0.3327	0.4230	0.0623	0.049*
C53	0.40198 (14)	0.3178 (3)	0.06969 (12)	0.0397 (7)
H53	0.3794	0.2716	0.0425	0.048*
C54	0.46254 (13)	0.2946 (2)	0.09748 (11)	0.0331 (6)
H54	0.4812	0.2322	0.0898	0.040*
C55	0.42419 (15)	0.8392 (3)	0.26588 (12)	0.0401 (7)
C56	0.52940 (14)	0.7284 (2)	0.24900 (11)	0.0316 (6)
C57	0.42198 (14)	0.7594 (2)	0.15653 (12)	0.0349 (6)
C58	0.41993 (13)	0.6173 (2)	0.24610 (11)	0.0338 (6)
C59	0.14719 (16)	0.1170 (3)	0.95283 (15)	0.0474 (8)
C60	0.25789 (16)	0.0432 (2)	1.02628 (14)	0.0439 (8)
C61	0.26473 (15)	0.2103 (3)	0.95163 (13)	0.0412 (7)
C62	0.23996 (18)	0.0006 (3)	0.91221 (15)	0.0587 (10)
Col	0.22216 (2)	0.74279 (3)	0.11504 (2)	0.02425 (10)
Co2	0.63667 (2)	0.43778 (3)	0.23007 (2)	0.02064 (10)
Co3	0.44772 (2)	0.73693 (3)	0.22886 (2)	0.02648 (11)
Co4	0.22726 (2)	0.09426 (4)	0.95973 (2)	0.03635 (12)
N1	0.12681 (11)	0.90667 (17)	0.15071 (10)	0.0306 (5)
N2	0.09256 (10)	0.70471 (16)	0.11124 (9)	0.0243 (4)
N3	0.64182 (10)	0.57857 (16)	0.12197 (9)	0.0234 (4)
N4	0.61636 (10)	0.36438 (16)	0.11707 (8)	0.0218 (4)
01	0.29238 (11)	0.90745 (18)	0.18266 (10)	0.0517 (6)
O2	0.27494 (12)	0.7675 (2)	0.01802 (11)	0.0610 (7)
O3	0.27388 (12)	0.5557 (2)	0.17721 (13)	0.0676 (8)
O4	0.54660 (11)	0.46924 (18)	0.29796 (9)	0.0458 (5)

O5	0.70530 (9)	0.62862 (16)	0.26537 (8)	0.0380 (5)	
O6	0.72663 (12)	0.28503 (19)	0.29185 (10)	0.0553 (6)	
O7	0.41050 (14)	0.9060 (2)	0.29101 (10)	0.0648 (8)	
08	0.58259 (10)	0.72001 (18)	0.26369 (9)	0.0455 (5)	
O9	0.40486 (12)	0.7722 (2)	0.10943 (9)	0.0554 (6)	
O10	0.40428 (11)	0.53707 (18)	0.25765 (10)	0.0492 (6)	
O11	0.09514 (12)	0.1332 (2)	0.95002 (13)	0.0701 (8)	
O12	0.27831 (15)	0.0082 (2)	1.06974 (11)	0.0703 (8)	
O13	0.28943 (12)	0.2881 (2)	0.94823 (11)	0.0555 (6)	
O14	0.24920 (18)	-0.0636 (3)	0.88265 (13)	0.0971 (12)	
P1	0.14487 (3)	0.78514 (5)	0.15180 (3)	0.02196 (13)	
P2	0.13585 (3)	0.67810 (5)	0.06516(2)	0.02233 (14)	
P3	0.65869 (3)	0.46497 (5)	0.14979 (2)	0.01982 (13)	
P4	0.57780 (3)	0.33814 (5)	0.16712 (2)	0.02187 (13)	
H1	0.1107 (15)	0.931 (3)	0.1765 (11)	0.046 (10)*	
Н3	0.6629 (13)	0.603 (2)	0.0999 (11)	0.040 (9)*	
C63	0.46917 (16)	0.0090 (4)	0.02383 (17)	0.0476 (16)*	0.5
C64	0.52811 (19)	-0.0277 (3)	0.04918 (13)	0.0308 (12)*	0.5
H64	0.5381	-0.0448	0.0876	0.037*	0.5
C65	0.57243 (14)	-0.0394 (4)	0.0184 (2)	0.0521 (17)*	0.5
H65	0.6127	-0.0644	0.0357	0.062*	0.5
C66	0.55781 (19)	-0.0143 (4)	-0.03781 (19)	0.0560 (19)*	0.5
H66	0.5881	-0.0223	-0.0589	0.067*	0.5
C67	0.4989 (2)	0.0223 (4)	-0.06317 (13)	0.0567 (18)*	0.5
H67	0.4889	0.0394	-0.1016	0.068*	0.5
C68	0.45455 (15)	0.0340 (4)	-0.03235 (17)	0.0410 (14)*	0.5
H68	0.4143	0.0591	-0.0497	0.049*	0.5
C69	0.4213 (4)	0.0175 (8)	0.0563 (4)	0.073 (2)*	0.5
H69A	0.3827	0.0444	0.0325	0.110*	0.5
H69B	0.4136	-0.0507	0.0703	0.110*	0.5
H69C	0.4361	0.0644	0.0877	0.110*	0.5

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0331 (15)	0.0352 (16)	0.0358 (15)	-0.0044 (13)	0.0071 (12)	-0.0001 (13)
C2	0.0273 (14)	0.0455 (18)	0.0386 (16)	-0.0011 (13)	0.0099 (13)	-0.0077 (14)
C3	0.0261 (14)	0.0319 (16)	0.0515 (18)	0.0030 (12)	-0.0016 (13)	-0.0017 (14)
C4	0.0578 (19)	0.0275 (15)	0.0358 (15)	0.0094 (14)	0.0211 (14)	0.0036 (12)
C5	0.103 (3)	0.0238 (17)	0.064 (2)	-0.0030 (18)	0.040 (2)	0.0042 (16)
C6	0.062 (2)	0.063 (2)	0.0479 (19)	0.0244 (19)	0.0146 (17)	0.0098 (18)
C7	0.0313 (14)	0.0300 (15)	0.0259 (13)	0.0053 (11)	0.0062 (11)	-0.0057 (11)
C8	0.0430 (16)	0.0257 (15)	0.0365 (15)	0.0071 (12)	0.0114 (13)	0.0033 (12)
C9	0.059 (2)	0.0366 (17)	0.0432 (18)	0.0176 (15)	0.0215 (15)	0.0124 (14)
C10	0.068 (2)	0.054 (2)	0.0285 (16)	0.0254 (18)	0.0115 (15)	0.0094 (15)
C11	0.060 (2)	0.052 (2)	0.0280 (15)	0.0149 (17)	0.0038 (14)	-0.0061 (14)
C12	0.0458 (17)	0.0331 (16)	0.0315 (15)	0.0026 (13)	0.0056 (13)	-0.0034 (12)
C13	0.0241 (12)	0.0321 (14)	0.0225 (12)	0.0157 (11)	0.0152 (10)	0.0105 (11)

C14	0.0346 (16)	0.0487 (19)	0.0525 (19)	0.0037 (14)	0.0228 (14)	-0.0057 (15)
C15	0.0276 (15)	0.0387 (17)	0.061 (2)	-0.0103 (13)	0.0125 (14)	-0.0064 (15)
C16	0.0299 (13)	0.0203 (13)	0.0244 (13)	0.0029 (10)	0.0074 (10)	-0.0026 (10)
C17	0.0325 (14)	0.0262 (14)	0.0280 (13)	0.0012 (11)	0.0107 (11)	-0.0032 (11)
C18	0.0467 (17)	0.0284 (15)	0.0294 (14)	0.0079 (12)	0.0156 (13)	0.0052 (12)
C19	0.0421 (16)	0.0413 (17)	0.0254 (14)	0.0169 (14)	0.0051 (12)	-0.0010 (13)
C20	0.0347 (15)	0.0440 (18)	0.0341 (15)	0.0054 (13)	-0.0013 (12)	-0.0081 (13)
C21	0.0358 (15)	0.0302 (15)	0.0305 (14)	-0.0014 (12)	0.0038 (12)	-0.0034 (12)
C22	0.0263 (12)	0.0168 (12)	0.0266 (13)	-0.0023 (10)	0.0035 (10)	-0.0057 (10)
C23	0.0431 (16)	0.0297 (15)	0.0260 (13)	0.0050 (12)	0.0086 (12)	-0.0016 (11)
C24	0.058 (2)	0.0323 (16)	0.0341 (16)	0.0108 (14)	0.0126 (14)	-0.0070 (13)
C25	0.0562 (19)	0.0223 (15)	0.0483 (18)	0.0065 (13)	0.0137 (15)	-0.0055 (13)
C26	0.0497 (18)	0.0220 (14)	0.0435 (17)	0.0017 (13)	0.0141 (14)	0.0037 (12)
C27	0.0370 (15)	0.0225 (14)	0.0316 (14)	-0.0025 (11)	0.0111 (11)	-0.0017 (11)
C28	0.0402 (16)	0.0252 (14)	0.0274 (13)	-0.0006 (12)	0.0088 (12)	0.0016 (11)
C29	0.0309 (14)	0.0301 (15)	0.0217 (12)	0.0052 (12)	0.0057 (10)	0.0010 (11)
C30	0.0425 (16)	0.0292 (15)	0.0267 (14)	0.0040 (13)	0.0045 (12)	-0.0010 (12)
C31	0.0271 (13)	0.0229 (13)	0.0284 (13)	0.0072 (10)	0.0085 (10)	0.0048 (11)
C32	0.0358 (16)	0.0500 (19)	0.0314 (15)	0.0119 (14)	0.0035 (12)	0.0052 (14)
C33	0.0496 (18)	0.0221 (14)	0.0458 (17)	0.0091 (13)	0.0182 (14)	0.0039 (13)
C34	0.0259 (13)	0.0280 (14)	0.0174 (11)	0.0044 (10)	0.0050 (10)	0.0019 (10)
C35	0.0336 (14)	0.0312 (15)	0.0309 (14)	0.0070 (12)	0.0074 (11)	0.0018 (12)
C36	0.0386 (16)	0.0489 (19)	0.0332 (15)	0.0211 (15)	0.0102 (12)	0.0004 (14)
C37	0.0260 (14)	0.065 (2)	0.0319 (15)	0.0107 (14)	0.0091 (12)	0.0035 (14)
C38	0.0265 (14)	0.055 (2)	0.0332 (15)	-0.0051 (13)	0.0074 (11)	0.0022 (14)
C39	0.0317 (14)	0.0311 (15)	0.0262 (13)	0.0006 (11)	0.0073 (11)	0.0001 (11)
C40	0.0323 (14)	0.0279 (14)	0.0193 (12)	-0.0003 (11)	0.0047 (10)	-0.0017 (10)
C41	0.0565 (19)	0.0288 (15)	0.0279 (14)	-0.0056 (13)	0.0134 (13)	-0.0059 (12)
C42	0.0522 (18)	0.0325 (16)	0.0209 (13)	-0.0021 (13)	0.0126 (12)	0.0000 (11)
C43	0.0389 (15)	0.0214 (13)	0.0212 (12)	-0.0057 (11)	0.0046 (11)	0.0000 (10)
C44	0.0478 (17)	0.0311 (16)	0.0316 (14)	-0.0071 (13)	0.0121 (13)	0.0026 (12)
C45	0.065 (2)	0.0358 (18)	0.0384 (17)	-0.0171 (16)	0.0149 (15)	0.0074 (14)
C46	0.080(2)	0.0210 (15)	0.0310 (15)	-0.0076 (16)	0.0035 (15)	0.0036 (12)
C47	0.060(2)	0.0227 (15)	0.0348 (15)	0.0058 (14)	0.0037 (14)	0.0009 (12)
C48	0.0438 (16)	0.0224 (14)	0.0315 (14)	-0.0005 (12)	0.0052 (12)	0.0007 (11)
C49	0.0276 (13)	0.0278 (14)	0.0244 (12)	-0.0022 (11)	0.0083 (10)	0.0028 (11)
C50	0.0294 (14)	0.0310 (15)	0.0299 (14)	-0.0017 (11)	0.0098 (11)	0.0022 (12)
C51	0.0325 (15)	0.0393 (17)	0.0399 (16)	0.0047 (13)	0.0120 (12)	0.0091 (13)
C52	0.0286 (14)	0.054 (2)	0.0374 (16)	0.0003 (14)	0.0063 (12)	0.0116 (14)
C53	0.0371 (16)	0.0511 (19)	0.0285 (14)	-0.0126 (14)	0.0034 (12)	0.0005 (14)
C54	0.0337 (15)	0.0361 (16)	0.0295 (14)	-0.0038 (12)	0.0074 (11)	-0.0001 (12)
C55	0.0498 (18)	0.0395 (18)	0.0292 (15)	0.0122 (14)	0.0060 (13)	0.0030 (14)
C56	0.0402 (17)	0.0268 (14)	0.0284 (14)	-0.0024 (12)	0.0094 (12)	-0.0023 (11)
C57	0.0342 (15)	0.0372 (16)	0.0335 (16)	0.0019 (12)	0.0084 (12)	0.0022 (13)
C58	0.0326 (14)	0.0422 (18)	0.0272 (14)	-0.0020 (13)	0.0085 (11)	0.0028 (13)
C59	0.046 (2)	0.0408 (19)	0.054 (2)	0.0012 (15)	0.0078 (15)	-0.0026 (15)
C60	0.057 (2)	0.0323 (17)	0.0434 (19)	-0.0089 (15)	0.0130 (15)	-0.0044 (14)
C61	0.0395 (16)	0.052 (2)	0.0347 (16)	0.0096 (15)	0.0146 (13)	0.0109 (15)

C62	0.058 (2)	0.072 (3)	0.0418 (19)	0.015 (2)	0.0039 (16)	-0.0135 (19)
Col	0.0222 (2)	0.0224 (2)	0.0275 (2)	-0.00050 (16)	0.00468 (17)	-0.00343 (17)
Co2	0.0264 (2)	0.0172 (2)	0.01802 (19)	0.00094 (16)	0.00476 (15)	0.00057 (15)
Co3	0.0298 (2)	0.0261 (2)	0.0237 (2)	0.00174 (17)	0.00678 (17)	0.00064 (17)
Co4	0.0363 (3)	0.0368 (3)	0.0357 (3)	0.0031 (2)	0.0083 (2)	-0.0046 (2)
N1	0.0434 (13)	0.0199 (12)	0.0313 (12)	0.0052 (10)	0.0147 (10)	-0.0033 (9)
N2	0.0260 (11)	0.0217 (11)	0.0251 (11)	0.0002 (9)	0.0061 (9)	-0.0036 (9)
N3	0.0268 (11)	0.0207 (11)	0.0249 (11)	0.0044 (9)	0.0105 (9)	0.0044 (9)
N4	0.0285 (11)	0.0184 (10)	0.0191 (10)	-0.0001 (8)	0.0067 (8)	-0.0001 (8)
01	0.0507 (14)	0.0445 (14)	0.0541 (14)	-0.0169 (11)	0.0014 (11)	-0.0130 (11)
O2	0.0473 (14)	0.094 (2)	0.0504 (14)	-0.0018 (13)	0.0283 (12)	-0.0065 (14)
03	0.0497 (14)	0.0401 (14)	0.097 (2)	0.0078 (12)	-0.0137 (14)	0.0197 (14)
O4	0.0544 (13)	0.0510 (14)	0.0409 (12)	0.0026 (11)	0.0290 (11)	0.0010 (10)
05	0.0402 (11)	0.0326 (11)	0.0392 (11)	-0.0102 (9)	0.0055 (9)	-0.0072 (9)
06	0.0651 (16)	0.0451 (14)	0.0465 (13)	0.0258 (12)	-0.0048 (12)	0.0053 (11)
O7	0.093 (2)	0.0541 (16)	0.0451 (14)	0.0320 (15)	0.0130 (13)	-0.0114 (12)
08	0.0317 (12)	0.0534 (14)	0.0494 (13)	-0.0013 (10)	0.0058 (10)	-0.0061 (11)
09	0.0607 (15)	0.0723 (18)	0.0299 (12)	0.0053 (13)	0.0044 (11)	0.0079 (11)
O10	0.0568 (14)	0.0454 (14)	0.0480 (13)	-0.0147 (11)	0.0176 (11)	0.0109 (11)
011	0.0411 (15)	0.0700 (19)	0.097 (2)	0.0080 (13)	0.0119 (14)	0.0024 (16)
012	0.105 (2)	0.0587 (17)	0.0426 (15)	-0.0054 (16)	0.0096 (14)	0.0110 (13)
013	0.0536 (14)	0.0556 (16)	0.0618 (16)	-0.0015 (12)	0.0226 (12)	0.0213 (13)
O14	0.112 (3)	0.112 (3)	0.0626 (19)	0.035 (2)	0.0114 (18)	-0.043 (2)
P1	0.0280 (3)	0.0161 (3)	0.0218 (3)	-0.0006 (2)	0.0061 (2)	-0.0033 (2)
P2	0.0286 (3)	0.0172 (3)	0.0208 (3)	-0.0005 (2)	0.0051 (2)	-0.0027 (2)
P3	0.0231 (3)	0.0169 (3)	0.0196 (3)	0.0016 (2)	0.0055 (2)	0.0007 (2)
P4	0.0270 (3)	0.0187 (3)	0.0202 (3)	-0.0010 (2)	0.0062 (2)	0.0004 (2)

Geometric parameters (Å, °)

C1-01	1.142 (4)	C37—C38	1.378 (5)
C1—Co1	1.782 (3)	С37—Н37	0.9500
C2—O2	1.138 (4)	C38—C39	1.387 (4)
C2-Co1	1.797 (3)	C38—H38	0.9500
C3—O3	1.134 (4)	С39—Н39	0.9500
C3—Co1	1.821 (3)	C40—N4	1.505 (3)
C4—N1	1.469 (4)	C40—C41	1.515 (4)
C4—C6	1.513 (5)	C40—C42	1.521 (4)
C4—C5	1.523 (5)	C40—H40	1.0000
C4—H4	1.0000	C41—H41A	0.9800
С5—Н5А	0.9800	C41—H41B	0.9800
С5—Н5В	0.9800	C41—H41C	0.9800
С5—Н5С	0.9800	C42—H42A	0.9800
С6—Н6А	0.9800	C42—H42B	0.9800
С6—Н6В	0.9800	C42—H42C	0.9800
С6—Н6С	0.9800	C43—C44	1.395 (4)
C7—C12	1.386 (4)	C43—C48	1.396 (4)
C7—C8	1.397 (4)	C43—P4	1.813 (3)

C7—P1	1 801 (3)	C44—C45	1 394 (4)
C8—C9	1 382 (4)	C44—H44	0.9500
C8—H8	0.9500	C45—C46	1 379 (5)
C9-C10	1 377 (5)	C45—H45	0.9500
C9—H9	0.9500	C_{46} C_{47}	1.376(5)
C10-C11	1 374 (5)	C_{46} H46	0.9500
C10_H10	0.9500	C47 - C48	1.384(4)
C_{11} C_{12}	1 388 (4)	C47 - H47	0.9500
C11 H11	0.9500	C_{48} H/8	0.9500
C12 H12	0.9500	$C_{48} = 1148$	1 389 (4)
C_{12} -1112 C_{12} N_{2}	1.446(3)	$C_{49} = C_{50}$	1.389(4)
C_{13} C_{14}	1.440 (3)	$C_{49} = C_{54}$	1.402(4)
$C_{13} = C_{14}$	1.556(3)	$C_{49} = 14$	1.810(3)
C13—C13	1.0000	C50 H50	1.390 (4)
	0.0800	C51 C52	0.3300
C14—H14A	0.9800	$C_{51} = C_{52}$	1.579 (5)
C14—H14B	0.9800	C52 C52	0.9300
C15H15A	0.9800	C52_C53	1.382(3)
CI5—HI5A	0.9800	C52—H52	0.9500
CI5—HI5B	0.9800	C53-C54	1.386 (4)
CIS—HISC	0.9800	С53—Н53	0.9500
C10 - C21	1.395 (4)	C54—H54	0.9500
	1.398 (4)	C55_07	1.149 (4)
C16—P2	1.814 (3)	C55-C03	1.762 (3)
C17—C18	1.389 (4)	C56—08	1.152 (4)
С17—Н17	0.9500	C56—Co3	1.761 (3)
C18—C19	1.379 (4)	C57—09	1.149 (4)
C18—H18	0.9500	С57—Со3	1.770 (3)
C19—C20	1.379 (5)	C58—O10	1.155 (4)
С19—Н19	0.9500	C58—Co3	1.760 (3)
C20—C21	1.382 (4)	C59—O11	1.158 (4)
С20—Н20	0.9500	C59—Co4	1.766 (4)
C21—H21	0.9500	C60—O12	1.156 (4)
C22—C23	1.391 (4)	C60—Co4	1.755 (3)
C22—C27	1.397 (4)	C61—O13	1.161 (4)
C22—P2	1.802 (3)	C61—Co4	1.754 (4)
C23—C24	1.387 (4)	C62—O14	1.159 (5)
C23—H23	0.9500	C62—Co4	1.761 (4)
C24—C25	1.382 (3)	Co1—P2	2.1800 (7)
C24—H24	0.9500	Co1—P1	2.1948 (7)
C25—C26	1.383 (3)	Co2—P3	2.1884 (7)
C25—H25	0.9500	Co2—P4	2.1971 (7)
C26—C27	1.377 (4)	N1—P1	1.625 (2)
C26—H26	0.9500	N1—H1	0.865 (10)
С27—Н27	0.9500	N2—P2	1.695 (2)
C28—O4	1.137 (3)	N2—P1	1.698 (2)
C28—Co2	1.797 (3)	N3—P3	1.632 (2)
C29—O5	1.136 (3)	N3—H3	0.862 (10)
C29—Co2	1.793 (3)	N4—P3	1.695 (2)

C30—O6	1.131 (4)	N4—P4	1.702 (2)
C30—Co2	1.832 (3)	P1—P2	2.5246 (8)
C31—N3	1.478 (3)	P3—P4	2.5445 (9)
C31—C33	1.515 (4)	C63—C64	1.3900
C31—C32	1.521 (4)	C63—C68	1.3900
C31—H31	1.0000	C63—C69	1.482 (10)
C32—H32A	0.9800	C64—C65	1.3900
C32—H32B	0.9800	C64—H64	0.9500
C32—H32C	0.9800	C65—C66	1.3900
С33—Н33А	0.9800	С65—Н65	0.9500
С33—Н33В	0.9800	C66—C67	1.3900
С33—Н33С	0.9800	C66—H66	0.9500
C34—C39	1.394 (4)	C67—C68	1.3900
C34—C35	1.396 (4)	C67—H67	0.9500
C34—P3	1 804 (3)	C68—H68	0.9500
C_{35} $-C_{36}$	1 394 (4)	C69—H69A	0.9800
C35—H35	0.9500	C69—H69B	0.9800
C36-C37	1.374(5)	C69—H69C	0.9800
C36—H36	0.9500		0.9000
030-1150	0.9500		
01 - C1 - Co1	175 7 (3)	C44 - C43 - C48	119 5 (3)
$\Omega^2 - \Omega^2 - \Omega^1$	178.7(3)	C44 - C43 - P4	119.3(3)
$O_2 = C_2 = C_0 I$	170.2(3)	C48 C43 P4	117.5(2) 121.0(2)
$V_{1} = C_{2} = C_{1}$	1/7.3(3)	$C_{40} - C_{43} - 14$	121.0(2)
N1 - C4 - C5	111.0(3)	C45 - C44 - C43	119.0 (5)
NI - C4 - C5	109.0(3)	C43 - C44 - H44	120.2
$C_0 - C_4 - C_3$	112.4 (5)	C43 - C44 - H44	120.2
NI - C4 - H4	107.9	C40 - C43 - C44	120.2 (3)
C_{0} C_{4} H_{4}	107.9	C40—C45—H45	119.9
C_{4} C_{4} H_{4}	107.9	C44—C45—H45	119.9
C4—C5—H5A	109.5	C4/-C46-C45	120.2 (3)
C4—C5—H5B	109.5	C4/-C46-H46	119.9
Н5А—С5—Н5В	109.5	C45—C46—H46	119.9
С4—С5—Н5С	109.5	C46-C47-C48	120.5 (3)
H5A—C5—H5C	109.5	C46—C47—H47	119.8
H5B—C5—H5C	109.5	C48—C47—H47	119.8
С4—С6—Н6А	109.5	C47—C48—C43	120.0 (3)
С4—С6—Н6В	109.5	C47—C48—H48	120.0
H6A—C6—H6B	109.5	C43—C48—H48	120.0
C4—C6—H6C	109.5	C50—C49—C54	119.5 (3)
H6A—C6—H6C	109.5	C50—C49—P4	121.7 (2)
H6B—C6—H6C	109.5	C54—C49—P4	118.6 (2)
C12—C7—C8	118.9 (3)	C49—C50—C51	120.0 (3)
C12—C7—P1	119.8 (2)	C49—C50—H50	120.0
C8—C7—P1	121.2 (2)	С51—С50—Н50	120.0
C9—C8—C7	120.4 (3)	C52—C51—C50	120.2 (3)
С9—С8—Н8	119.8	C52—C51—H51	119.9
С7—С8—Н8	119.8	C50—C51—H51	119.9
C10—C9—C8	120.1 (3)	C51—C52—C53	120.2 (3)

С10—С9—Н9	120.0	С51—С52—Н52	119.9
С8—С9—Н9	120.0	С53—С52—Н52	119.9
$C_{11} - C_{10} - C_{9}$	120.1 (3)	C52 - C53 - C54	120.3 (3)
C11—C10—H10	119.9	С52—С53—Н53	119.8
C9-C10-H10	119.9	C54—C53—H53	119.8
C_{10} C_{11} C_{12}	120.3 (3)	C_{53} C_{54} C_{49}	119.0 119.7(3)
C10-C11-H11	110.8	C_{53} C_{54} C_{45}	120.1
C_{12} C_{11} H_{11}	119.8	C_{49} C_{54} H_{54}	120.1
C7 $C12$ $C11$	120.2 (3)	$07 C55 Co^3$	120.1 178 1 (3)
C7 C12 H12	110.0	0^{8} C56 Co3	177.4(3)
$C_{11} C_{12} H_{12}$	110.0	08 - 050 - 003	177.7(3)
$N_{2} = C_{12} = M_{2}$	119.9 114.7(2)	$0_{3} - c_{3}^{-} - c_{3}^{-}$	170.7(3)
$N_2 = C_{13} = C_{14}$	114.7(2) 111.11(10)	010 - 000 - 000	177.0(3)
12-013-015	111.11(19) 107.2(2)	012 - C60 - Co4	177.8(3)
$N_2 C_{13} H_{13}$	107.2 (2)	012 - 00 - 04	178.9(3)
$N_2 = C_{13} = H_{13}$	107.9	013 - 001 - 004	177.3(3)
С14—С13—П13	107.9	014 - 02 - 04	1/7.3(4)
C12 C14 H14A	107.9	C1 = C01 = C2	95.41 (14)
C13—C14—H14A	109.5	C1 = C01 = C3	102.23 (14)
CI3-CI4-HI4B	109.5	$C_2 = C_0 = C_3$	108.51 (15)
H14A - C14 - H14B	109.5	C1 = Co1 = P2	152.54 (10)
C13—C14—H14C	109.5	C2 - Co1 - P2	93.17 (10)
H14A—C14—H14C	109.5	C3—Co1—P2	99.65 (9)
H14B—C14—H14C	109.5	Cl—Col—Pl	88.11 (10)
C13—C15—H15A	109.5	C2—Co1—P1	145.53 (10)
C13—C15—H15B	109.5	C3—Co1—P1	104.15 (10)
H15A—C15—H15B	109.5	P2—Co1—P1	70.49 (3)
C13—C15—H15C	109.5	C29—Co2—C28	93.93 (12)
H15A—C15—H15C	109.5	C29—Co2—C30	101.01 (12)
H15B—C15—H15C	109.5	C28—Co2—C30	106.21 (13)
C21—C16—C17	118.6 (2)	C29—Co2—P3	86.94 (8)
C21—C16—P2	120.0 (2)	C28—Co2—P3	145.58 (9)
C17—C16—P2	121.3 (2)	C30—Co2—P3	107.38 (9)
C18—C17—C16	120.1 (3)	C29—Co2—P4	153.27 (9)
C18—C17—H17	120.0	C28—Co2—P4	96.14 (9)
С16—С17—Н17	120.0	C30—Co2—P4	99.84 (9)
C19—C18—C17	120.4 (3)	P3—Co2—P4	70.93 (2)
C19—C18—H18	119.8	C58—Co3—C56	105.75 (13)
C17—C18—H18	119.8	C58—Co3—C55	111.89 (14)
C20-C19-C18	119.9 (3)	C56—Co3—C55	108.22 (14)
С20—С19—Н19	120.1	C58—Co3—C57	110.19 (14)
C18—C19—H19	120.1	C56—Co3—C57	110.86 (13)
C19—C20—C21	120.3 (3)	C55—Co3—C57	109.85 (14)
C19—C20—H20	119.9	C61—Co4—C60	110.15 (15)
C21—C20—H20	119.9	C61—Co4—C62	111.04 (18)
C20—C21—C16	120.7 (3)	C60—Co4—C62	106.30 (17)
C20—C21—H21	119.7	C61—Co4—C59	109.74 (15)
C16—C21—H21	119.7	C60—Co4—C59	107.83 (17)
C23—C22—C27	119.7 (2)	C62—Co4—C59	111.68 (17)

C23—C22—P2	118.6 (2)	C4—N1—P1	125.26 (19)
C27—C22—P2	120.70 (19)	C4—N1—H1	114 (2)
C24—C23—C22	119.8 (3)	P1—N1—H1	119 (2)
С24—С23—Н23	120.1	C13—N2—P2	128.44 (16)
С22—С23—Н23	120.1	C13—N2—P1	129.22 (16)
C25—C24—C23	120.2 (3)	P2—N2—P1	96.18 (11)
C25—C24—H24	119.9	C31—N3—P3	126.15 (17)
C23—C24—H24	119.9	C31—N3—H3	113 (2)
C24—C25—C26	119.9 (3)	P3—N3—H3	120 (2)
С24—С25—Н25	120.0	C40—N4—P3	130.76 (17)
C26—C25—H25	120.0	C40—N4—P4	126.89 (17)
C27—C26—C25	120.6 (3)	P3—N4—P4	97.02 (10)
С27—С26—Н26	119.7	N1—P1—N2	117.14 (12)
С25—С26—Н26	119.7	N1—P1—C7	102.57 (12)
C26—C27—C22	119.7 (3)	N2—P1—C7	108.97 (12)
С26—С27—Н27	120.1	N1—P1—Co1	116.72 (9)
С22—С27—Н27	120.1	N2—P1—Co1	95.18 (8)
O4—C28—Co2	177.9 (3)	C7—P1—Co1	116.75 (9)
O5—C29—Co2	175.8 (2)	N1—P1—P2	123.42 (9)
O6—C30—Co2	177.8 (3)	C7—P1—P2	132.52 (9)
N3—C31—C33	109.4 (2)	Co1—P1—P2	54.48 (2)
N3—C31—C32	111.0 (2)	N2—P2—C22	111.46 (11)
C33—C31—C32	111.8 (2)	N2—P2—C16	109.52 (11)
N3—C31—H31	108.2	C22—P2—C16	104.67 (12)
С33—С31—Н31	108.2	N2—P2—Co1	95.80 (8)
С32—С31—Н31	108.2	C22—P2—Co1	112.73 (8)
C31—C32—H32A	109.5	C16—P2—Co1	122.45 (9)
C31—C32—H32B	109.5	N2—P2—P1	41.95 (7)
H32A—C32—H32B	109.5	C22—P2—P1	132.29 (9)
C31—C32—H32C	109.5	C16—P2—P1	120.68 (8)
H32A—C32—H32C	109.5	Co1—P2—P1	55.03 (2)
H32B—C32—H32C	109.5	N3—P3—N4	116.68 (11)
С31—С33—Н33А	109.5	N3—P3—C34	101.84 (11)
С31—С33—Н33В	109.5	N4—P3—C34	108.01 (11)
Н33А—С33—Н33В	109.5	N3—P3—Co2	116.83 (8)
С31—С33—Н33С	109.5	N4—P3—Co2	95.29 (7)
Н33А—С33—Н33С	109.5	C34—P3—Co2	118.70 (8)
H33B—C33—H33C	109.5	N3—P3—P4	123.80 (8)
C39—C34—C35	119.2 (2)	C34—P3—P4	132.22 (9)
C39—C34—P3	120.7 (2)	Co2—P3—P4	54.69 (2)
C35—C34—P3	120.0 (2)	N4—P4—C43	111.06 (11)
C36—C35—C34	119.9 (3)	N4—P4—C49	106.85 (11)
С36—С35—Н35	120.0	C43—P4—C49	104.25 (12)
С34—С35—Н35	120.0	N4—P4—Co2	94.80 (7)
C37—C36—C35	120.2 (3)	C43—P4—Co2	115.86 (9)
С37—С36—Н36	119.9	C49—P4—Co2	123.18 (9)
С35—С36—Н36	119.9	C43—P4—P3	132.93 (9)
C36—C37—C38	120.2 (3)	C49—P4—P3	119.05 (9)

С36—С37—Н37	119.9	Co2—P4—P3	54.38 (2)
С38—С37—Н37	119.9	C64—C63—C68	120.0
C37—C38—C39	120.5 (3)	C64—C63—C69	119.8 (5)
С37—С38—Н38	119.8	C68—C63—C69	120.2 (5)
С39—С38—Н38	119.8	C65—C64—C63	120.0
C38—C39—C34	120.0 (3)	C65—C64—H64	120.0
C38—C39—H39	120.0	C63—C64—H64	120.0
C34—C39—H39	120.0	C64 - C65 - C66	120.0
N4-C40-C41	1112(2)	C64 - C65 - H65	120.0
N4-C40-C42	111.2(2) 111.3(2)	C66—C65—H65	120.0
C_{41} C_{40} C_{42}	111.3(2) 110.7(2)	C67 - C66 - C65	120.0
N4 C40 H40	107.8	C67 C66 H66	120.0
$\begin{array}{cccc} C41 & C40 & H40 \end{array}$	107.8	C65 C66 H66	120.0
C41 - C40 - H40	107.8	$C_{00} = C_{00} = H_{00}$	120.0
C42 - C40 - H40	107.8	$C_{08} = C_{07} = U_{07}$	120.0
C40—C41—H41A	109.5	C68—C67—H67	120.0
C40—C41—H41B	109.5	C66—C67—H67	120.0
H41A—C41—H41B	109.5	C67—C68—C63	120.0
C40—C41—H41C	109.5	C67—C68—H68	120.0
H41A—C41—H41C	109.5	C63—C68—H68	120.0
H41B—C41—H41C	109.5	С63—С69—Н69А	109.5
C40—C42—H42A	109.5	C63—C69—H69B	109.5
C40—C42—H42B	109.5	H69A—C69—H69B	109.5
H42A—C42—H42B	109.5	С63—С69—Н69С	109.5
C40—C42—H42C	109.5	Н69А—С69—Н69С	109.5
H42A—C42—H42C	109.5	H69B—C69—H69C	109.5
H42B—C42—H42C	109.5		
C12—C7—C8—C9	1.2 (4)	C8—C7—P1—Co1	-86.4(2)
P1	176.7 (2)	C12—C7—P1—P2	154.23 (19)
C7—C8—C9—C10	-0.8(5)	C8—C7—P1—P2	-212(3)
C_{8} C_{9} C_{10} C_{11}	0.0(5)	C_{13} N2 P2 C22	-76.0(2)
C9-C10-C11-C12	0.0(5)	$P1_N2_P2_C22$	130.11(11)
C_{8} C_{7} C_{12} C_{11}	-0.9(4)	C_{13} N2 P2 C16	303(2)
$P_1 = C_7 = C_{12} = C_{11}$	-176.5(2)	$P_1 = P_2 = P_2 = C_{16}$	-11455(12)
11 - 0.7 - 0.12 - 0.11	1/0.5(2)	11 - N2 - 12 - C10 C12 N2 D2 Co1	114.33(12)
C10-C11-C12-C7	0.1(3)	C13 - N2 - P2 - C01	100.8(2) 12.01(0)
$C_2 = C_1 $	-0.8(4)	P1 - N2 - P2 - C01	12.91 (9)
$P_2 = C_{10} = C_{17} = C_{18}$	-1/9.6(2)	C13— $N2$ — $P2$ — $P1$	153.9 (3)
	0.9 (4)	C23—C22—P2—N2	160.8 (2)
C17—C18—C19—C20	-0.2(4)	C27—C22—P2—N2	-30.9 (2)
C18—C19—C20—C21	-0.7 (4)	C23—C22—P2—C16	42.6 (2)
C19—C20—C21—C16	0.8 (4)	C27—C22—P2—C16	-149.2 (2)
C17—C16—C21—C20	-0.1 (4)	C23—C22—P2—Co1	-92.8 (2)
P2-C16-C21-C20	178.8 (2)	C27—C22—P2—Co1	75.5 (2)
C27—C22—C23—C24	0.5 (4)	C23—C22—P2—P1	-155.44 (17)
P2—C22—C23—C24	168.8 (2)	C27—C22—P2—P1	12.8 (3)
C22—C23—C24—C25	0.0 (5)	C21—C16—P2—N2	-74.9 (2)
C23—C24—C25—C26	0.0 (5)	C17—C16—P2—N2	104.0 (2)
C24—C25—C26—C27	-0.6 (5)	C21—C16—P2—C22	44.7 (2)

C25—C26—C27—C22	1.0 (5)	C17—C16—P2—C22	-136.5 (2)
C23—C22—C27—C26	-1.0 (4)	C21—C16—P2—Co1	174.48 (18)
P2-C22-C27-C26	-169.1 (2)	C17—C16—P2—Co1	-6.7 (3)
C39—C34—C35—C36	-0.8 (4)	C21—C16—P2—P1	-119.9(2)
P3—C34—C35—C36	-176.6 (2)	C17—C16—P2—P1	59.0 (2)
C34—C35—C36—C37	0.1 (4)	C31—N3—P3—N4	74.6 (2)
C35—C36—C37—C38	0.4 (4)	C31—N3—P3—C34	-168.1 (2)
C36—C37—C38—C39	-0.3 (4)	C31—N3—P3—Co2	-37.1(2)
C37—C38—C39—C34	-0.3 (4)	C31—N3—P3—P4	26.8 (2)
C35—C34—C39—C38	0.9 (4)	C40—N4—P3—N3	42.9 (3)
P3—C34—C39—C38	176.7 (2)	P4—N4—P3—N3	-111.83 (11)
C48—C43—C44—C45	-1.0 (4)	C40—N4—P3—C34	-71.0 (2)
P4—C43—C44—C45	-175.6 (2)	P4—N4—P3—C34	134.29 (11)
C43—C44—C45—C46	-0.2 (5)	C40—N4—P3—Co2	166.5 (2)
C44—C45—C46—C47	0.7 (5)	P4—N4—P3—Co2	11.80 (9)
C45—C46—C47—C48	0.0 (5)	C40—N4—P3—P4	154.8 (3)
C46—C47—C48—C43	-1.3 (4)	C39—C34—P3—N3	34.8 (2)
C44—C43—C48—C47	1.8 (4)	C35—C34—P3—N3	-149.4(2)
P4—C43—C48—C47	176.3 (2)	C39—C34—P3—N4	158.2 (2)
C54—C49—C50—C51	-0.9 (4)	C35—C34—P3—N4	-26.0(2)
P4—C49—C50—C51	173.6 (2)	C39—C34—P3—Co2	-95.0(2)
C49—C50—C51—C52	0.2 (4)	C35—C34—P3—Co2	80.8 (2)
C50—C51—C52—C53	0.2 (4)	C39—C34—P3—P4	-161.90 (16)
C51—C52—C53—C54	0.3 (4)	C35—C34—P3—P4	13.9 (3)
C52—C53—C54—C49	-1.0 (4)	C40—N4—P4—C43	72.0 (2)
C50—C49—C54—C53	1.4 (4)	P3—N4—P4—C43	-131.83 (11)
P4—C49—C54—C53	-173.4 (2)	C40—N4—P4—C49	-41.1 (2)
C6—C4—N1—P1	94.1 (3)	P3—N4—P4—C49	115.07 (12)
C5—C4—N1—P1	-141.2 (3)	C40—N4—P4—Co2	-167.91 (19)
C14—C13—N2—P2	-168.3 (2)	P3—N4—P4—Co2	-11.74 (9)
C15—C13—N2—P2	70.0 (3)	C40—N4—P4—P3	-156.2 (3)
C14—C13—N2—P1	-22.7 (3)	C44—C43—P4—N4	-152.1 (2)
C15—C13—N2—P1	-144.4 (2)	C48—C43—P4—N4	33.4 (2)
C33—C31—N3—P3	135.5 (2)	C44—C43—P4—C49	-37.4 (2)
C32—C31—N3—P3	-100.6 (3)	C48—C43—P4—C49	148.1 (2)
C41—C40—N4—P3	137.6 (2)	C44—C43—P4—Co2	101.3 (2)
C42—C40—N4—P3	13.7 (3)	C48—C43—P4—Co2	-73.3 (2)
C41—C40—N4—P4	-74.4 (3)	C44—C43—P4—P3	165.62 (17)
C42—C40—N4—P4	161.70 (19)	C48—C43—P4—P3	-8.9 (3)
C4—N1—P1—N2	-71.6 (3)	C50—C49—P4—N4	-101.6 (2)
C4—N1—P1—C7	169.2 (2)	C54—C49—P4—N4	73.0 (2)
C4—N1—P1—Co1	40.2 (3)	C50—C49—P4—C43	140.7 (2)
C4—N1—P1—P2	-23.2 (3)	C54—C49—P4—C43	-44.6 (2)
C13—N2—P1—N1	-42.8 (3)	C50—C49—P4—Co2	6.0 (3)
P2—N2—P1—N1	110.82 (13)	C54—C49—P4—Co2	-179.38 (17)
C13—N2—P1—C7	73.0 (2)	C50—C49—P4—P3	-58.3 (2)
P2—N2—P1—C7	-133.40 (12)	C54—C49—P4—P3	116.3 (2)
C13—N2—P1—Co1	-166.4 (2)	C68—C63—C64—C65	0.0

supporting information

P2—N2—P1—Co1	-12.81 (9)	C69—C63—C64—C65	177.7 (6)
C13—N2—P1—P2	-153.6 (3)	C63—C64—C65—C66	0.0
C12—C7—P1—N1	-39.8 (3)	C64—C65—C66—C67	0.0
C8—C7—P1—N1	144.7 (2)	C65—C66—C67—C68	0.0
C12—C7—P1—N2	-164.6 (2)	C66—C67—C68—C63	0.0
C8—C7—P1—N2	19.9 (3)	C64—C63—C68—C67	0.0
C12-C7-P1-Co1	89.1 (2)	C69—C63—C68—C67	-177.7 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
N1—H1…O10 ⁱ	0.87(1)	2.22 (2)	3.041 (3)	159 (3)
N3—H3…O13 ⁱⁱ	0.86 (1)	2.27 (1)	3.101 (3)	163 (3)

Symmetry codes: (i) -x+1/2, y+1/2, -z+1/2; (ii) -x+1, -y+1, -z+1.