

Received 20 October 2014 Accepted 3 November 2014

Edited by L. Farrugia, University of Glasgow, Scotland

Keywords: crystal structure; gadolinium; rhenium; silicon; intermetallic compound; ternary silicide

CCDC reference: 1032373 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of the ternary silicide Gd₂Re₃Si₅

Vitaliia Fedyna,^a* Roksolana Kozak^b and Roman Gladyshevskii^a

^aDepartment of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya st. 6, UA-79005 Lviv, Ukraine, and ^bLaboratory of Crystallography, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, CH-8093 Zurich, Switzerland. *Correspondence e-mail: vitaliia.fedyna@gmail.com

A single crystal of the title compound, the ternary silicide digadolinium trirhenium pentasilicide, $Gd_2Re_3Si_5$, was isolated from an alloy of nominal composition $Gd_{20}Re_{30}Si_{50}$ synthesized by arc melting and investigated by X-ray single-crystal diffraction. Its crystal structure belongs to the $U_2Mn_3Si_5$ structure type. All atoms in the asymmetric lie on special positions. The Gd site has site symmetry *m*.,; the two Mn atoms have site symmetries *m*.. and 2.22; the three Si atoms have site symmetries *m*..., ..2 and 4... The coordination polyhedra of the Gd atoms have 21 vertices, while those of the Re atoms are cubooctahedra and 13-vertex polyhedra. The Si atoms are arranged as tricapped trigonal prisms, bicapped square antiprisms, or 11-vertex polyhedra. The crystal structure of the title compound is also related to the structure types $CaBe_2Ge_2$ and W_5Si_3 . It can be represented as a stacking of Gd-centred polyhedra of composition [GdSi_9]. The Re atoms form infinite chains with an Re–Re distance of 2.78163 (5) Å and isolated squares with an Re–Re distance of 2.9683 (6) Å.

1. Chemical context

Four structure types of composition $R_2T_3Si_5$ are known for the systems R-T-Si (R = rare-earth element, T = d-block element): U₂Mn₃Si₅ (Yarmolyuk et al., 1977) (Pearson symbol tP40, space group P4/mnc), U₂Co₃Si₅ (Akselrud et al., 1977) (oI40, Ibam), Nd₂Os₃Si₅ (Rizzoli et al., 2004) (tP48, P4/mnc) and Lu₂Co₃Si₅ (Chabot & Parthé, 1985) (mS40, C2/c). The structure type U₂Mn₃Si₅ has representatives in the systems R-Mn-Si (R = Y, Gd-Lu), R-Re-Si (R = Y, La-Nd, Sm, Gd-Tm), R-Fe-Si (R = Sc, Y, Sm, Gd-Lu), R-Ru-Si (R = Sm, Er, Lu), whereas the structure type $U_2Co_3Si_5$ has been found in the systems R-Ru-Si (R = Tb, Er), R-Co-Si (R = Sc, Y, Ce, Gd-Er), R-Rh-Si (R = Y, La, Ce, Nd, Sm, Gd-Er), R-Ir-Si (R = Y, Ce, Tb, Lu), R-Ni-Si (R = Y, Ce, Nd, Sm, Gd-Tm),R-Pt-Si (R = Ce, Sm), and R-Pd-Si (R = Ce, Sm), the structure type $Nd_2Os_3Si_5$ in the systems *R*-Os-Si (*R* = Nd, Eu), and the structure type $Lu_2Co_3Si_5$ in the systems *R*-Co-Si (*R* = Y, Tb, Dy, Lu), R-Rh-Si (R = Y, Tb, Dy) and R-Ni-Si (R = Lu) (Villars & Cenzual, 2013).

2. Structural commentary

The existence of the compound $Gd_2Re_3Si_5$ has been reported earlier (Bodak *et al.*, 1978). The unit-cell parameters were determined and the structure type was assigned. A complete investigation of the crystal structure by X-ray single crystal diffraction has now been undertaken. The coordination polyhedra of the Gd atoms have 21 vertexes, whereas those of the Re atoms are cubooctahedra or 13-vertex polyhedra, and the Si atoms tricapped trigonal prisms, bicapped square anti-

research communications

Figure 1

Stacking of Gd-centred polyhedra in the structure of the compound $Gd_2Re_3Si_5$ with displacement ellipsoids drawn at the 99% probability level.

prisms, or 11-vertex polyhedra. The U₂Mn₃Si₅-type structure is closely related to the structure type BaAl₄ and its ordered derivative CaBe₂Ge₂. In particular, the U₂Mn₃Si₅-type can be considered to be formed by one-dimensional structural fragments of the structure type CaBe₂Ge₂, running parallel to the direction [001]. There also exists a relationship between the structure types U₂Mn₃Si₅ and W₅Si₃. Fragments which can be viewed as deformed square antiprisms are common to both structures. The crystal structure of Gd₂Re₃Si₅ can also be represented as a stacking of Gd-centred polyhedra of composition [GdSi₉], located at z = 0 and $\frac{1}{2}$ (Fig. 1) (Parthé *et al.*, 1993). The Re atoms form infinite chains with an Re–Re distance of 2.78163 (5) Å and isolated squares with an Re–Re distance of 2.9683 (6) Å.

3. Synthesis and crystallization

An alloy of nominal atom percent composition $Gd_{20}Re_{30}Si_{50}$ was synthesized from the high-purity elements by arc melting on a water-cooled copper plate under a purified argon atmosphere, using titanium as a getter and a tungsten electrode. The weight loss during the sample preparation was less than 0.5% of the total mass (1 g). The alloy was placed into an Al_2O_3 crucible and inserted into a tantalum container, which was then sealed by welding, leaving the sample under an argon atmosphere. The sample, wrapped in tantalum foil, was heated to 1623 K in a muffle furnace at a rate of 200 K h⁻¹, held at this temperature for 5 h and then cooled to room temperature at a rate of 50 K h⁻¹.

4. Refinement details

A single crystal of well-defined shape was separated from the sample. The structure was solved by direct methods. The highest Fourier difference peak of 2.35 e Å⁻³ is at $(0, \frac{1}{2}, \frac{1}{4})$, 0.00 Å away from atom Re2. The deepest hole (-2.44 e Å⁻³) is at (0.6045, 0.3985, 0), 1.52 Å away from the Gd atom. Details of the crystal parameters, data collection and the structure refinement details are summarized in Table 1.

Table 1Experimental details.	
Crystal data	
Chemical formula	Gd ₂ Re ₃ Si ₅
M _r	1013.55
Crystal system, space group	Tetragonal, P4/mnc
Temperature (K)	293
a, c (Å)	10.95564 (13), 5.56326 (11)
$V(Å^3)$	667.74 (2)
Ζ	4
Radiation type	Μο Κα
$\mu \ (\mathrm{mm}^{-1})$	74.55
Crystal size (mm)	$0.16 \times 0.10 \times 0.02$
Data collection	
Diffractometer	Agilent Xcalibur Onyx
Absorption correction	Analytical [<i>CrysAlis PRO</i> (Agilent, 2012; analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995)]
T_{\min}, T_{\max}	0.015, 0.194
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	11378, 502, 481
R _{int}	0.062
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.692
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.025, 0.063, 1.17
No. of reflections	502
No. of parameters	31
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	2.35, -2.44

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 and SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Acknowledgements

This work was supported by the Ministry of Education and Science of Ukraine under grant No 0112U001279.

References

- Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
- Akselrud, L. G., Yarmolyuk, Y. P. & Gladyshevskii, E. I. (1977). Sov. Phys. Crystallogr. 22, 492–493.
- Bodak, O. I., Pecharskii, V. K. & Gladyshevskii, E. I. (1978). Izv. Akad. Nauk SSSR Neorg. Mater. 14, 251–255.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Chabot, B. & Parthé, E. (1985). J. Less-Common Met. 106, 53-59.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K. & Gladyshevskii, R. (1993). *TYPIX. Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types.* Heidelberg: Springer-Verlag.
- Rizzoli, C., Salamakha, P. S., Sologub, O. L., Belletti, D., Goncalves, A. P. & Almeida, M. (2004). J. Alloys Compd, **363**, 217–222.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Villars, P. & Cenzual, K. (2013). Pearson's Crystal Data. Crystal Structure Database for Inorganic Compounds. Release 2013/14. Materials Park, Ohio: ASM International.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yarmolyuk, Y. P., Akselrud, L. G. & Gladyshevskii, E. I. (1977). Sov. Phys. Crystallogr. 22, 358–359.

supporting information

Acta Cryst. (2014). E70, 469-470 [doi:10.1107/S1600536814024234]

Crystal structure of the ternary silicide Gd₂Re₃Si₅

Vitaliia Fedyna, Roksolana Kozak and Roman Gladyshevskii

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO* (Agilent, 2012); data reduction: *CrysAlis PRO* (Agilent, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) and *WinGX* (Farrugia, 2012); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Digadolinium trirhenium pentasilicide

Crystal data Gd₂Re₃Si₅ $M_r = 1013.55$ Tetragonal, P4/mnc Hall symbol: -P 4 2n a = 10.95564 (13) Å c = 5.56326 (11) Å V = 667.74 (2) Å³ Z = 4F(000) = 1692

Data collection

Agilent Xcalibur Onyx
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
CCD scans
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012; analytical
numeric absorption correction using a multi-
faceted crystal model (Clark & Reid, 1995)]

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.063$ S = 1.17502 reflections 31 parameters 0 restraints Primary atom site location: structure-invariant direct methods $D_x = 10.082 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8564 reflections $\theta = 1.9-29.4^{\circ}$ $\mu = 74.55 \text{ mm}^{-1}$ T = 293 KIrregular, grey $0.16 \times 0.10 \times 0.02 \text{ mm}$

 $T_{\min} = 0.015, T_{\max} = 0.194$ 11378 measured reflections 502 independent reflections 481 reflections with $I > 2\sigma(I)$ $R_{int} = 0.062$ $\theta_{\max} = 29.5^{\circ}, \theta_{\min} = 2.6^{\circ}$ $h = -14 \rightarrow 14$ $k = -15 \rightarrow 14$ $l = -7 \rightarrow 7$

Secondary atom site location: difference Fourier map $w = 1/[\sigma^2(F_o^2) + (0.0342P)^2 + 8.350P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 2.35$ e Å⁻³ $\Delta\rho_{min} = -2.44$ e Å⁻³ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.00016 (8)

Special details

Experimental. Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Gd	0.26249 (5)	0.42271 (5)	0.0000	0.0187 (2)
Re1	0.14676 (4)	0.12315 (4)	0.0000	0.01716 (18)
Re2	0.0000	0.5000	0.2500	0.0173 (2)
Si1	0.0267 (3)	0.3149 (3)	0.0000	0.0192 (6)
Si2	0.17183 (18)	0.67183 (18)	0.2500	0.0145 (6)
Si3	0.0000	0.0000	0.2567 (9)	0.0197 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Gd	0.0183 (3)	0.0199 (3)	0.0179 (3)	0.0004 (2)	0.000	0.000
Re1	0.0166 (3)	0.0172 (3)	0.0177 (3)	-0.00060 (16)	0.000	0.000
Re2	0.0169 (2)	0.0169 (2)	0.0180 (3)	0.0003 (2)	0.000	0.000
Si1	0.0207 (15)	0.0184 (15)	0.0184 (14)	0.0029 (12)	0.000	0.000
Si2	0.0130 (8)	0.0130 (8)	0.0174 (13)	0.0005 (10)	-0.0025 (8)	0.0025 (8)
Si3	0.0190 (13)	0.0190 (13)	0.021 (2)	0.000	0.000	0.000

Geometric parameters (Å, °)

Gd—Si1	2.841 (4)	Re2—Re2 ^{xiv}	2.7816(1)
Gd — $Si1^i$	2.9604 (12)	Re2—Re2 ^{viii}	2.7816(1)
Gd—Si1 ⁱⁱ	2.9604 (12)	Re2—Gd ^{viii}	3.3047 (5)
Gd—Si3 ⁱⁱⁱ	3.053 (2)	Re2—Gd ^{xii}	3.3047 (5)
Gd—Si3 ^{iv}	3.053 (2)	Re2—Gd ⁱⁱ	3.3047 (5)
Gd—Re1 ⁱⁱ	3.1442 (3)	Si1—Re1 ^{xi}	2.467 (4)
Gd—Re1 ⁱ	3.1442 (3)	Si1—Re2 ^{viii}	2.476 (3)
Gd—Si2 ^v	3.163 (2)	Si1—Si2 ^{viii}	2.585 (3)
Gd—Si2 ^{vi}	3.163 (2)	Si1—Si2 ^{xiii}	2.585 (3)
Gd—Si2 ^{vii}	3.2202 (11)	Si1—Gd ⁱ	2.9604 (12)
Gd—Si2	3.2202 (11)	Si1—Gd ⁱⁱ	2.9604 (12)
Gd—Re2 ^{viii}	3.3047 (5)	Si2—Re1 ⁱⁱⁱ	2.4837 (12)
Re1—Si1 ^{ix}	2.467 (4)	Si2—Re1 ^{xv}	2.4837 (12)
Re1—Si1	2.479 (3)	Si2—Si1 ^{viii}	2.585 (3)
Re1—Si2 ^{vi}	2.4838 (12)	Si2—Si1 ⁱⁱ	2.585 (3)

Rel-Si2 ^v	2.4838 (12)	S_{12} S_{12} S_{12} S_{12}	2.7816(1)
Re1—Si3	2.539 (3)	Si2—Si2 ^{vii}	2.7816(1)
Re1—Si3 ^x	2.539 (3)	Si2—Gd ⁱⁱⁱ	3.163 (2)
Re1—Re1 ^{xi}	2.9683 (6)	Si2—Gd ^{xv}	3.163 (2)
Re1—Re1 ^{ix}	2.9684 (6)	Si2—Gd ^{xii}	3.2202 (11)
Re1—Gd ⁱⁱ	3.1442 (3)	Si3—Re1 ^x	2.539 (3)
Re1—Gd ⁱ	3.1442 (3)	Si3—Re1 ^{ix}	2.539 (3)
Re2—Si1 ⁱⁱ	2 476 (3)	Si3—Re1 ^{xi}	2,539 (3)
Be2—Si1 ^{xii}	2476(3)	Si3—Si3 ^{xvii}	2,707(9)
Re2_Silviii	2.476 (3)	Si3Gdii	2.767(9)
$P_{0}2 = Si1$	2.476(3)	Si3 Cdxviii	3.053(2)
	2.470(3)	Si3—Gu	3.055(2)
Re2—512	2.002(3)		3.033(2)
Re2—512	2.062 (3)	\$13—Ga ^{**}	3.053 (2)
Si1—Gd—Si1 ⁱ	79.48 (8)	Si1 ⁱⁱ —Re2—Gd ^{xii}	94.36 (7)
Si1—Gd—Si1 ⁱⁱ	79.48 (8)	Si1 ^{xii} —Re2—Gd ^{xii}	56.71 (8)
Si1 ⁱ —Gd—Si1 ⁱⁱ	139.97 (12)	Si1 ^{viii} —Re2—Gd ^{xii}	59.57 (4)
Sil—Gd—Si3 ⁱⁱⁱ	152.94 (8)	Si1—Be2—Gd ^{xii}	168 30 (6)
Sil ⁱ —Gd—Si3 ⁱⁱⁱ	127.50(10)	Si ² ^{xiii} —Re ² —Gd ^{xii}	115730(10)
	77.03 (10)	Si2 $Re2$ Gd^{xii}	64 270 (10)
Si1 - Ga - Si3	152 04 (8)	$\mathbf{P}_{\mathbf{A}}$	65,111,(4)
$S_{11} = Cd = S_{13}$	152.94(6)	$R_{2} = R_{2} = Gd$	114,990,(4)
	127.50 (10)	Re2 - Re2 - Ou	74 405 (16)
	127.50(10)		74.405 (16)
S13 ^m —Gd—S13 ^m	52.64 (16)	$S11^{m}$ —Re2—Gd ^m	56./1(8)
S11—Gd—Rel"	105.17 (3)	$S11^{\text{AH}}$ —Re2—Gd ^H	94.36 (7)
S_{11} -Gd-Re 1^{n}	172.19 (7)	$Si1^{vm}$ —Re2—Gd ⁿ	168.29 (6)
Sil ⁿ —Gd—Rel ⁿ	47.80 (6)	Si1—Re2—Gd ⁿ	59.57 (4)
Si3 ⁱⁱⁱ —Gd—Re1 ⁱⁱ	48.34 (7)	Si2 ^{xiii} —Re2—Gd ⁱⁱ	64.270 (10)
Si3 ^{iv} —Gd—Re1 ⁱⁱ	96.88 (8)	Si2—Re2—Gd ⁱⁱ	115.730 (10)
Si1—Gd—Re1 ⁱ	105.17 (3)	Re2 ^{xiv} —Re2—Gd ⁱⁱ	65.111 (4)
Si1 ⁱ —Gd—Re1 ⁱ	47.80 (6)	Re2 ^{viii} —Re2—Gd ⁱⁱ	114.889 (4)
Si1 ⁱⁱ —Gd—Re1 ⁱ	172.19 (7)	Gd ^{viii} —Re2—Gd ⁱⁱ	128.540 (19)
Si3 ⁱⁱⁱ —Gd—Re1 ⁱ	96.88 (8)	Gd ^{xii} —Re2—Gd ⁱⁱ	130.223 (8)
Si3 ^{iv} —Gd—Re1 ⁱ	48.34 (7)	Si1 ⁱⁱ —Re2—Gd	59.57 (4)
$Re1^{ii}$ —Gd— $Re1^{i}$	124.42 (2)	Si1 ^{xii} —Re2—Gd	168.30 (6)
Si1—Gd—Si2 ^v	81.12 (7)	Si1 ^{viii} —Re2—Gd	94.36 (7)
Si1 ⁱ —Gd—Si2 ^v	79.33 (7)	Si1—Re2—Gd	56.71 (8)
Si1 ⁱⁱ —Gd—Si2 ^v	129.87 (7)	Si2 ^{xiii} —Re2—Gd	115.731 (10)
Si3 ⁱⁱⁱ —Gd—Si2 ^v	$104\ 01\ (5)$	Si2—Be2—Gd	64 269 (10)
Si3 ^{iv} —Gd—Si2 ^v	81 50 (4)	$\frac{Be2^{xiv}}{Be2^{xiv}} = \frac{Be2^{xiv}}{Gd}$	114 888 (4)
$Pa1^{ii}$ Gd $Si2^{v}$	01.50(4)	Re2 = Re2 = Gd	65 112 (4)
$R_{c1} = Gd = Si2$	95.05(3)	$d_{\text{A}} = \frac{1}{2} - 1$	120222(9)
$\mathbf{S}_{1} = \mathbf{C}_{4} = \mathbf{S}_{2}^{v_{1}}$	40.3//(11)	$\begin{array}{ccc} \mathbf{U} & -\mathbf{K}\mathbf{U} \\ \mathbf{U} & \mathbf{U} \\ \mathbf{U} & \mathbf{U} \\ \mathbf{U} & \mathbf{U} \\ $	130.223(8)
	01.12 (/)	$G_{4ii} = Re2 - G_{4ii}$	128.340 (19)
	129.8/(/)		/4.406 (16)
$S11^n$ —Gd— $S12^{v_1}$	79.33 (7)	Ke1^{A} —S11—Re2	122.21 (11)
S13 ^m —Gd—Si2 ^{vi}	81.50 (4)	Re1 ^{xi} —Si1—Re2 ^{viii}	122.21 (11)
$S13^{1v}$ — Gd — $Si2^{v_1}$	104.01 (5)	$Re2$ —Sil— $Re2^{vm}$	68.34 (9)
$Re1^n$ — Gd — $Si2^{vi}$	46.377 (11)	Re1 ^{x1} —Si1—Re1	73.76 (10)

Re1 ⁱ —Gd—Si2 ^{vi}	95.05 (3)	Re2—Si1—Re1	139.17 (9)
Si2 ^v —Gd—Si2 ^{vi}	52.16 (4)	Re2 ^{viii} —Si1—Re1	139.17 (9)
Si1—Gd—Si2 ^{vii}	94.12 (8)	Re1 ^{xi} —Si1—Si2 ^{viii}	58.84 (9)
Si1 ⁱ —Gd—Si2 ^{vii}	49.23 (7)	Re2—Si1—Si2 ^{viii}	99.03 (11)
Si1 ⁱⁱ —Gd—Si2 ^{vii}	99.13 (6)	Re2 ^{viii} —Si1—Si2 ^{viii}	63.42 (8)
Si3 ⁱⁱⁱ —Gd—Si2 ^{vii}	102.67 (6)	Re1—Si1—Si2 ^{viii}	119.61 (12)
Si3 ^{iv} —Gd—Si2 ^{vii}	80.58 (5)	Re1 ^{xi} —Si1—Si2 ^{xiii}	58.84 (9)
Re1 ⁱⁱ —Gd—Si2 ^{vii}	135.25 (3)	Re2—Si1—Si2 ^{xiii}	63.42 (8)
Re1 ⁱ —Gd—Si2 ^{vii}	86.902 (11)	Re2 ^{viii} —Si1—Si2 ^{xiii}	99.03 (11)
Si2 ^v —Gd—Si2 ^{vii}	128.074 (8)	Re1—Si1—Si2 ^{xiii}	119.61 (12)
Si2 ^{vi} —Gd—Si2 ^{vii}	175.18 (3)	Si2 ^{viii} —Si1—Si2 ^{xiii}	65.09 (9)
Si1—Gd—Si2	94.12 (8)	Re1 ^{xi} —Si1—Gd	156.27 (14)
Si1 ⁱ —Gd—Si2	99.13 (6)	Re2—Si1—Gd	76.51 (9)
Si1 ⁱⁱ —Gd—Si2	49.23 (7)	Re2 ^{viii} —Si1—Gd	76.51 (9)
Si3 ⁱⁱⁱ —Gd—Si2	80.58 (5)	Re1—Si1—Gd	82.50 (10)
Si3 ^{iv} —Gd—Si2	102.67 (6)	Si2 ^{viii} —Si1—Gd	137.86 (11)
Re1 ⁱⁱ —Gd—Si2	86.902 (11)	Si2 ^{xiii} —Si1—Gd	137.86 (11)
Re1 ⁱ —Gd—Si2	135.25 (3)	Re1 ^{xi} —Si1—Gd ⁱ	84.88 (7)
Si2 ^v —Gd—Si2	175.18 (3)	Re2—Si1—Gd ⁱ	141.66 (11)
Si2 ^{vi} —Gd—Si2	128.075 (8)	Re2 ^{viii} —Si1—Gd ⁱ	74.27 (2)
Si2 ^{vii} —Gd—Si2	51.18 (2)	Re1—Si1—Gd ⁱ	69.99 (6)
Si1—Gd—Re2 ^{viii}	46.77 (6)	Si2 ^{viii} —Si1—Gd ⁱ	70.63 (3)
Si1 ⁱ —Gd—Re2 ^{viii}	46.16 (6)	Si2 ^{xiii} —Si1—Gd ⁱ	132.78 (12)
Si1 ⁱⁱ —Gd—Re2 ^{viii}	95.63 (6)	Gd—Si1—Gd ⁱ	87.06 (7)
Si3 ⁱⁱⁱ —Gd—Re2 ^{viii}	149.01 (2)	Re1 ^{xi} —Si1—Gd ⁱⁱ	84.88 (7)
Si3 ^{iv} —Gd—Re2 ^{viii}	118.95 (7)	Re2—Si1—Gd ⁱⁱ	74.27 (2)
Re1 ⁱⁱ —Gd—Re2 ^{viii}	141.358 (16)	Re2 ^{viii} —Si1—Gd ⁱⁱ	141.66 (11)
Re1 ⁱ —Gd—Re2 ^{viii}	92.088 (9)	Re1—Si1—Gd ⁱⁱ	69.99 (6)
Si2 ^v —Gd—Re2 ^{viii}	103.62 (3)	Si2 ^{viii} —Si1—Gd ⁱⁱ	132.78 (12)
Si2 ^{vi} —Gd—Re2 ^{viii}	127.27 (3)	Si2 ^{xiii} —Si1—Gd ⁱⁱ	70.63 (3)
Si2 ^{vii} —Gd—Re2 ^{viii}	48.14 (5)	Gd—Si1—Gd ⁱⁱ	87.06 (7)
Si2—Gd—Re2 ^{viii}	72.31 (3)	Gd ⁱ —Si1—Gd ⁱⁱ	139.97 (12)
Si1 ^{ix} —Re1—Si1	163.76 (10)	Re1 ⁱⁱⁱ —Si2—Re1 ^{xv}	131.08 (12)
Si1 ^{ix} —Re1—Si2 ^{vi}	62.95 (8)	Re1 ⁱⁱⁱ —Si2—Si1 ^{viii}	170.53 (14)
Si1—Re1—Si2 ^{vi}	104.06 (9)	Re1 ^{xv} —Si2—Si1 ^{viii}	58.21 (7)
Si1 ^{ix} —Re1—Si2 ^v	62.95 (8)	Re1 ⁱⁱⁱ —Si2—Si1 ⁱⁱ	58.21 (7)
Si1—Re1—Si2 ^v	104.06 (9)	Re1 ^{xv} —Si2—Si1 ⁱⁱ	170.53 (14)
Si2 ^{vi} —Re1—Si2 ^v	68.11 (4)	Si1 ^{viii} —Si2—Si1 ⁱⁱ	112.58 (18)
Si1 ^{ix} —Re1—Si3	96.85 (6)	Re1 ⁱⁱⁱ —Si2—Re2	114.46 (6)
Si1—Re1—Si3	96.56 (7)	Re1 ^{xv} —Si2—Re2	114.46 (6)
Si2 ^{vi} —Re1—Si3	107.81 (8)	Si1 ^{viii} —Si2—Re2	56.29 (9)
Si2 ^v —Re1—Si3	159.37 (6)	Si1 ⁱⁱ —Si2—Re2	56.29 (9)
Si1 ^{ix} —Re1—Si3 ^x	96.85 (6)	Re1 ⁱⁱⁱ —Si2—Si2 ^{xvi}	55.947 (19)
Si1—Re1—Si3 ^x	96.56 (7)	Re1 ^{xv} —Si2—Si2 ^{xvi}	124.054 (19)
Si2 ^{vi} —Re1—Si3 ^x	159.37 (6)	Si1 ^{viii} —Si2—Si2 ^{xvi}	122.55 (5)
Si2 ^v —Re1—Si3 ^x	107.81 (8)	Si1 ⁱⁱ —Si2—Si2 ^{xvi}	57.45 (5)
Si3—Re1—Si3 ^x	68.46 (18)	Re2—Si2—Si2 ^{xvi}	90.0
Si1 ^{ix} —Re1—Re1 ^{xi}	143.30 (8)	Re1 ⁱⁱⁱ —Si2—Si2 ^{vii}	124.054 (19)

Si1—Re1—Re1 ^{xi}	52.94 (8)	Re1 ^{xv} —Si2—Si2 ^{vii}	55.947 (19)
Si2 ^{vi} —Re1—Re1 ^{xi}	141.12 (5)	Si1 ^{viii} —Si2—Si2 ^{vii}	57.45 (5)
Si2 ^v —Re1—Re1 ^{xi}	141.12 (5)	Si1 ⁱⁱ —Si2—Si2 ^{vii}	122.55 (5)
Si3—Re1—Re1 ^{xi}	54.22 (4)	Re2—Si2—Si2 ^{vii}	90.0
Si3 ^x —Re1—Re1 ^{xi}	54.22 (4)	Si2 ^{xvi} —Si2—Si2 ^{vii}	180.0
Si1 ^{ix} —Re1—Re1 ^{ix}	53.30 (8)	Re1 ⁱⁱⁱ —Si2—Gd ⁱⁱⁱ	76.01 (6)
Si1—Re1—Re1 ^{ix}	142.94 (8)	Re1 ^{xv} —Si2—Gd ⁱⁱⁱ	66.41 (5)
Si2 ^{vi} —Re1—Re1 ^{ix}	106.47 (5)	Si1 ^{viii} —Si2—Gd ⁱⁱⁱ	112.27 (8)
Si2 ^v —Re1—Re1 ^{ix}	106.47 (5)	Si1 ⁱⁱ —Si2—Gd ⁱⁱⁱ	118.78 (6)
Si3—Re1—Re1 ^{ix}	54.22 (4)	Re2—Si2—Gd ⁱⁱⁱ	140.83 (3)
Si3 ^x —Re1—Re1 ^{ix}	54.22 (4)	Si2 ^{xvi} —Si2—Gd ⁱⁱⁱⁱ	63.919 (19)
Re1 ^{xi} —Re1—Re1 ^{ix}	90.0	Si2 ^{vii} —Si2—Gd ⁱⁱⁱ	116.083 (19)
Si1 ^{ix} —Re1—Gd ⁱⁱ	116.473 (18)	Re1 ⁱⁱⁱ —Si2—Gd ^{xv}	66.41 (5)
Si1—Re1—Gd ⁱⁱ	62.214 (12)	Re1 ^{xv} —Si2—Gd ^{xv}	76.01 (6)
Si2 ^{vi} —Re1—Gd ⁱⁱ	67.22 (4)	Si1 ^{viii} —Si2—Gd ^{xv}	118.78 (6)
Si2 ^v —Re1—Gd ⁱⁱ	127.12 (2)	Si1 ⁱⁱ —Si2—Gd ^{xv}	112.27 (8)
Si3—Re1—Gd ⁱⁱ	63.95 (8)	Re2—Si2—Gd ^{xv}	140.83 (3)
Si3 ^x —Re1—Gd ⁱⁱ	123.79 (8)	Si2 ^{xvi} —Si2—Gd ^{xv}	116.083 (19)
Re1 ^{xi} —Re1—Gd ⁱⁱ	73.988 (16)	Si2 ^{vii} —Si2—Gd ^{xv}	63.919 (19)
Re1 ^{ix} —Re1—Gd ⁱⁱ	112.077 (11)	Gd ⁱⁱⁱ —Si2—Gd ^{xv}	78.35 (7)
Si1 ^{ix} —Re1—Gd ⁱ	116.473 (18)	Re1 ⁱⁱⁱ —Si2—Gd	79.226 (13)
Si1—Re1—Gd ⁱ	62.214 (12)	Re1 ^{xv} —Si2—Gd	120.171 (7)
Si2 ^{vi} —Re1—Gd ⁱ	127.12 (2)	Si1 ^{viii} —Si2—Gd	94.29 (9)
Si2 ^v —Re1—Gd ⁱ	67.22 (4)	Si1 ⁱⁱ —Si2—Gd	60.14 (5)
Si3—Re1—Gd ⁱ	123.79 (8)	Re2—Si2—Gd	67.59 (5)
Si3 ^x —Re1—Gd ⁱ	63.95 (8)	Si2 ^{xvi} —Si2—Gd	115.588 (10)
Re1 ^{xi} —Re1—Gd ⁱ	73.988 (16)	Si2 ^{vii} —Si2—Gd	64.411 (10)
Re1 ^{ix} —Re1—Gd ⁱ	112.077 (11)	Gd ⁱⁱⁱ —Si2—Gd	148.88 (7)
Gd ⁱⁱ —Re1—Gd ⁱ	124.42 (2)	Gd ^{xv} —Si2—Gd	74.63 (2)
Si1 ^{ix} —Re1—Gd	110.57 (8)	Re1 ⁱⁱⁱ —Si2—Gd ^{xii}	120.171 (7)
Si1—Re1—Gd	53.19 (8)	Re1 ^{xv} —Si2—Gd ^{xii}	79.226 (13)
Si2 ^{vi} —Re1—Gd	60.75 (5)	Si1 ^{viii} —Si2—Gd ^{xii}	60.14 (5)
Si2 ^v —Re1—Gd	60.75 (5)	Si1 ⁱⁱ —Si2—Gd ^{xii}	94.29 (9)
Si3—Re1—Gd	136.39 (6)	Re2—Si2—Gd ^{xii}	67.59 (5)
Si3 ^x —Re1—Gd	136.39 (6)	Si2 ^{xvi} —Si2—Gd ^{xii}	64.411 (10)
$Re1^{xi}$ —Re1—Gd	106.13 (2)	Si2 ^{vii} —Si2—Gd ^{xii}	115.588 (10)
Re1 ^{ix} —Re1—Gd	163.87 (2)	Gd ⁱⁱⁱ —Si2—Gd ^{xii}	74.63 (2)
Gd ⁱⁱ —Re1—Gd	73.474 (15)	Gd ^{xv} —Si2—Gd ^{xii}	148.88 (7)
Gd ⁱ —Re1—Gd	73,474 (15)	Gd—Si2—Gd ^{xii}	135.19 (9)
Si1 ⁱⁱ —Re2—Si1 ^{xii}	111.66 (9)	$Re1-Si3-Re1^{x}$	111.54 (18)
Si1 ⁱⁱ —Re2—Si1 ^{viii}	120.57 (15)	Re1—Si3—Re1 ^{ix}	71.55 (9)
$si1^{xii}$ Re ² $si1^{xii}$	97.03 (13)	$Re1^x$ —Si3— $Re1^{ix}$	71 55 (9)
Si1 ⁱⁱ —Re2—Si1	97.03 (13)	$Re1-Si3-Re1^{xi}$	71.55 (9)
$si1^{xii}$ Re ² Si1	120 57 (15)	$Re1^x$ —Si3— $Re1^{xi}$	71 55 (9)
Sil ^{viii} —Re2—Sil	111.66 (9)	$Re1^{ix}$ Si3 $Re1^{xi}$	111.54 (18)
Sil ⁱⁱ —Re2—Si2 ^{xiii}	119.72 (8)	Re1—Si3—Si3 ^{xvii}	124.23 (9)
Si1 ^{xii} —Re2—Si2 ^{xiii}	60.28 (8)	Re1 ^x —Si3—Si3 ^{xvii}	124.23 (9)
$Si1^{viii}$ Re2 $Si2^{viii}$	119 72 (8)	Rel ^{ix} —Si3—Si3 ^{xvii}	124 23 (9)
011 102 012	112.12 (0)	1.01 010 010	127.23 (7)

Si1—Re2—Si2 ^{xiii}	60.28 (8)	Re1 ^{xi} —Si3—Si3 ^{xvii}	124.23 (9)
Si1 ⁱⁱ —Re2—Si2	60.28 (8)	Re1—Si3—Gd ⁱⁱ	67.712 (11)
Si1 ^{xii} —Re2—Si2	119.72 (8)	Re1 ^x —Si3—Gd ⁱⁱ	151.41 (5)
Si1 ^{viii} —Re2—Si2	60.28 (8)	Re1 ^{ix} —Si3—Gd ⁱⁱ	129.93 (3)
Si1—Re2—Si2	119.72 (8)	Re1 ^{xi} —Si3—Gd ⁱⁱ	81.779 (12)
Si2 ^{xiii} —Re2—Si2	180.0	Si3 ^{xvii} —Si3—Gd ⁱⁱ	63.68 (8)
Si1 ⁱⁱ —Re2—Re2 ^{xiv}	55.83 (4)	Re1—Si3—Gd ^{xviii}	81.779 (12)
Si1 ^{xii} —Re2—Re2 ^{xiv}	55.83 (4)	Re1 ^x —Si3—Gd ^{xviii}	129.93 (3)
Si1 ^{viii} —Re2—Re2 ^{xiv}	124.17 (4)	Re1 ^{ix} —Si3—Gd ^{xviii}	67.712 (11)
Si1—Re2—Re2 ^{xiv}	124.17 (4)	Re1 ^{xi} —Si3—Gd ^{xviii}	151.41 (5)
Si2 ^{xiii} —Re2—Re2 ^{xiv}	90.0	Si3 ^{xvii} —Si3—Gd ^{xviii}	63.68 (8)
Si2—Re2—Re2 ^{xiv}	90.0	Gd ⁱⁱ —Si3—Gd ^{xviii}	78.66 (6)
Si1 ⁱⁱ —Re2—Re2 ^{viii}	124.17 (4)	Re1—Si3—Gd ^{xix}	151.41 (5)
Si1 ^{xii} —Re2—Re2 ^{viii}	124.17 (4)	Re1 ^x —Si3—Gd ^{xix}	67.712 (11)
Si1 ^{viii} —Re2—Re2 ^{viii}	55.83 (4)	Re1 ^{ix} —Si3—Gd ^{xix}	81.779 (12)
Si1—Re2—Re2 ^{viii}	55.83 (4)	Re1 ^{xi} —Si3—Gd ^{xix}	129.93 (3)
Si2 ^{xiii} —Re2—Re2 ^{viii}	90.0	Si3 ^{xvii} —Si3—Gd ^{xix}	63.68 (8)
Si2—Re2—Re2 ^{viii}	90.0	Gd ⁱⁱ —Si3—Gd ^{xix}	127.36 (16)
Re2 ^{xiv} —Re2—Re2 ^{viii}	180.0	Gd ^{xviii} —Si3—Gd ^{xix}	78.66 (6)
Si1 ⁱⁱ —Re2—Gd ^{viii}	168.29 (6)	Re1—Si3—Gd ^{xx}	129.93 (3)
Si1 ^{xii} —Re2—Gd ^{viii}	59.57 (4)	Re1 ^x —Si3—Gd ^{xx}	81.779 (12)
Si1 ^{viii} —Re2—Gd ^{viii}	56.71 (8)	Re1 ^{ix} —Si3—Gd ^{xx}	151.41 (5)
Si1—Re2—Gd ^{viii}	94.36 (7)	Re1 ^{xi} —Si3—Gd ^{xx}	67.712 (11)
Si2 ^{xiii} —Re2—Gd ^{viii}	64.270 (10)	Si3 ^{xvii} —Si3—Gd ^{xx}	63.68 (8)
Si2—Re2—Gd ^{viii}	115.730 (10)	Gd ⁱⁱ —Si3—Gd ^{xx}	78.66 (6)
Re2 ^{xiv} —Re2—Gd ^{viii}	114.889 (4)	Gd ^{xviii} —Si3—Gd ^{xx}	127.36 (16)
Re2 ^{viii} —Re2—Gd ^{viii}	65.111 (4)	Gd ^{xix} —Si3—Gd ^{xx}	78.66 (6)

Symmetry codes: (i) -y+1/2, -x+1/2, z-1/2; (ii) -y+1/2, -x+1/2, z+1/2; (iii) -x+1/2, y+1/2, -z+1/2; (iv) x+1/2, -y+1/2, z-1/2; (v) -y+1, x, -z; (vi) -y+1, x, z; (vii) x, y, -z; (viii) -x, -y+1, -z; (ix) y, -x, -z; (x) -x, -y, -z; (x) -y, -y, (xii) y-1/2, x+1/2, -z+1/2; (xiii) -x, -y+1, z; (xiv) -x, -y+1, -z+1; (xv) y, -x+1, -z; (xvi) x, y, -z+1; (xvii) -x, -y, -z+1; (xvii) -x, -y, -z+1/2; (xii) y-1/2, x-1/2, -z+1/2; (xi) x-1/2, -y+1/2, z+1/2.