

Received 6 October 2014 Accepted 19 October 2014

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; iridium(III); C₂N₂O₂ coordination set

CCDC reference: 1029929 **Supporting information**: this article has supporting information at journals.iucr.org/e

Crystal structure of bis[2-*tert*-butoxy-6-fluoro-3-(pyridin-2-yl- κN)pyridin-4-yl- κC^4](pentane-2,4-dionato- $\kappa^2 O, O'$)iridium(III)

Ki-Min Park^a and Youngjin Kang^b*

^aResearch Institute of Natural Science, Gyeongsang National University, Jinju, 660-701, South Korea, and ^bDivision of Science Education and Department of Chemistry, Kangwon National, University, Chuncheon 220-701, South Korea. *Correspondence e-mail: kangy@kangwon.ac.kr

The title molecule, $[Ir(C_{14}H_{14}FN_2O)_2(C_5H_7O_2)]$, is located on a twofold rotation axis, which passes through the Ir^{III} atom and the central C atom of the pentane-2,4-dionate anion. The Ir^{III} atom adopts a distorted octahedral coordination geometry, being *C*,*N*-chelated by two 2-*tert*-butoxy-6-fluoro-3-(pyridin-2-yl)pyridin-4-yl ligands and *O*,*O'*-chelated by the pentane-2,4-dionato ligand. The bipyridinate ligands, which are perpendicular to each other [dihedral angle between the two least-squares planes = 89.95 (5)°], are arranged in a *cis-C*,*C'* and *trans-N*,*N'* fashion relative to the central metal cation. Intramolecular C-H···O and C-H···N hydrogen bonds and intermolecular C-H···F hydrogen bonds as well as $\pi - \pi$ interactions between neighbouring pyridine rings [centroid–centroid distance 3.680 (1) Å] contribute to the stabilization of the molecular and crystal structure, respectively.

1. Chemical context

Iridium(III) compounds with fluorinated main dipyridyl ligands have attracted much attention due to their colour purity and high external quantum efficiency in organic lightemitting diodes (Lee *et al.*, 2009; Park *et al.*, 2013). In particular, heteroleptic Ir^{III} compounds have many advantages such as easy tuning of emission energies and photophysical properties by modification of the ancillary ligands (Oh *et al.*, 2013). Herein, we report the results of the crystal-structure determination of an iridium(III) compound, [Ir(C₁₄H₁₄F-N₂O)₂(C₅H₇O₂)], with acetylacetonate (acac, *O,O'*) as an ancillary ligand.

2. Structural commentary

The molecular structure of the title compound, Fig. 1, is generated by twofold rotation symmetry. The twofold rotation

research communications

Figure 1

View of the molecular structure of the title compound, with the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level; dashed lines represent intramolecular C-H···O and C-H···N hydrogen bonds [Symmetry code: (i) - x, y, $\frac{3}{2} - z$].

axis passes through the Ir^{III} atom and the central C atom (C15) of the acetylacetonate ligand. Therefore, the asymmetric unit consists of one Ir(III) atom on Wyckoff position 4e, one half of the acetylacetonate anion and one 2-tert-butoxy-6-fluoro-3-(pyridin-2-yl)pyridin-4-yl ligand. The Ir^{III} atom is six-coordinated by the two main C,N-bidentate ligands and one ancillary O,O'-bidentate ligand, forming a distorted octahedral coordination sphere due to the narrow ligand bite angles, which range from 80.36 (7) to 88.65 (8)°. The C,N-bidentate ligands, which are perpendicular to each other [dihedral angle between the least-squares planes = $89.95 (5)^{\circ}$], are arranged in

Figure 2

Packing plot of the molecular components in the title compound. Yellow and black dashed lines represent intermolecular C-H···F and π - π stacking interactions, respectively. H atoms not involved in intermolecular interactions have been omitted for clarity.

Table 1 Selected bon	d lengths (Å).		
I=1 C1	1.0760 (10)	I=1 02	2.1

Ir1-C1	1.9760 (19)	Ir1-O2	2.1393 (15)
Ir1-N1	2.0344 (16)		

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C7−H7···O1	0.95	2.27	2.870 (2)	120
$C10-H10\cdots O2^{i}$	0.95	2.48	3.089 (2)	122
$C10-H10\cdots F1^{ii}$	0.95	2.41	3.055 (2)	125
C12−H12C···N2	0.98	2.29	2.927 (3)	122
$C14 - H14B \cdot \cdot \cdot N2$	0.98	2.59	3.153 (3)	116

Symmetry codes: (i) $-x, y, -z + \frac{3}{2}$; (ii) $x - \frac{1}{2}, y + \frac{1}{2}, z$.

a *cis-C*, C' and *trans-N*, N' fashion. The Ir-C bond length of 1.9760 (19) Å is shorter than the Ir-N bond length of 2.0344 (16) Å due to the electronegative fluorine substituent (Table 1). The Ir-C, Ir-N, and Ir-O bond lengths are in normal ranges as reported for similar Ir^{III} compounds, e.g. [Ir(dfpypy)₂(acac); dfpypy is a difuorinated bipyridine] (Kang et al., 2013) or Ir(2',6'-bis(2-methoxyethoxy)-2,3'-bipyridinato-N,C')(picolinate) (Frey et al., 2014). Within the C,N-bidentate ligand of the title compound, the two pyridine rings are approximately co-planar, with a dihedral angle between the rings of 5.77 (9)°.

Table 3 Experimental details.

Crystal data	
Chemical formula	$[Ir(C_{14}H_{14}FN_{2}O)_{2}(C_{5}H_{7}O_{2})]$
$M_{ m r}$	781.85
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	173
<i>a</i> , <i>b</i> , <i>c</i> (Å)	16.9404 (12), 10.7783 (7), 17.2561 (11)
β (°)	100.001 (1)
$V(Å^3)$	3102.9 (4)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	4.36
Crystal size (mm)	$0.16 \times 0.12 \times 0.09$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Sheldrick, 1996)
T_{\min}, T_{\max}	0.537, 0.687
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	15125, 3881, 3717
R _{int}	0.024
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.668
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.017, 0.039, 1.01
No. of reflections	3881
No. of parameters	200
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.48, -0.59

Computer programs: APEX2 and SAINT (Bruker, 2006), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2005) and publCIF (Westrip, 2010).

3. Supramolecular features

The molecular structure is stabilized by weak intramolecular C-H···O and C-H···N hydrogen bonds (Table 2). Intermolecular C-H···F hydrogen bonds and $\pi - \pi$ interactions $[Cg1-Cg1^{iii} = 3.680 (1) \text{ Å}, Cg1$ is the centroid of the N1, C6-C10 ring, symmetry code: (iii) -x, 1 - y, 2 - z] contribute to the stabilization of the crystal structure (Fig. 2).

4. Synthesis and crystallization

The title compound was synthesized according to a previous report (Oh *et al.*, 2013). Yellow single crystals were obtained by slow evaporation from a dichloromethane/hexane solution.

5. Refinement

Crystal data, data collection and crystal structure refinement details are summarized in Table 3. All H atoms were positioned geometrically and refined using a riding model, with d(C-H) = 0.95 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ for Csp^2 H atoms, and 0.98 Å, $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl protons.

Acknowledgements

This work was supported by the Industrial Strategic Technology Development Program (10039141) funded by MOTIE (Ministry of Trade, Industry & Energy, Korea) and KEIT (Korea Evaluation Institute of Industrial Technology).

References

- Brandenburg, K. (2005). *DIAMOND*. Crystal Impact GbR, Germany.
- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Frey, J., Curchod, B. F. E., Scopelliti, R., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M. K. & Baranoff, E. (2014). *Dalton Trans.* 43, 5667–5679.
- Kang, Y., Chang, Y.-L., Lu, J.-S., Ko, S.-B., Rao, Y., Varlan, M., Lu, Z.-H. & Wang, S. (2013). J. Mater. Chem. C, 1, 441–450.
- Lee, S. J., Park, K.-M., Yang, K. & Kang, Y. (2009). *Inorg. Chem.* 48, 1030–1037.
- Oh, H., Park, K.-M., Hwang, H., Oh, S., Lee, J. H., Lu, J.-S., Wang, S. & Kang, Y. (2013). *Organometallics*, **32**, 6427–6436.
- Park, J., Oh, H., Oh, S., Kim, J., Park, H. J., Kim, O. Y., Lee, J. Y. & Kang, Y. (2013). Org. Electron. 14, 3228–3233.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, 427-429 [doi:10.1107/S1600536814022934]

Crystal structure of bis[2-*tert*-butoxy-6-fluoro-3-(pyridin-2-yl- κN)pyridin-4-yl- κC^4](pentane-2,4-dionato- $\kappa^2 O, O'$)iridium(III)

Ki-Min Park and Youngjin Kang

Computing details

Data collection: *APEX2* (Bruker, 2006); cell refinement: *APEX2* (Bruker, 2006); data reduction: *SAINT* (Bruker, 2006); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2005); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *publCIF* (Westrip, 2010).

$Bis[2-tert-butoxy-6-fluoro-3-(pyridin-2-yl-\kappa N)pyridin-4-yl-\kappa C^{4}] (pentane-2,4-dionato-\kappa^{2}O,O') iridium (III)$

Crystal data	
$[Ir(C_{14}H_{14}FN_2O)_2(C_5H_7O_2)]$ $M_r = 781.85$ Monoclinic, C2/c Hall symbol: -C 2yc a = 16.9404 (12) Å b = 10.7783 (7) Å c = 17.2561 (11) Å $\beta = 100.001$ (1)° V = 3102.9 (4) Å ³ Z = 4	F(000) = 1552 $D_x = 1.674 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3721 reflections $\theta = 2.3-28.3^{\circ}$ $\mu = 4.36 \text{ mm}^{-1}$ T = 173 K Block, yellow $0.16 \times 0.12 \times 0.09 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.537, T_{\max} = 0.687$	15125 measured reflections 3881 independent reflections 3717 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 28.3^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -22 \rightarrow 21$ $k = -14 \rightarrow 14$ $l = -15 \rightarrow 23$
Refinement Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.017$ $wR(F^2) = 0.039$ S = 1.01 3881 reflections 200 parameters 0 restraints	 Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0163P)^{2} + 5.6671P] \qquad \Delta \rho_{max} = 0.48 \text{ e } \text{\AA}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.59 \text{ e } \text{\AA}^{-3}$ $(\Delta / \sigma)_{max} = 0.001$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates	and isotropic of	or equivalent isotro	pic displacement	parameters	$(Å^2)$	ļ
-------------------------------	------------------	----------------------	------------------	------------	---------	---

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ir1	0.0000	0.424606 (10)	0.7500	0.01166 (4)	
F1	0.22407 (8)	0.06652 (13)	0.79551 (8)	0.0273 (3)	
01	0.08930 (9)	0.14456 (15)	0.99685 (8)	0.0214 (3)	
N1	-0.04307 (9)	0.41821 (15)	0.85288 (10)	0.0135 (3)	
N2	0.15918 (10)	0.10711 (16)	0.89537 (10)	0.0180 (4)	
C1	0.06958 (11)	0.29314 (18)	0.80481 (11)	0.0126 (4)	
C2	0.12693 (11)	0.2228 (2)	0.77450 (12)	0.0169 (4)	
H2	0.1371	0.2354	0.7226	0.020*	
C3	0.16737 (11)	0.1357 (2)	0.82308 (12)	0.0180 (4)	
C4	0.10416 (11)	0.17160 (19)	0.92486 (12)	0.0162 (4)	
C5	0.05807 (10)	0.26689 (18)	0.88253 (11)	0.0127 (4)	
C6	-0.00488 (11)	0.33982 (18)	0.90962 (11)	0.0129 (4)	
C7	-0.02889 (12)	0.33774 (19)	0.98317 (11)	0.0160 (4)	
H7	-0.0015	0.2861	1.0237	0.019*	
C8	-0.09224 (12)	0.41045 (19)	0.99727 (12)	0.0190 (4)	
H8	-0.1080	0.4099	1.0475	0.023*	
C9	-0.13243 (12)	0.4840 (2)	0.93726 (12)	0.0205 (4)	
H9	-0.1776	0.5317	0.9449	0.025*	
C10	-0.10572 (12)	0.4864 (2)	0.86643 (12)	0.0179 (4)	
H10	-0.1325	0.5382	0.8256	0.021*	
C11	0.13969 (13)	0.06280 (19)	1.05388 (12)	0.0189 (4)	
C12	0.14509 (17)	-0.0675 (2)	1.02218 (16)	0.0335 (6)	
H12A	0.0912	-0.1032	1.0093	0.050*	
H12B	0.1781	-0.1189	1.0621	0.050*	
H12C	0.1695	-0.0647	0.9747	0.050*	
C13	0.09314 (16)	0.0622 (3)	1.12145 (15)	0.0358 (6)	
H13A	0.0397	0.0271	1.1035	0.054*	
H13B	0.0879	0.1474	1.1398	0.054*	
H13C	0.1217	0.0118	1.1647	0.054*	
C14	0.22125 (14)	0.1217 (3)	1.07830 (14)	0.0307 (5)	
H14A	0.2148	0.2057	1.0979	0.046*	
H14B	0.2487	0.1256	1.0329	0.046*	

supporting information

H14C	0.2530	0.0718	1.1199	0.046*	
O2	0.08159 (9)	0.56660 (14)	0.79971 (9)	0.0209 (3)	
C15	0.0000	0.7398 (3)	0.7500	0.0318 (8)	
H15	0.0000	0.8280	0.7500	0.038*	
C16	0.06984 (15)	0.6828 (2)	0.78927 (13)	0.0244 (5)	
C17	0.14050 (18)	0.7636 (3)	0.82222 (15)	0.0390 (6)	
H17A	0.1846	0.7114	0.8482	0.059*	
H17B	0.1248	0.8218	0.8605	0.059*	
H17C	0.1579	0.8100	0.7794	0.059*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ir1	0.01340 (5)	0.01297 (5)	0.00844 (5)	0.000	0.00137 (4)	0.000
F1	0.0230 (6)	0.0369 (8)	0.0223 (7)	0.0164 (6)	0.0047 (5)	-0.0021 (6)
01	0.0240 (7)	0.0250 (8)	0.0158 (7)	0.0097 (6)	0.0052 (6)	0.0096 (6)
N1	0.0140 (7)	0.0146 (8)	0.0117 (8)	-0.0011 (6)	0.0017 (6)	-0.0012 (6)
N2	0.0173 (8)	0.0188 (9)	0.0170 (9)	0.0019 (7)	0.0003 (7)	-0.0005 (7)
C1	0.0107 (8)	0.0140 (9)	0.0120 (9)	-0.0023 (7)	-0.0014 (7)	-0.0026 (7)
C2	0.0151 (9)	0.0228 (10)	0.0126 (9)	0.0011 (8)	0.0019 (7)	-0.0020 (8)
C3	0.0133 (9)	0.0212 (11)	0.0188 (10)	0.0029 (8)	0.0009(7)	-0.0048 (8)
C4	0.0159 (9)	0.0172 (10)	0.0146 (10)	-0.0018 (8)	0.0003 (7)	0.0007 (8)
C5	0.0118 (8)	0.0147 (9)	0.0112 (9)	-0.0015 (7)	0.0007 (7)	-0.0005 (7)
C6	0.0138 (8)	0.0123 (9)	0.0119 (9)	-0.0018 (7)	0.0001 (7)	-0.0003 (7)
C7	0.0190 (9)	0.0161 (10)	0.0128 (10)	-0.0001 (8)	0.0028 (7)	0.0020 (8)
C8	0.0219 (10)	0.0219 (11)	0.0147 (10)	-0.0009 (8)	0.0072 (8)	-0.0003 (8)
С9	0.0199 (10)	0.0243 (11)	0.0188 (10)	0.0061 (9)	0.0072 (8)	-0.0002 (9)
C10	0.0183 (9)	0.0204 (10)	0.0151 (10)	0.0046 (8)	0.0033 (8)	0.0023 (8)
C11	0.0226 (10)	0.0180 (10)	0.0143 (10)	0.0030 (8)	-0.0018 (8)	0.0062 (8)
C12	0.0483 (15)	0.0170 (11)	0.0309 (14)	-0.0015 (11)	-0.0051 (11)	0.0037 (10)
C13	0.0379 (14)	0.0486 (17)	0.0223 (12)	0.0122 (12)	0.0091 (10)	0.0177 (11)
C14	0.0304 (12)	0.0350 (13)	0.0236 (12)	-0.0092 (11)	-0.0041 (10)	-0.0018 (10)
02	0.0287 (8)	0.0202 (8)	0.0137 (7)	-0.0078 (6)	0.0034 (6)	-0.0029 (6)
C15	0.055 (2)	0.0143 (15)	0.0311 (19)	0.000	0.0203 (16)	0.000
C16	0.0433 (13)	0.0193 (11)	0.0147 (10)	-0.0088 (10)	0.0161 (9)	-0.0042 (8)
C17	0.0612 (17)	0.0295 (14)	0.0271 (14)	-0.0228 (13)	0.0095 (12)	-0.0064 (11)

Geometric parameters (Å, °)

Ir1—C1 ⁱ	1.9760 (19)	C9—C10	1.375 (3)	
Ir1—C1	1.9760 (19)	С9—Н9	0.9500	
Ir1—N1 ⁱ	2.0344 (16)	C10—H10	0.9500	
Ir1—N1	2.0344 (16)	C11—C14	1.512 (3)	
Ir1—O2	2.1393 (15)	C11—C12	1.516 (3)	
Ir1—O2 ⁱ	2.1393 (14)	C11—C13	1.517 (3)	
F1—C3	1.365 (2)	C12—H12A	0.9800	
O1—C4	1.342 (2)	C12—H12B	0.9800	
01—C11	1.477 (2)	C12—H12C	0.9800	

N1—C10	1.345 (3)	C13—H13A	0.9800
N1—C6	1.368 (2)	C13—H13B	0.9800
N2—C3	1.315 (3)	C13—H13C	0.9800
N2—C4	1.333 (3)	C14—H14A	0.9800
C1—C2	1.403 (3)	C14—H14B	0.9800
C1—C5	1.417 (3)	C14—H14C	0.9800
C2—C3	1.362 (3)	O2—C16	1.276 (3)
C2—H2	0.9500	C15—C16	1.400 (3)
C4-C5	1414(3)	$C_{15} - C_{16}^{i}$	1400(3)
C_{5}	1.465 (3)	C15—H15	0.9500
C6-C7	1 309 (3)	C16-C17	1 509 (3)
C7-C8	1.399(3)	C_{17} H_{17}	0.9800
C7_H7	0.0500	C17 H17R	0.9800
C^{*}	1.385(3)	C17 H17C	0.9800
C_{0}	1.585 (5)		0.9800
Со—по	0.9300		
$C1^{i}$ $Ir1 - C1$	88.37 (10)	C10—C9—C8	118.72 (19)
$C1^{i}$ —Ir1—N1 ⁱ	80.36 (7)	C10—C9—H9	120.6
C1—Ir1—N1 ⁱ	96.83 (7)	С8—С9—Н9	120.6
$C1^{i}$ Ir1 N1	96 83 (7)	N1-C10-C9	122.37(19)
C1—Ir1—N1	80 36 (7)	N1-C10-H10	118.8
$N1^{i}$ Ir1 N1	176 12 (9)	C9-C10-H10	118.8
$C1^{i}$ Ir I Ω^{2}	170.12(5) 174.32(7)	01-C11-C14	109.26 (17)
$C1_{1}r1_{0}$	91.77(7)	01 - C11 - C12	109.20(17) 112.12(18)
$N1^{i}$ Ir1 02	93 98 (6)	C_{14} C_{11} C_{12}	112.12(10) 112.3(2)
N1 Ir1 O2	88 80 (6)	$C_{14} = C_{11} = C_{12}$	112.3(2)
$C1^{i}$ $Ir1 O2^{i}$	01.77(7)	$C_{14} C_{11} C_{13}$	101.30(17)
$C_1 = 11 = 02$	91.77(7)	$C_{14}^{} C_{11}^{} C_{13}^{}$	111.1(2) 110.2(2)
C_1 $ C_2$ C_1 $ C_2$ C_1 $ C_2$ C_2	1/4.32(7)	C_{12} C_{11} C_{12} H_{12A}	110.2 (2)
N1 - I11 - O2	00.00(0)	C11 - C12 - H12R	109.5
$NI - III - O2^{i}$	95.98 (0)		109.5
$02 - 1 f 1 - 02^{-1}$	88.05 (8)	H12A - C12 - H12B	109.5
C4 - OI - CII	124.52(10)	H_{12}	109.5
C10 N1 $C6$	120.19 (17)	H12A - C12 - H12C	109.5
C10—N1—Ir1	123.15 (14)	H12B— $C12$ — $H12C$	109.5
C_{0} NI-Irl	116.67 (12)	CII—CI3—HI3A	109.5
C3—N2—C4	115.84 (18)	CII—CI3—HI3B	109.5
C2-C1-C5	117.59 (18)	H13A—C13—H13B	109.5
C2—C1—Ir1	127.09 (15)	C11—C13—H13C	109.5
C5—C1—Ir1	115.31 (13)	H13A—C13—H13C	109.5
C3—C2—C1	116.74 (18)	H13B—C13—H13C	109.5
C3—C2—H2	121.6	C11—C14—H14A	109.5
C1—C2—H2	121.6	C11—C14—H14B	109.5
N2—C3—C2	128.36 (19)	H14A—C14—H14B	109.5
N2—C3—F1	113.52 (18)	C11—C14—H14C	109.5
C2—C3—F1	118.12 (18)	H14A—C14—H14C	109.5
N2-C4-O1	119.76 (18)	H14B—C14—H14C	109.5
N2—C4—C5	122.80 (18)	C16—O2—Ir1	124.86 (15)
O1—C4—C5	117.42 (17)	C16—C15—C16 ⁱ	127.9 (3)

C4—C5—C1	118.65 (17)	C16—C15—H15	116.1
C4—C5—C6	126.30 (17)	C16 ⁱ —C15—H15	116.1
C1—C5—C6	114.98 (17)	O2-C16-C15	126.7 (2)
N1—C6—C7	118.92 (17)	O2-C16-C17	114.8 (2)
N1—C6—C5	112.52 (16)	C15—C16—C17	118.5 (2)
C7—C6—C5	128.56 (17)	C16—C17—H17A	109.5
C8—C7—C6	120.46 (18)	C16—C17—H17B	109.5
С8—С7—Н7	119.8	H17A—C17—H17B	109.5
С6—С7—Н7	119.8	C16—C17—H17C	109.5
C7—C8—C9	119.21 (19)	H17A—C17—H17C	109.5
С7—С8—Н8	120.4	H17B—C17—H17C	109.5
С9—С8—Н8	120.4		
C1 ⁱ —Ir1—N1—C10	-89.11 (17)	C2—C1—C5—C4	-0.4 (3)
C1—Ir1—N1—C10	-176.28 (17)	Ir1—C1—C5—C4	178.33 (14)
O2—Ir1—N1—C10	91.72 (16)	C2—C1—C5—C6	-177.59 (17)
O2 ⁱ —Ir1—N1—C10	3.15 (16)	Ir1—C1—C5—C6	1.2 (2)
C1 ⁱ —Ir1—N1—C6	90.96 (14)	C10—N1—C6—C7	-3.9(3)
C1—Ir1—N1—C6	3.79 (14)	Ir1—N1—C6—C7	176.01 (14)
O2—Ir1—N1—C6	-88.21 (14)	C10—N1—C6—C5	175.95 (17)
O2 ⁱ —Ir1—N1—C6	-176.77 (14)	Ir1—N1—C6—C5	-4.1 (2)
$C1^{i}$ —Ir1—C1—C2	78.83 (17)	C4—C5—C6—N1	-175.00 (18)
$N1^{i}$ —Ir1—C1—C2	-1.26 (18)	C1—C5—C6—N1	1.9 (2)
N1—Ir1—C1—C2	176.04 (18)	C4—C5—C6—C7	4.9 (3)
O2—Ir1—C1—C2	-95.48 (17)	C1—C5—C6—C7	-178.21 (19)
C1 ⁱ —Ir1—C1—C5	-99.77 (15)	N1—C6—C7—C8	2.4 (3)
N1 ⁱ —Ir1—C1—C5	-179.86 (14)	C5—C6—C7—C8	-177.44 (19)
N1—Ir1—C1—C5	-2.56 (13)	C6—C7—C8—C9	1.0 (3)
O2—Ir1—C1—C5	85.92 (14)	C7—C8—C9—C10	-2.8(3)
C5—C1—C2—C3	-0.6 (3)	C6—N1—C10—C9	2.1 (3)
Ir1—C1—C2—C3	-179.21 (15)	Ir1—N1—C10—C9	-177.85 (16)
C4—N2—C3—C2	0.1 (3)	C8—C9—C10—N1	1.4 (3)
C4—N2—C3—F1	-179.61 (17)	C4—O1—C11—C14	65.0 (3)
C1—C2—C3—N2	0.9 (3)	C4-01-C11-C12	-60.2 (3)
C1—C2—C3—F1	-179.45 (17)	C4—O1—C11—C13	-177.8 (2)
C3—N2—C4—O1	176.95 (18)	C1—Ir1—O2—C16	-177.15 (16)
C3—N2—C4—C5	-1.3 (3)	N1 ⁱ —Ir1—O2—C16	85.88 (16)
C11—O1—C4—N2	11.9 (3)	N1—Ir1—O2—C16	-96.84 (16)
C11—O1—C4—C5	-169.79 (18)	O2 ⁱ —Ir1—O2—C16	-2.82 (13)
N2—C4—C5—C1	1.4 (3)	Ir1—O2—C16—C15	6.0 (3)
O1—C4—C5—C1	-176.82 (17)	Ir1—O2—C16—C17	-172.81 (14)
N2—C4—C5—C6	178.27 (18)	C16 ⁱ —C15—C16—O2	-3.43 (16)
O1—C4—C5—C6	0.0 (3)	C16 ⁱ —C15—C16—C17	175.3 (2)

Symmetry code: (i) -x, y, -z+3/2.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
С7—Н7…О1	0.95	2.27	2.870 (2)	120	
C10—H10…O2 ⁱ	0.95	2.48	3.089 (2)	122	
C10—H10…F1 ⁱⁱ	0.95	2.41	3.055 (2)	125	
C12—H12C···N2	0.98	2.29	2.927 (3)	122	
C14—H14 <i>B</i> ····N2	0.98	2.59	3.153 (3)	116	

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*, *y*, -*z*+3/2; (ii) *x*-1/2, *y*+1/2, *z*.