research communications

Received 29 October 2014 Accepted 6 November 2014

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; non-symmetrical compound; tetrasubstituted ethylenediamine; phenol-arm substituents

CCDC reference: 1033129 **Supporting information**: this article has supporting information at journals.iucr.org/e

Crystal structure of 3-[({2-[bis(2-hydroxybenzyl)amino]ethyl}(2-hydroxybenzyl)amino)methyl]-2hydroxy-5-methylbenzaldehyde

Alexandra S. Fonseca and Adailton J. Bortoluzzi*

Depto. de Química – Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil. *Correspondence e-mail: adailton.bortoluzzi@uísc.br

The non-symmetric title molecule, $C_{32}H_{34}N_2O_5$, is based on a tetrasubstituted ethylenediamine backbone. The molecular structure consists of three hydroxybenzyl groups and one 2-hydroxy-5-methylbenzaldehyde group bonded to the N atoms of the diamine unit. The ethylenediamine skeleton shows a regular extended conformation, while the spatial orientation of the phenol arms is governed by hydrogen bonds. In the 2-hydroxy-5-methylbenzaldehyde group, an intramolecular $S(6) O - H \cdots O$ hydrogen bond is observed between the alcohol and aldehyde functions, and the neighbouring phenol arm participates in an intramolecular $S(6) O - H \cdots N$ hydrogen bond. The third phenol group is involved in a bifurcated intramolecular hydrogen bond with graph-set notation S(6) for $O - H \cdots N$ and $O - H \cdots O$ intramolecular hydrogen bonds between neighbouring amine and phenol arms, respectively. Finally, the fourth phenol group acts as an acceptor in a bifurcated intramolecular hydrogen bond and also acts as donor in an intermolecular hydrogen bond, which connects inversionrelated molecules into dimers with $R_4^4(8)$ ring motifs.

1. Chemical context

The preparation of non-symmetric compounds has always been of interest in organic synthesis, as well as in coordination chemistry. Compounds containing tetrasubstituted ethylenediamine groups have attracted significant interest because of their coordination versatility towards metal ions, their easy preparation and their biological activity (Musa et al., 2014). With respect to medical applications, high in vitro cytotoxic activity of free ethylenediamine-type compounds against different types of cancer cells, such as HL-60 leukemic and B16 human melanoma cells lines, has been reported (Dencic et al., 2012; Lazić et al., 2010). In addition, metal complexes containing substituted ethylenediamine have also found valuable applications in pharmacological research as potential anticancer agents (Ansari et al., 2009), radiopharmaceuticals for tumor imaging (Boros et al., 2011; Price et al., 2012) and artificial nucleases (Raman et al., 2011). In this paper, we report the synthesis and crystal structure of the non-symmetric molecule 3-[({2-[bis(2-hydroxybenzyl)amino]ethyl}(2-hydroxybenzyl)amino)methyl]-2-hydroxy-5-methylbenzaldehyde, (I), which is a potential hexadentate ligand with an N₂O₄-donor set which could stabilize complexes containing high-oxidation-state metal ions, such as Tc^{III}, Ga^{III} and In^{III} ions, that are widely used in radiopharmaceuticals for diagnostic imaging and related research.

2. Structural commentary

Compound (I) is a non-symmetric molecule based on a tetrasubstituted ethylenediamine backbone (Fig. 1). The structure consists of three hydroxybenzyl groups and one 2hydroxy-5-methylbenzaldehyde group bonded to nitrogen atoms of the diamine unit. The ethylenediamine skeleton shows a regular extended 'zigzag' conformation [with an N1-C2-C3-N4 torsion angle of 174.78 (13)°], while the pendant phenol arms are randomly oriented but governed by hydrogen bonds (Table 1). Three intramolecular hydrogen bonds with an S(6) graph-set motif are observed in the molecular structure of (I) (Fig. 2). One of these occurs between the neighbouring alcohol and aldehyde groups. In addition, intramolecular $O-H \cdots N$ and $O-H \cdots O$ interactions, which include bifurcated hydrogen bonds, are observed, involving O-H functions as donors and the amine sites and one phenolic oxygen atom as acceptors. All bond lengths and angles found for (I) are in the expected range for organic compounds (Bruno et al., 2004).

Table 1 Hydrogen-bond geometry (Å, °).

		,		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O10-H10\cdots O20^{i}$	0.93	1.80	2.7230 (16)	177
$O20-H20 \cdot \cdot \cdot N1$	0.94	1.75	2.5928 (17)	148
O20−H20···O10	0.94	2.43	3.0362 (19)	122
O30−H30···N4	0.93	1.94	2.784 (2)	149
O40−H40···O41	0.93	1.76	2.6146 (19)	151

Symmetry code: (i) -x + 1, -y, -z.

3. Supramolecular features

In the crystal of (I), inversion dimers with $R_4^4(8)$ ring motifs are formed by pairs of $O-H\cdots O$ hydrogen bonds (Fig. 3, Table 1). The approximate planes of the ring motifs of the dimers are arranged as stacks along [010] (Fig. 4). No $\pi-\pi$ stacking interactions are observed.

4. Database survey

A search for similar structures in the current version of the Cambridge Structural Database (Version 5.35, November 2013; Groom & Allen, 2014) resulted in four entries but only three different structures: (i) HUNDIE (CCDC 727272) and HUNDOK (CCDC 727273) (Boyle *et al.*, 2009); (ii) USODUC (CCDC 809654) (Wang *et al.*, 2011*a*) and (iii) USODUC01 (CCDC 809654) (Wang *et al.*, 2011*b*). All of these structures are symmetric molecules and the phenol groups have an additional one or two substituents in the *para* and *ortho* positions with respect to the O–H function. As observed in (I), the spatial orientations of the phenol arms are influenced by intra- and intermolecular hydrogen bonding. There are no significant differences in the geometrical parameters;

Figure 1

The molecular structure of (I), with displacement ellipsoids drawn at the 40% probability level.

Figure 2 The intramolecular hydrogen bonds (dashed lines) observed in (I).

Figure 3

An inversion dimer of (I) formed by intermolecular O-H···O hydrogen bonds (dashed lines). [Symmetry code: (') -x + 1, -y, -z.]

however, the crystal packing shows distinguishable threedimensional arrangements due to differences in molecular symmetry and intermolecular interactions.

5. Synthesis and crystallization

The title compound was obtained from a nucleophilic substitution reaction between N,N,N'-tris(2-hydroxybenzyl)-1,2-diaminoethane (Schmitt et al., 2002) and chloromethyl-4methyl-6-formylphenol. These precursors were prepared following the methodologies already described in the literature (Schmitt et al., 2002; Thoer et al., 1988). A solution of 2chloromethyl-4-methyl-6-formylphenol (1.19 g, 6.6 mmol) in tetrahydrofuran (40 ml) was added slowly to a cooled solution of N, N, N'-tris(2-hydroxybenzyl)-1,2-diaminoethane (2.50 g, 6.6 mmol) in tetrahydrofuran (40 ml) containing triethylamine (0.96 ml, 6.6 mmol). The reaction was kept cooled during addition time, and the resulting solution stirred for 24 h. Yellow mixture oil/solid was obtained after evaporation of the solvent. A solution of this mixture in CH₂Cl₂ (50 ml) was washed with a saturated solution of NaHCO₃ (3×50 ml) and filtered off in the presence of NaSO4. The solvent was

Figure 4 Partial packing of (I), showing dimers stacked along [010].

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$C_{32}H_{34}N_2O_5$
$M_{ m r}$	526.61
Crystal system, space group	Triclinic, P1
Temperature (K)	190
a, b, c (Å)	10.1635 (5), 11.0440 (6), 13 5439 (7)
$\alpha \beta \gamma (^{\circ})$	113549(2) 98 381 (2) 99 451 (3)
$V(\mathring{\Delta}^3)$	1336 64 (12)
7	2
Radiation type	Δο Κα
$\mu \text{ (mm}^{-1})$	0.09
Crystal size (mm)	$0.05 \times 0.08 \times 0.04$
Data collection	
Diffractometer	Bruker APEXII DUO
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	17177, 8122, 5175
R _{int}	0.031
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.715
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.057, 0.166, 1.02
No. of reflections	8122
No. of parameters	353
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.42, -0.25

Computer programs: *APEX2* and *SAINT* (Bruker, 2009), *SHELXS97* and *SHELXL97* (Sheldrick, 2008), *PLATON* (Spek, 2009) and *Mercury* (Macrae *et al.*, 2008).

removed, and a straw-yellow solid was obtained. This solid was refluxed in *n*-hexane/CHCl₃ (1:1, 100 ml). After cooling the solid was filtered off, washed with *n*-hexane (80 ml), dried and recrystallized from an ethyl acetate solution to afford $3-[({2-[bis(2-hydroxybenzyl)amino]ethyl}(2-hydroxybenzyl)amino)-methyl]-2-hydroxy-5-methylbenzaldehyde, (I).$

The formation of (I) was indicated by the presence of the band at 1655 cm⁻¹ in the IR spectrum, which is typical for stretching vibrations $\nu(C=0)$ of free aldehyde. In the ¹H NMR spectrum, the signal at 9.81 p.p.m. related to one aldehyde proton is further evidence for product formation. Yield 90%, m.p. 444.8–445.4 K. IR (KBr, cm⁻¹): v(O-H) 3273, v(C-H_{ar} and C-H_{alif}) 3042-2718, v(C=O)1655, v(C=C) 1615–1457, $\delta(O-H)$ 1365, $\delta(C-O)$ 1252, $\delta(C-H_{ar})$ 757; ¹H NMR (400 MHz, CDCl₃) (δ, p.p.m.): 2.29 (s, 3H, CH₃), 2.78 (s, 4H, CH_{2-en}), 3.58 (s, 2H, CH₂), 3.61–3.77 (m, 6 H, CH₂), 6.69– 6.87 (m, 6H, CH_{ar}), 6.91 (d, 2H, CH_{ar}), 6.99 (d, 2 H, CH_{ar}), 7.07-7.19 (m, 2H, CH_{ar}), 7.24 (d, 2H, CH_{ar}), 9.81 (s, 1H, CH_{ald}); ¹³C NMR (400 MHz, DMSO-*d*₆, δ p.p.m.): 20.0, 48.6, 48.8, 53.5, 54.3, 115.2, 121.7, 122.7, 123.2, 124.5, 127.6, 128.4, 128.7, 129.8, 130.8, 136.7, 156.2, 156.5, 158.7, 191.6. Negative HPLC/ESI-MS (m/z): [M-H] calculated for C₃₂H₃₅N₂O₅, 527.25; found, 527.19. Colourless blocks were grown by slow evaporation of the solvent from a saturated solution of (I) in ethyl acetate.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in idealized

positions with distances of 0.95 (CH_{Ar}), 0.99 (CH₂) or 0.98 Å (CH₃) with $U_{iso} = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$. The hydrogen atoms of the alcohol groups were located from a Fourier difference map and treated with a riding-model approximation with $U_{iso}(H) = 1.5U_{eq}(O)$.

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Financiadora de Estudos e Projetos (FINEP) for support.

References

- Ansari, K. I., Kasiri, S., Grant, J. D. & Mandal, S. S. (2009). *Dalton Trans.* pp. 8525–8531.
- Boros, E., Ferreira, C. L., Patrick, B. O., Adam, M. J. & Orvig, C. (2011). Nucl. Med. Biol. 38, 1165–1174.
- Boyle, T. J., Pratt, H. D. III, Ottley, L. A. M., Alam, T. M., McIntyre, S. K., Rodriguez, M. A., Farrell, J. & Campana, C. F. (2009). *Inorg. Chem.* 48, 9191–9204.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.

- Dencic, S. M., Poljarevic, J., Vilimanovich, U., Bogdanovic, A., Isakovic, A. J., Stevovic, T. K., Dulovic, M., Zogovic, N., Isakovic, A. M., Grguric-Sipka, S., Bumbasirevic, V., Sabo, T., Trajkovic, V. & Markovic, I. (2012). *Chem. Res. Toxicol.* 25, 931–939.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662– 671.
- Lazić, J. M., Vučićević, L., Grgurić-Šipka, S., Janjetović, K., Kaluđerović, G. N., Misirkić, M., Gruden-Pavlović, M., Popadić, D., Paschke, R., Trajković, V. & Sabo, T. J. (2010). *ChemMedChem*, 5, 881–889.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Musa, M. A., Badisa, V. L. D. & Latinwo, L. M. (2014). Anticancer Res. 34, 1601–1607.
- Price, E. W., Cawthray, J. F., Bailey, G. A., Ferreira, C. L., Boros, E., Adam, M. J. & Orvig, C. (2012). J. Am. Chem. Soc. 134, 8670–8683.
- Raman, N., Selvan, A. & Sudharsan, S. (2011). *Spectrochim. Acta Part A*, **79**, 873–883.
- Schmitt, H., Lomoth, R., Magnuson, A., Park, J., Fryxelius, J., Kritikos, M., Mårtensson, J., Hammarström, L., Sun, L. & Åkermark, B. (2002). *Chem. Eur. J.* 8, 3757–3768.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Thoer, A., Denis, G., Delmas, M. & Gaset, A. (1988). *Synth. Commun.* **18**, 2095–2101.
- Wang, N.-S., Wang, Y.-T., Guo, X.-K. & Li, T.-D. (2011a). Acta Cryst. E67, 01438.
- Wang, N. S., Wang, Y. T., Li, J. Y. & Li, T. D. (2011b). Chin. J. Org. Chem. 31, 1703–1706.

supporting information

Acta Cryst. (2014). E70, 562-565 [doi:10.1107/S1600536814024465]

Crystal structure of 3-[({2-[bis(2-hydroxybenzyl)amino]ethyl}(2-hydroxybenzyl)amino)methyl]-2-hydroxy-5-methylbenzaldehyde

Alexandra S. Fonseca and Adailton J. Bortoluzzi

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

$\label{eq:solution} 3-[(\{2-[Bis(2-hydroxybenzyl)amino]ethyl\}(2-hydroxybenzyl)amino)methyl]-2-hydroxy-5-methylbenzaldehyde$

Crystal data	
$C_{32}H_{34}N_{2}O_{5}$ $M_{r} = 526.61$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 10.1635 (5) Å b = 11.0440 (6) Å c = 13.5439 (7) Å $a = 113.549 (2)^{\circ}$ $\beta = 98.381 (2)^{\circ}$ $\gamma = 99.451 (3)^{\circ}$ $V = 1336.64 (12) \text{ Å}^{3}$	Z = 2 F(000) = 560 $D_x = 1.308 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4159 reflections $\theta = 2.4-30.3^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 190 K Prismatic, colourless $0.15 \times 0.08 \times 0.04 \text{ mm}$
Data collection Bruker APEXII DUO diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans 17177 measured reflections	5175 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 30.6^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = -13 \rightarrow 14$ $k = -15 \rightarrow 15$ $l = -9 \rightarrow 19$
Refinement Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.166$ S = 1.02 8122 reflections 353 parameters 0 restraints	Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.0806P)^2 + 0.2575P]$	$\Delta \rho_{\rm max} = 0.42 \text{ e} \text{ Å}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta ho_{ m min} = -0.25 \ m e \ m \AA^{-3}$
$(\Delta/\sigma)_{\rm max} < 0.001$	

Special details

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
N1	0.55546 (13)	0.19576 (13)	0.30195 (10)	0.0231 (3)
C2	0.46867 (17)	0.29324 (17)	0.32893 (12)	0.0268 (3)
H2A	0.5193	0.3775	0.3954	0.032*
H2B	0.3853	0.2536	0.3460	0.032*
C3	0.42744 (17)	0.32788 (16)	0.23213 (12)	0.0258 (3)
H3A	0.5117	0.3735	0.2200	0.031*
H3B	0.3865	0.2416	0.1646	0.031*
N4	0.33030 (13)	0.41522 (13)	0.24463 (11)	0.0258 (3)
C10	0.69979 (16)	0.26500 (17)	0.31867 (13)	0.0280 (3)
H10A	0.7441	0.3071	0.3987	0.034*
H10B	0.7017	0.3390	0.2948	0.034*
C11	0.78117 (16)	0.17145 (16)	0.25636 (13)	0.0263 (3)
C12	0.74930 (16)	0.11211 (18)	0.14067 (13)	0.0288 (3)
C13	0.82640 (18)	0.02915 (19)	0.08148 (15)	0.0350 (4)
H13	0.8023	-0.0122	0.0028	0.042*
C14	0.93856 (18)	0.0067 (2)	0.13728 (16)	0.0368 (4)
H14	0.9915	-0.0497	0.0967	0.044*
C15	0.97344 (18)	0.06622 (19)	0.25181 (16)	0.0350 (4)
H15	1.0507	0.0515	0.2901	0.042*
C16	0.89474 (17)	0.14765 (18)	0.31045 (14)	0.0312 (4)
H16	0.9188	0.1880	0.3891	0.037*
C20	0.54425 (17)	0.11170 (17)	0.36403 (13)	0.0268 (3)
H20A	0.5551	0.1718	0.4434	0.032*
H20B	0.6192	0.0640	0.3576	0.032*
C21	0.40800 (16)	0.00815 (16)	0.32108 (13)	0.0259 (3)
C22	0.34574 (17)	-0.05756 (17)	0.20764 (14)	0.0296 (3)
C23	0.22507 (19)	-0.15869 (19)	0.16750 (17)	0.0394 (4)
H23	0.1832	-0.2018	0.0905	0.047*
C24	0.1654 (2)	-0.1970 (2)	0.23937 (19)	0.0457 (5)
H24	0.0838	-0.2678	0.2113	0.055*
C25	0.2237 (2)	-0.1331 (2)	0.35144 (19)	0.0439 (5)
H25	0.1822	-0.1592	0.4007	0.053*
C26	0.34370 (18)	-0.03025 (19)	0.39182 (16)	0.0338 (4)
H26	0.3827	0.0149	0.4693	0.041*
C30	0.20423 (18)	0.36075 (19)	0.27170 (17)	0.0364 (4)
H30A	0.2235	0.3827	0.3516	0.044*

H30B	0.1767	0.2604	0.2293	0.044*
C31	0.08900 (18)	0.41958 (19)	0.24471 (18)	0.0404 (4)
C32	0.0497 (2)	0.4116 (2)	0.13898 (18)	0.0453 (5)
C33	-0.0650 (2)	0.4543 (2)	0.1098 (2)	0.0613 (7)
H33	-0.0926	0.4460	0.0368	0.074*
C34	-0.1378 (2)	0.5087 (2)	0.1875 (3)	0.0637 (7)
H34	-0.2174	0.5359	0.1672	0.076*
C35	-0.0980 (2)	0.5243 (2)	0.2931 (3)	0.0603 (7)
H35	-0.1472	0.5660	0.3467	0.072*
C36	0.0148 (2)	0.4792 (2)	0.3227 (2)	0.0499 (5)
H36	0.0416	0.4889	0.3962	0.060*
C40	0.39032 (17)	0.55858 (16)	0.32520 (14)	0.0286 (3)
H40A	0.4334	0.5613	0.3967	0.034*
H40B	0.3159	0.6066	0.3376	0.034*
C41	0.49612 (16)	0.63311 (16)	0.28855 (13)	0.0247 (3)
C42	0.62638 (16)	0.70468 (16)	0.35788 (12)	0.0260 (3)
C43	0.71949 (16)	0.78163 (17)	0.32493 (13)	0.0284 (3)
C44	0.68364 (17)	0.78221 (17)	0.22159 (13)	0.0293 (3)
H44	0.7473	0.8341	0.1998	0.035*
C45	0.55741 (18)	0.70888 (17)	0.15050 (13)	0.0290 (3)
C46	0.46489 (17)	0.63763 (17)	0.18737 (13)	0.0277 (3)
H46	0.3762	0.5900	0.1406	0.033*
C47	0.85585 (19)	0.8554 (2)	0.39565 (15)	0.0385 (4)
H47	0.9159	0.9059	0.3704	0.046*
C48	0.5214 (2)	0.7027 (2)	0.03654 (14)	0.0406 (4)
H48A	0.5719	0.7864	0.0368	0.061*
H48B	0.4226	0.6935	0.0152	0.061*
H48C	0.5462	0.6241	-0.0166	0.061*
O10	0.64008 (13)	0.13999 (14)	0.09024 (10)	0.0368 (3)
H10	0.6275	0.1024	0.0139	0.044*
O20	0.40399 (13)	-0.02278 (13)	0.13465 (9)	0.0364 (3)
H20	0.4684	0.0616	0.1734	0.044*
O30	0.12438 (17)	0.36127 (17)	0.06209 (13)	0.0586 (4)
H30	0.2124	0.3804	0.1050	0.070*
O40	0.66072 (13)	0.69757 (14)	0.45562 (10)	0.0380 (3)
H40	0.7520	0.7475	0.4859	0.046*
O41	0.89821 (14)	0.85675 (16)	0.48535 (11)	0.0491 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0239 (6)	0.0241 (6)	0.0259 (6)	0.0070 (5)	0.0077 (5)	0.0144 (5)
C2	0.0319 (8)	0.0270 (8)	0.0272 (7)	0.0117 (7)	0.0117 (6)	0.0142 (6)
C3	0.0303 (8)	0.0247 (8)	0.0257 (7)	0.0085 (6)	0.0090 (6)	0.0128 (6)
N4	0.0230 (6)	0.0211 (6)	0.0359 (7)	0.0052 (5)	0.0086 (5)	0.0144 (5)
C10	0.0237 (8)	0.0273 (8)	0.0306 (8)	0.0022 (6)	0.0043 (6)	0.0125 (6)
C11	0.0215 (7)	0.0259 (8)	0.0335 (8)	0.0023 (6)	0.0066 (6)	0.0162 (7)
C12	0.0231 (8)	0.0338 (9)	0.0340 (8)	0.0060 (7)	0.0087 (6)	0.0189 (7)

supporting information

C13	0.0317 (9)	0.0410 (10)	0.0359 (9)	0.0095 (8)	0.0128 (7)	0.0182 (8)
C14	0.0283 (9)	0.0389 (10)	0.0515 (10)	0.0116 (8)	0.0183 (8)	0.0235 (9)
C15	0.0233 (8)	0.0389 (10)	0.0512 (10)	0.0082 (7)	0.0082 (7)	0.0278 (9)
C16	0.0243 (8)	0.0341 (9)	0.0363 (8)	0.0027 (7)	0.0034 (6)	0.0193 (7)
C20	0.0279 (8)	0.0285 (8)	0.0280 (7)	0.0070 (6)	0.0057 (6)	0.0165 (6)
C21	0.0248 (8)	0.0242 (8)	0.0342 (8)	0.0090 (6)	0.0088 (6)	0.0165 (6)
C22	0.0294 (8)	0.0240 (8)	0.0371 (8)	0.0085 (7)	0.0097 (7)	0.0136 (7)
C23	0.0314 (9)	0.0274 (9)	0.0484 (10)	0.0037 (7)	0.0034 (8)	0.0088 (8)
C24	0.0287 (9)	0.0303 (10)	0.0757 (14)	0.0027 (8)	0.0142 (9)	0.0218 (10)
C25	0.0371 (10)	0.0409 (11)	0.0705 (14)	0.0126 (9)	0.0256 (10)	0.0352 (10)
C26	0.0336 (9)	0.0351 (9)	0.0443 (9)	0.0121 (7)	0.0149 (7)	0.0255 (8)
C30	0.0277 (9)	0.0319 (9)	0.0552 (11)	0.0045 (7)	0.0136 (8)	0.0242 (8)
C31	0.0225 (8)	0.0279 (9)	0.0699 (13)	0.0010 (7)	0.0098 (8)	0.0226 (9)
C32	0.0336 (10)	0.0280 (10)	0.0612 (12)	0.0057 (8)	0.0007 (9)	0.0106 (9)
C33	0.0442 (13)	0.0331 (11)	0.0821 (17)	0.0056 (10)	-0.0162 (11)	0.0127 (11)
C34	0.0277 (10)	0.0339 (12)	0.113 (2)	0.0043 (9)	0.0014 (12)	0.0225 (13)
C35	0.0338 (11)	0.0353 (11)	0.116 (2)	0.0094 (9)	0.0324 (13)	0.0314 (13)
C36	0.0362 (11)	0.0367 (11)	0.0832 (15)	0.0069 (9)	0.0258 (10)	0.0292 (11)
C40	0.0279 (8)	0.0253 (8)	0.0348 (8)	0.0062 (6)	0.0134 (7)	0.0135 (7)
C41	0.0255 (7)	0.0207 (7)	0.0305 (7)	0.0079 (6)	0.0109 (6)	0.0114 (6)
C42	0.0273 (8)	0.0266 (8)	0.0261 (7)	0.0077 (6)	0.0079 (6)	0.0125 (6)
C43	0.0243 (8)	0.0284 (8)	0.0317 (8)	0.0038 (6)	0.0058 (6)	0.0134 (7)
C44	0.0302 (8)	0.0262 (8)	0.0360 (8)	0.0048 (7)	0.0112 (7)	0.0175 (7)
C45	0.0336 (9)	0.0260 (8)	0.0300 (8)	0.0092 (7)	0.0077 (6)	0.0140 (6)
C46	0.0253 (8)	0.0251 (8)	0.0311 (8)	0.0057 (6)	0.0032 (6)	0.0119 (6)
C47	0.0283 (9)	0.0394 (10)	0.0428 (10)	-0.0015 (8)	0.0034 (7)	0.0184 (8)
C48	0.0518 (12)	0.0422 (11)	0.0324 (9)	0.0116 (9)	0.0078 (8)	0.0215 (8)
O10	0.0338 (7)	0.0523 (8)	0.0295 (6)	0.0177 (6)	0.0082 (5)	0.0200 (6)
O20	0.0418 (7)	0.0324 (7)	0.0269 (6)	0.0004 (6)	0.0070 (5)	0.0086 (5)
O30	0.0575 (10)	0.0587 (10)	0.0500 (9)	0.0222 (8)	-0.0007 (7)	0.0155 (8)
O40	0.0342 (7)	0.0497 (8)	0.0323 (6)	0.0037 (6)	0.0048 (5)	0.0235 (6)
O41	0.0367 (7)	0.0579 (9)	0.0432 (8)	-0.0025 (7)	-0.0056 (6)	0.0230 (7)

Geometric parameters (Å, °)

N1—C2	1.471 (2)	C26—H26	0.9500
N1-C10	1.478 (2)	C30—C31	1.497 (3)
N1-C20	1.4828 (19)	C30—H30A	0.9900
C2—C3	1.528 (2)	C30—H30B	0.9900
C2—H2A	0.9900	C31—C32	1.392 (3)
C2—H2B	0.9900	C31—C36	1.398 (3)
C3—N4	1.471 (2)	C32—O30	1.370 (3)
С3—НЗА	0.9900	C32—C33	1.390 (3)
С3—Н3В	0.9900	C33—C34	1.372 (4)
N4—C40	1.476 (2)	С33—Н33	0.9500
N4—C30	1.483 (2)	C34—C35	1.361 (4)
C10-C11	1.500 (2)	C34—H34	0.9500
C10—H10A	0.9900	C35—C36	1.392 (3)

C10—H10B	0.9900	C35—H35	0.9500
C11—C16	1.395 (2)	C36—H36	0.9500
C11—C12	1.397 (2)	C40—C41	1.507 (2)
C12—O10	1.361 (2)	C40—H40A	0.9900
C12—C13	1.389 (2)	C40—H40B	0.9900
C13—C14	1.387 (3)	C41—C46	1.384 (2)
C13—H13	0.9500	C41—C42	1.400 (2)
C14—C15	1.383 (3)	C42 - O40	1.3556 (18)
C14—H14	0.9500	C42 - C43	1 407 (2)
C15-C16	1.389(2)	C43-C44	1.107(2) 1.397(2)
C15—H15	0.9500	C43—C47	1.657(2)
C16—H16	0.9500	C44-C45	1.100(2) 1.380(2)
C_{20}	1.509(2)	C44H44	0.9500
C20-H20A	0.9900	C45 - C46	1,400(2)
C20 H20B	0.9900	C_{45} C_{48}	1.400(2) 1.505(2)
C21 C26	1,303(2)	$C_{45} = C_{48}$	0.0500
$C_{21} = C_{20}$	1.393(2) 1 401(2)	C40-1140	1 222 (2)
$C_{21} = C_{22}$	1.401(2) 1.260(2)	C47 = H47	1.222 (2)
$C_{22} = C_{20}$	1.309(2)	C4/-H4/	0.9300
C22—C23	1.383(2)		0.9800
$C_{23} = C_{24}$	1.382 (3)	C48 - H48B	0.9800
C23—H25	0.9300	C_{40} H10	0.9800
C24—C25	1.3 / / (3)	010—H10	0.9269
C24—H24	0.9500	020—H20	0.9386
$C_{25} - C_{26}$	1.390 (3)	030—H30	0.9332
С25—Н25	0.9500	040—H40	0.9349
C2—N1—C10	111.44 (12)	C25—C26—H26	119.3
C2—N1—C20	112.03 (12)	C21—C26—H26	119.3
C10—N1—C20	111.35 (12)	N4—C30—C31	111.34 (14)
N1—C2—C3	110.69 (12)	N4—C30—H30A	109.4
N1—C2—H2A	109.5	C31—C30—H30A	109.4
C3—C2—H2A	109.5	N4—C30—H30B	109.4
N1—C2—H2B	109.5	C31—C30—H30B	109.4
C3—C2—H2B	109.5	H30A—C30—H30B	108.0
$H^2A - C^2 - H^2B$	108.1	C_{32} C_{31} C_{36}	118 15 (19)
N4—C3—C2	116 14 (12)	C_{32} C_{31} C_{30}	120 33 (18)
N4—C3—H3A	108.3	$C_{36} - C_{31} - C_{30}$	121.5(2)
$C_2 - C_3 - H_3 A$	108.3	030-032-033	121.3(2) 1191(2)
N4 - C3 - H3B	108.3	030 - 032 - 031	120.03(18)
$C_2 - C_3 - H_3B$	108.3	C_{33} C_{32} C_{31}	120.03(10) 120.9(2)
$H_{3}A - C_{3} - H_{3}B$	107.4	C_{34} C_{33} C_{32}	1193(3)
$C_3 N_4 C_40$	114 03 (13)	C34—C33—H33	120.3
$C_3 - N_4 - C_3 0$	112 54 (12)	C32—C33—H33	120.3
C40 - N4 - C30	109 74 (13)	$C_{35} - C_{34} - C_{33}$	120.5
N1 - C10 - C11	113 43 (13)	C35_C34_H34	121.2 (2)
N1_C10_H10A	108.9	C_{33} C_{34} H_{34}	110 /
C11 - C10 - H10A	108.9	C_{34} C_{35} C_{35} C_{36}	110 0 (2)
N1_C10_H10B	108.9	C34—C35—H35	120.0
	100.7	001 000 1100	120.0

C11—C10—H10B	108.9	С36—С35—Н35	120.0
H10A—C10—H10B	107.7	C35—C36—C31	120.4 (2)
C16—C11—C12	117.97 (15)	С35—С36—Н36	119.8
C16—C11—C10	121.94 (15)	C31—C36—H36	119.8
C12—C11—C10	119.96 (14)	N4—C40—C41	113.41 (13)
O10-C12-C13	122.45 (15)	N4—C40—H40A	108.9
O10-C12-C11	116.65 (15)	C41—C40—H40A	108.9
C13—C12—C11	120.90 (15)	N4—C40—H40B	108.9
C14—C13—C12	119.98 (16)	C41—C40—H40B	108.9
C14—C13—H13	120.0	H40A—C40—H40B	107.7
С12—С13—Н13	120.0	C46—C41—C42	118.20 (14)
C15—C14—C13	120.14 (17)	C46—C41—C40	120.76 (14)
C15—C14—H14	119.9	C42—C41—C40	120.98 (14)
C13—C14—H14	119.9	O40—C42—C41	119.10 (14)
C14—C15—C16	119.55 (16)	O40—C42—C43	121.17 (14)
C14—C15—H15	120.2	C41 - C42 - C43	119.73 (14)
C16—C15—H15	120.2	C44-C43-C42	119.95 (15)
C_{15} C_{16} C_{11}	121.45 (16)	C44—C43—C47	119.64 (15)
C15—C16—H16	1193	C42-C43-C47	120 34 (15)
C11—C16—H16	119.3	C45 - C44 - C43	120.31(15) 12123(15)
N1-C20-C21	111.67 (12)	C45—C44—H44	119.4
N1—C20—H20A	109 3	C43—C44—H44	119.4
C21—C20—H20A	109.3	C44-C45-C46	117.50 (15)
N1—C20—H20B	109.3	C44-C45-C48	121 42 (16)
C_{21} C_{20} H_{20B}	109.3	C46-C45-C48	121.06 (16)
H20A—C20—H20B	107.9	C41 - C46 - C45	123.31 (15)
$C_{26} = C_{21} = C_{22}$	117.90 (16)	C41—C46—H46	118.3
$C_{26} - C_{21} - C_{20}$	121.25 (15)	C45—C46—H46	118.3
C22-C21-C20	120.77 (14)	O41—C47—C43	124.37 (17)
O20—C22—C23	119.00 (16)	O41—C47—H47	117.8
O20—C22—C21	120.26 (15)	С43—С47—Н47	117.8
C23—C22—C21	120.74 (17)	C45—C48—H48A	109.5
C24—C23—C22	120.06 (18)	C45—C48—H48B	109.5
С24—С23—Н23	120.0	H48A—C48—H48B	109.5
С22—С23—Н23	120.0	C45—C48—H48C	109.5
C25—C24—C23	120.42 (18)	H48A—C48—H48C	109.5
C25—C24—H24	119.8	H48B—C48—H48C	109.5
C23—C24—H24	119.8	C12—O10—H10	112.6
C24—C25—C26	119.46 (18)	С22—О20—Н20	109.6
С24—С25—Н25	120.3	С32—О30—Н30	103.6
С26—С25—Н25	120.3	C42—O40—H40	104.9
C25—C26—C21	121.40 (18)		
C10—N1—C2—C3	81.42 (15)	C40—N4—C30—C31	72.17 (19)
C20—N1—C2—C3	-153.07 (13)	N4—C30—C31—C32	54.0 (2)
N1—C2—C3—N4	174.78 (13)	N4—C30—C31—C36	-128.35 (18)
C2-C3-N4-C40	72.09 (17)	C36—C31—C32—O30	176.19 (18)
C2—C3—N4—C30	-53.74 (18)	C30-C31-C32-O30	-6.1 (3)

C2-N1-C10-C11	-159.44 (12)	C36—C31—C32—C33	-3.7 (3)
C20-N1-C10-C11	74.67 (16)	C30—C31—C32—C33	174.00 (18)
N1-C10-C11-C16	-117.78 (16)	O30—C32—C33—C34	-178.0 (2)
N1-C10-C11-C12	66.33 (19)	C31—C32—C33—C34	1.9 (3)
C16-C11-C12-O10	-178.35 (15)	C32—C33—C34—C35	1.5 (3)
C10-C11-C12-O10	-2.3 (2)	C33—C34—C35—C36	-2.9 (3)
C16—C11—C12—C13	1.6 (2)	C34—C35—C36—C31	1.0 (3)
C10-C11-C12-C13	177.67 (15)	C32—C31—C36—C35	2.3 (3)
O10-C12-C13-C14	178.56 (17)	C30—C31—C36—C35	-175.38 (17)
C11—C12—C13—C14	-1.4 (3)	C3—N4—C40—C41	67.55 (17)
C12—C13—C14—C15	0.3 (3)	C30—N4—C40—C41	-165.16 (14)
C13—C14—C15—C16	0.5 (3)	N4-C40-C41-C46	54.7 (2)
C14-C15-C16-C11	-0.3 (3)	N4—C40—C41—C42	-128.20 (16)
C12-C11-C16-C15	-0.8 (2)	C46—C41—C42—O40	-177.66 (14)
C10-C11-C16-C15	-176.73 (15)	C40—C41—C42—O40	5.2 (2)
C2—N1—C20—C21	72.32 (16)	C46—C41—C42—C43	1.9 (2)
C10-N1-C20-C21	-162.11 (13)	C40—C41—C42—C43	-175.28 (15)
N1-C20-C21-C26	-146.22 (15)	O40—C42—C43—C44	177.11 (15)
N1—C20—C21—C22	37.1 (2)	C41—C42—C43—C44	-2.4 (2)
C26—C21—C22—O20	179.39 (15)	O40—C42—C43—C47	0.2 (3)
C20—C21—C22—O20	-3.8 (2)	C41—C42—C43—C47	-179.35 (16)
C26—C21—C22—C23	-0.9 (2)	C42—C43—C44—C45	0.3 (3)
C20—C21—C22—C23	175.91 (16)	C47—C43—C44—C45	177.31 (17)
O20—C22—C23—C24	179.02 (16)	C43—C44—C45—C46	2.1 (2)
C21—C22—C23—C24	-0.7 (3)	C43—C44—C45—C48	-176.43 (16)
C22—C23—C24—C25	1.4 (3)	C42—C41—C46—C45	0.7 (2)
C23—C24—C25—C26	-0.4 (3)	C40—C41—C46—C45	177.87 (15)
C24—C25—C26—C21	-1.2 (3)	C44—C45—C46—C41	-2.7 (3)
C22—C21—C26—C25	1.8 (2)	C48—C45—C46—C41	175.86 (16)
C20-C21-C26-C25	-174.92 (16)	C44—C43—C47—O41	-177.20 (19)
C3—N4—C30—C31	-159.71 (15)	C42—C43—C47—O41	-0.3 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	D—H···A
O10-H10···O20 ⁱ	0.93	1.80	2.7230 (16)	177
O20—H20…N1	0.94	1.75	2.5928 (17)	148
O20—H20…O10	0.94	2.43	3.0362 (19)	122
O30—H30…N4	0.93	1.94	2.784 (2)	149
O40—H40…O41	0.93	1.76	2.6146 (19)	151

Symmetry code: (i) -x+1, -y, -z.