STRUCTURE REPORTS

ISSN 1600-5368

Received 13 October 2014
Accepted 4 November 2014

Edited by I. D. Brown, McMaster University, Canada

Keywords: crystals structure; low-temperature salt hydrates; tin(IV) salts

CCDC reference: 1032661
Supporting information: this article has supporting information at journals.iucr.org/e

open \prec access

Crystal structure of tin(IV) chloride octahydrate

Erik Hennings, Horst Schmidt* and Wolfgang Voigt

TU Bergakademie Freiberg, Institute of Inorganic Chemistry, Leipziger Strasse 29, D-09596 Freiberg, Germany. *Correspondence e-mail: horst.schmidt@chemie.tu-freiberg.de

The title compound, $\left[\mathrm{SnCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$, was crystallized according to the solid-liquid phase diagram at lower temperatures. It is built-up of $\mathrm{SnCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ octahedral units (point group symmetry 2) and lattice water molecules. An intricate three-dimensional network of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds between the complex molecules and the lattice water molecules is formed in the crystal structure.

1. Chemical context

The interest in the stability of tin(IV) salts, especially at lower temperatures, has increased with the recent new determination of the redox potential in aqueous solutions, which is complicated by the presence of chlorido complexes (Gajda et al., 2009). The phase diagram of tin(IV) chloride is not well investigated. Only some points in dilute solutions have been determined by Loomis (1897). For the existing hydrates ($R=$ 8, 5, 4, 3 and 2), Meyerhoffer (1891) described the melting points and the existence fields. The crystal structures of the dihydrate (Semenov et al., 2005), trihydrate (Genge et al., 2004; Semenov et al., 2005), tetrahydrate (Genge et al., 2004; Shihada et al., 2004) and pentahydrate (Barnes et al., 1980; Shihada et al., 2004) have been determined previously. For these salt hydrates, vibrational spectra are also available, classifying all hydrate spectra with point group $D_{4 h}$ symmetry (Brune \& Zeil, 1962).

Figure 1
The building units in $\operatorname{tin}(I V)$ chloride octahydrate [symmetry code: (i) $-x, y,-z+\frac{1}{2}$]. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The coordination of $\operatorname{tin}(\mathrm{IV})$ in the second coordination shell of $\operatorname{tin}(\mathrm{IV})$ chloride octahydrate [symmetry code: (i) $-x, y,-z+\frac{1}{2}$]. Hydrogen bonds are shown as dashed lines.

Figure 3
Formation of chains by water molecules O1 and O2 (bold). Dashed lines indicate hydrogen bonds.

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots \cdot$
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{O} 2{ }^{\mathrm{i}}$	0.84 (1)	1.90 (2)	2.729 (3)	169 (6)
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O}^{3 i}$	0.84 (1)	2.04 (2)	2.825 (3)	157 (5)
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\text {iii }}$	0.84 (1)	1.94 (2)	2.762 (3)	168 (5)
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 3^{\text {iv }}$	0.84 (1)	2.68 (3)	3.389 (2)	143 (4)
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2$	0.84 (1)	1.95 (2)	2.763 (3)	163 (4)
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{Cl} 1^{\text {v }}$	0.83 (1)	2.43 (1)	3.260 (2)	173 (4)
$\mathrm{O} 4-\mathrm{H} 4 B \cdots \mathrm{O}{ }^{\text {vi }}$	0.83 (1)	1.77 (1)	2.598 (3)	176 (4)
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{\text {vii }}$	0.84 (1)	1.80 (1)	2.635 (3)	176 (4)

Symmetry codes: (i) $-x+1, y,-z+\frac{1}{2}$; (ii) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1$; (iii) $x-\frac{1}{2}, y+\frac{1}{2}, z$;
(iv) $-x+1,-y+1,-z+1$; (v) $-x, y,-z+\frac{1}{2}$; (vi) $x-1, y+1, z$; (vii) $x, y+1, z$.

2. Structural commentary

The $\operatorname{tin}(I V)$ ion in tin (IV) chloride octahydrate is situated on a twofold rotation axis and is coordinated by four Cl atoms and two water molecules in a cis-octahedral geometry (Fig. 1), as was observed before for the tetra- and pentahydrate (Shihada et al., 2004). In addition, three water molecules (O1, O2 and O3) are located around the octahedra as non-coordinating water molecules. Every water molecule of the first coordination sphere is connected with two water molecules of the second shell by hydrogen bonds. The chlorine atoms form only one hydrogen bond towards 'free' water molecules of the second shell (Fig. 2).

Table 2
Experimental details.

3. Supramolecular features

Having a larger view of the crystal structure in direction [001] (Fig. 3), it becomes obvious that these non-coordinating water molecules form chains between the octahedrally coordinated tin(IV) ions. These water molecules (O1 and O2) are connected via hydrogen bonds (Table 1) and the chains are oriented along the b-axis direction. Considering all types of hydrogen bonding, a three-dimensional network between the complex molecules and the lattice water molecules results.

4. Database survey

For crystal structure determination of other tin(IV) chloride hydrates, see: Shihada et al. (2004); Semenov et al. (2005); Genge et al. (2004); Barnes et al. (1980).

5. Synthesis and crystallization

Tin(IV) chloride octahydrate was crystallized from an aqueous solution of $53.39 \mathrm{wt} \% \mathrm{SnCl}_{4}$ at 263 K after 2 d . For preparing this solution, tin (IV) chloride pentahydrate (Acros Organics, 98%) was used. The content of Cl^{-}was analysed by titration with AgNO_{3}. The crystals are stable in their saturated solution over a period of at least four weeks.

The samples were stored in a freezer or a cryostat at low temperatures. The crystals were separated and embedded in perfluorinated ether for X-ray diffraction analysis

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were placed in the positions indicated by difference Fourier maps. Distance restraints were applied for the geometries of all water molecules, with $\mathrm{O}-\mathrm{H}$ and $\mathrm{H}-\mathrm{H}$ distance restraints of 0.84 (1) and 1.4 (1) \AA, respectively.

References

Barnes, J. C., Sampson, H. A. \& Weakley, T. J. R. (1980). J. Chem. Soc. Dalton Trans. pp. 949-953.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Brune, H. A. \& Zeil, W. (1962). Z. Phys. Chem. Neue Folge, 32, 384400.

Coppens, P. (1970). In Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.
Gajda, T., Sipos, P. \& Gamsjäger, H. (2009). Monatsh. Chem. 140, 1293-1303.
Genge, A. R. J., Levason, W., Patel, R., Reid, G. \& Webster, M. (2004). Acta Cryst. C60, i47-i49.

Loomis, E. H. (1897). Phys. Rev. (Series I), 4, 273-296.
Meyerhoffer, M. (1891). Bull. Soc. Chem. Paris, 3, 85-86.
Semenov, S. N., Maltsev, E. Y., Timokhin, I. G., Drozdov, A. A. \& Troyanov, S. I. (2005). Mendeleev Commun. 15, 205-207.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shihada, A.-F., Abushamleh, A. S. \& Weller, F. (2004). Z. Anorg. Allg. Chem. 630, 841-847.
Stoe \& Cie (2009). X-AREA and X-RED. Stoe \& Cie, Darmstadt, Germany.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, 480-482 [doi:10.1107/S1600536814024271]

Crystal structure of tin(IV) chloride octahydrate

Erik Hennings, Horst Schmidt and Wolfgang Voigt

Computing details

Data collection: $X-A R E A$ (Stoe \& Cie, 2009); cell refinement: $X-A R E A$ (Stoe \& Cie, 2009); data reduction: X-RED (Stoe \& Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Tin(IV) chloride octahydrate

Crystal data

$\left[\mathrm{SnCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=404.62$
Monoclinic, $C 2 / c$
$a=16.0224$ (15) \AA
$b=7.8530$ (8) \AA
$c=12.6766(12) \AA$
$\beta=119.739$ (7) ${ }^{\circ}$
$V=1384.9(2) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=792 \\
& D_{\mathrm{x}}=1.941 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 13366 \text { reflections } \\
& \theta=1.8-29.6^{\circ} \\
& \mu=2.63 \mathrm{~mm}^{-1} \\
& T=200 \mathrm{~K} \\
& \text { Plate, colourless } \\
& 0.34 \times 0.23 \times 0.12 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS 2T
diffractometer
Radiation source: fine-focus sealed tube
Detector resolution: 6.67 pixels mm^{-1}
rotation method scans
Absorption correction: integration
(Coppens, 1970)
$T_{\text {min }}=0.492, T_{\text {max }}=0.731$
13041 measured reflections
1600 independent reflections
1451 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-22 \rightarrow 21$
$k=-10 \rightarrow 10$
$l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.049$
$S=1.11$
1600 reflections
92 parameters
Hydrogen site location: difference Fourier map
All H-atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0133 P)^{2}+4.9358 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=1.01 \mathrm{e} \AA^{-3}$
12 restraints
$\Delta \rho_{\text {min }}=-0.71 \mathrm{e} \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Sn1	0.0000	$0.86619(3)$	0.2500	$0.02527(8)$
C13	$0.17022(5)$	$0.89264(10)$	$0.37662(6)$	$0.04076(17)$
O4	$-0.00709(13)$	$1.0623(3)$	$0.35862(18)$	$0.0342(4)$
C11	$0.01591(7)$	$0.66227(10)$	$0.12053(8)$	$0.0504(2)$
O1	$0.83339(14)$	$0.1224(3)$	$0.35849(18)$	$0.0341(4)$
O2	$0.24917(15)$	$0.3119(3)$	$0.34936(19)$	$0.0377(4)$
O3	$0.11311(15)$	$0.3211(3)$	$0.4228(2)$	$0.0380(4)$
H4A	$0.030(2)$	$1.146(3)$	$0.376(3)$	$0.057(11)^{*}$
H4B	$-0.0574(14)$	$1.086(4)$	$0.359(3)$	$0.044(9)^{*}$
H3B	$0.085(3)$	$0.414(3)$	$0.414(4)$	$0.070(13)^{*}$
H3A	$0.145(3)$	$0.326(6)$	$0.387(4)$	$0.082(15)^{*}$
H1A	$0.837(3)$	$0.169(5)$	$0.420(2)$	$0.063(12)^{*}$
H2A	$0.270(4)$	$0.405(3)$	$0.341(5)$	$0.100(18)^{*}$
H2B	$0.291(3)$	$0.251(5)$	$0.404(3)$	$0.099(18)^{*}$
H1B	$0.805(4)$	$0.190(6)$	$0.299(4)$	$0.14(2)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Sn1	$0.03433(13)$	$0.02255(12)$	$0.02383(12)$	0.000	$0.01815(10)$	0.000
C13	$0.0320(3)$	$0.0591(4)$	$0.0315(3)$	$0.0162(3)$	$0.0161(3)$	$0.0064(3)$
O4	$0.0290(9)$	$0.0348(10)$	$0.0440(10)$	$-0.0046(8)$	$0.0220(8)$	$-0.0141(9)$
C11	$0.0809(6)$	$0.0363(4)$	$0.0615(5)$	$-0.0147(4)$	$0.0563(5)$	$-0.0188(3)$
O1	$0.0356(10)$	$0.0410(11)$	$0.0311(9)$	$0.0046(8)$	$0.0206(8)$	$-0.0013(8)$
O2	$0.0387(11)$	$0.0412(11)$	$0.0372(10)$	$-0.0055(9)$	$0.0218(9)$	$-0.0020(9)$
O3	$0.0369(10)$	$0.0334(10)$	$0.0508(12)$	$-0.0016(8)$	$0.0273(10)$	$-0.0054(9)$

Geometric parameters ($\AA,{ }^{\circ}$)

Sn1-O4	2.1064 (18)	$\mathrm{Sn} 1-\mathrm{Cl} 3$	2.3906 (7)
Sn1-O4 ${ }^{\text {i }}$	2.1064 (18)	Sn1-Cl1	2.3954 (7)
$\mathrm{Sn} 1-\mathrm{Cl}^{\text {i }}$	2.3906 (7)	$\mathrm{Sn} 1-\mathrm{Cl1}{ }^{\text {i }}$	2.3954 (7)
$\mathrm{O} 4-\mathrm{Sn} 1-\mathrm{O} 4{ }^{\text {i }}$	86.01 (12)	Cl3 ${ }^{\text {i }}$ - $\mathrm{Sn} 1-\mathrm{Cl1}$	94.12 (3)
$\mathrm{O} 4-\mathrm{Sn} 1-\mathrm{Cl3}^{\text {i }}$	87.81 (6)	$\mathrm{Cl} 3-\mathrm{Sn} 1-\mathrm{Cl1}$	92.55 (3)
$\mathrm{O} 4-\mathrm{Sn} 1-\mathrm{Cl3}^{\text {i }}$	84.90 (5)	$\mathrm{O} 4-\mathrm{Sn} 1-\mathrm{Cl1}^{\text {i }}$	88.99 (6)
$\mathrm{O} 4-\mathrm{Sn} 1-\mathrm{Cl} 3$	84.90 (5)	$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Sn} 1-\mathrm{Cl1}^{\mathrm{i}}$	174.47 (6)
$\mathrm{O} 4-\mathrm{Sn} 1-\mathrm{Cl} 3$	87.81 (6)	$\mathrm{Cl3}{ }^{\text {i }}$ - $\mathrm{Sn} 1-\mathrm{Cl}^{1}$	92.55 (3)
Cl3 ${ }^{\text {i }}$ - $\mathrm{Sn} 1-\mathrm{Cl} 3$	170.03 (4)	$\mathrm{Cl} 3-\mathrm{Sn} 1-\mathrm{Cl1}^{\text {i }}$	94.12 (3)

$\mathrm{O} 4 — \mathrm{Sn} 1 — \mathrm{Cl1}$	$174.47(6)$	$\mathrm{Cl1}-\mathrm{Sn1}-\mathrm{Cl1}^{\mathrm{i}}$	$96.09(4)$
$\mathrm{O} 4{ }^{\mathrm{i}} \mathrm{Sn} 1 — \mathrm{Cl1}$	$88.99(6)$		

Symmetry code: (i) $-x, y,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 B \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.84(1)$	$1.90(2)$	$2.729(3)$	$169(6)$
$\mathrm{O} 2 — \mathrm{H} 2 B \cdots 3^{\mathrm{iii}}$	$0.84(1)$	$2.04(2)$	$2.825(3)$	$157(5)$
$\mathrm{O} 2 — \mathrm{H} 2 A \cdots \mathrm{O}^{\text {iv }}$	$0.84(1)$	$1.94(2)$	$2.762(3)$	$168(5)$
$\mathrm{O}_{1}-\mathrm{H} 1 A \cdots \mathrm{Cl3}^{\mathrm{v}}$	$0.84(1)$	$2.68(3)$	$3.389(2)$	$143(4)$
$\mathrm{O} 3 — \mathrm{H} 3 A \cdots \mathrm{O} 2$	$0.84(1)$	$1.95(2)$	$2.763(3)$	$163(4)$
$\mathrm{O} 3 — \mathrm{H} 3 B \cdots \mathrm{Cl1} 1^{\mathrm{i}}$	$0.83(1)$	$2.43(1)$	$3.260(2)$	$173(4)$
$\mathrm{O} 4 — \mathrm{H} 4 B \cdots \mathrm{O}^{\text {vi }}$	$0.83(1)$	$1.77(1)$	$2.598(3)$	$176(4)$
$\mathrm{O} 4 — \mathrm{H} 4 A \cdots \mathrm{O}^{\text {vii }}$	$0.84(1)$	$1.80(1)$	$2.635(3)$	$176(4)$

Symmetry codes: (i) $-x, y,-z+1 / 2$; (ii) $-x+1, y,-z+1 / 2$; (iii) $-x+1 / 2,-y+1 / 2,-z+1$; (iv) $x-1 / 2, y+1 / 2, z$; (v) $-x+1,-y+1,-z+1$; (vi) $x-1, y+1, z$; (vii) x, $y+1, z$.

