

OPEN 🗟 ACCESS

Crystal structure of triaqua(1,10-phenanthroline- $\kappa^2 N, N'$)(2,4,5-trifluoro-3methoxybenzoato- κO^1)cobalt(II) 2,4,5-trifluoro-3-methoxybenzoate

Junshan Sun

Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China. *Correspondence e-mail: klsz79@163.com

Received 21 September 2014; accepted 7 October 2014

Edited by M. Weil, Vienna University of Technology, Austria

The title salt, $[Co(C_8H_4F_3O_3)(C_{12}H_8N_2)(H_2O)_3](C_8H_4F_3O_3)$, was obtained under solvothermal conditions by the reaction of 2,4,5-trifluoro-3-methoxybenzoic acid with CoCl₂ in the presence of 1,10-phenanthroline (phen). The Co^{II} ion is octahedrally coordinated by two N atoms [Co-N = 2.165 (2)and 2.129 (2) Å] from the phen ligand, by one carboxylate O atom [Co-O = 2.107 (1) Å] and by three O atoms from water molecules [Co-O = 2.093 (1), 2.102 (1) and 2.114 (1) Å]. The equatorial positions of the slightly distorted octahedron are occupied by the N atoms, the carboxylate O and one water O atom. An intra- and intermolecular $O-H \cdots O$ hydrogenbonding network between the water-containing complex cation and the organic anion leads to the formation of ribbons parallel to [010].

Keywords: crystal structure; cobalt(II) complex; phenanthroline ligands; 2,4,5-trifluoro-3-methoxybenzoate ligands; hydrogen bonding.

CCDC reference: 1027800

1. Related literature

For complexes of Co^{II}, see: Wang *et al.* (2008); Li *et al.* (2014). For metal cations chelated by phenanthroline or its derivatives, see: Liu *et al.* (2006); Kaizer *et al.* (2006).

 $\beta = 116.942 \ (9)^{\circ}$

Z = 4

V = 2862.6 (9) Å³

Mo $K\alpha$ radiation

 $0.31 \times 0.24 \times 0.22 \text{ mm}$

14578 measured reflections

5074 independent reflections

4221 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.70 \text{ mm}^{-1}$

T = 273 K

 $R_{\rm int} = 0.031$

417 parameters

 $\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$

2. Experimental

2.1. Crystal data

 $\begin{array}{l} [\mathrm{Co}(\mathrm{C_8H_4F_3O_3})(\mathrm{C_{12}H_8N_2})-\\ (\mathrm{H_2O})_3](\mathrm{C_8H_4F_3O_3})\\ M_r = 703.41\\ \mathrm{Monoclinic}, \ P2_1/c\\ a = 17.177 \ (3) \ \mathrm{\AA}\\ b = 7.0429 \ (14) \ \mathrm{\AA}\\ c = 26.543 \ (4) \ \mathrm{\AA} \end{array}$

2.2. Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) T_{min} = 0.813, T_{max} = 0.862

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.083$ S = 1.055074 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O4−H4A…O1	0.85	1.78	2.604 (2)	163
$O4 - H4B \cdot \cdot \cdot O8^{i}$	0.85	1.89	2.729 (2)	169
$O5-H5A\cdots O8^{ii}$	0.85	1.94	2.791 (2)	176
$O5-H5B\cdots O6^{iii}$	0.85	2.15	2.976 (2)	165
$O6-H6A\cdots O1^{iv}$	0.85	1.90	2.738 (2)	167
$O6-H6B\cdots O7^{ii}$	0.85	1.77	2.623(2)	176

Symmetry codes: (i) x - 1, y, z; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$; (iv) x, y + 1, z.

Data collection: *SMART* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5067).

References

Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Kaizer, J., Csay, T., Speier, G., Réglier, M. & Giorgi, M. (2006). Inorg. Chem. Commun. 9, 1037–1039.

Li, X., Li, J., Li, M. K. & Fei, Z. (2014). J. Mol. Struct. 1059, 294-298.

Liu, J.-W., Zhu, B., Tian, Y. & Gu, C.-S. (2006). *Acta Cryst.* E62, m2030–m2032. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

Wang, M., Ma, C. B., Wang, H. S., Chen, C. N. & Liu, Q. T. (2008). J. Mol. Struct. 873, 94–100.

supporting information

Acta Cryst. (2014). E70, m367-m368 [doi:10.1107/S1600536814022077]

Crystal structure of triaqua(1,10-phenanthroline- $\kappa^2 N, N'$)(2,4,5-trifluoro-3-methoxybenzoato- κO^1)cobalt(II) 2,4,5-trifluoro-3-methoxybenzoate

Junshan Sun

S1. Experimental

The reaction was carried out under solvothermal conditions. 2,4,5-Trifluoro-3-methoxyl benzoic acid (0.220 g, 1 mmol), $CoCl_2$ (0.130 g, 1 mmol) and phenanthroline (0.156 g, 1 mmol) were added to an airtight vessel together with methanol and water in a ratio of 1:2 (ν/ν). The vessel was heated at 393 K for three days and was then cooled down to room temperature with a rate of 10 Kh⁻¹. The resulting blue solution was filtered. The filtrate was placed for several days yielding blue block-shaped crystals in a yield of 78%. Elemental analysis: calc. for $C_{28}H_{22}CoF_6N_2O_9$: C 47.81, H 3.15, N 3.98; found: C 47.50, H 3.47, N 3.62. The elemental analyses were performed with a Perkin-Elmer model 2400 series II.

S2. Refinement

The water H atoms could be located in difference Fourier maps and were refined with a distance O–H of 0.85 Å, the aromatic H atoms were placed in calculated positions. The $U_{iso}(H)$ values were set at $1.2U_{eq}(C)$ for the aromatic H atoms, and $1.5U_{eq}(O)$ for water molecules.

Figure 1

The molecular structure of title compound, with at ¹ om labels and displacement ellipsoids drawn at the 30% probability level.

Figure 2

The crystal packing of title compound. Hydrogen bonds are shown by dashed lines.

$\label{eq:constraint} Triaqua (1,10-phenanthroline-\kappa^2 N, N') (2,4,5-trifluoro-3-methoxybenzoato-\kappa O^1) cobalt (II) 2,4,5-trifluoro-3-methoxybenzoate$

Crystal data

-	
$[Co(C_8H_4F_3O_3)(C_{12}H_8N_2)(H_2O)_3](C_8H_4F_3O_3)$ $M_r = 703.41$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 17.177 (3) Å b = 7.0429 (14) Å c = 26.543 (4) Å $\beta = 116.942$ (9)° V = 2862.6 (9) Å ³ Z = 4	F(000) = 1428 $D_x = 1.632 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6632 reflections $\theta = 2.4-27.5^{\circ}$ $\mu = 0.70 \text{ mm}^{-1}$ T = 273 K Block, blue $0.31 \times 0.24 \times 0.22 \text{ mm}$
Data collection	
Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans	Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{min} = 0.813$, $T_{max} = 0.862$ 14578 measured reflections 5074 independent reflections 4221 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.031$	$k = -8 \rightarrow 8$
$\theta_{\rm max} = 25.1^{\circ}, \theta_{\rm min} = 1.7^{\circ}$	$l = -30 \rightarrow 31$
$h = -18 \rightarrow 20$	

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from
$wR(F^2) = 0.083$	neighbouring sites
<i>S</i> = 1.05	H-atom parameters constrained
5074 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0434P)^2 + 0.4144P]$
417 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.055$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.32 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
Col	0.036012 (16)	0.98486 (3)	0.849126 (11)	0.03250 (10)
F1	0.26524 (9)	0.3645 (2)	0.97664 (7)	0.0707 (4)
F2	0.50025 (8)	0.4048 (2)	0.93279 (7)	0.0792 (5)
F3	0.42723 (10)	0.7110 (3)	0.86781 (7)	0.0915 (6)
01	0.11946 (9)	0.54591 (19)	0.90080 (7)	0.0471 (4)
O2	0.15660 (8)	0.84291 (19)	0.89122 (6)	0.0438 (3)
O3	0.42421 (11)	0.2330 (2)	0.99177 (9)	0.0785 (6)
O4	-0.02612 (8)	0.73632 (18)	0.85611 (6)	0.0400 (3)
H4A	0.0146	0.6550	0.8702	0.060*
H4B	-0.0695	0.6930	0.8271	0.060*
05	0.02512 (10)	0.9156 (2)	0.76868 (6)	0.0559 (4)
H5A	0.0644	0.9599	0.7609	0.084*
H5B	-0.0091	0.8439	0.7422	0.084*
O6	0.09820 (9)	1.22487 (18)	0.83776 (6)	0.0396 (3)
H6A	0.1083	1.3132	0.8616	0.059*
H6B	0.1455	1.1992	0.8362	0.059*
N1	0.04641 (11)	1.1074 (2)	0.92526 (7)	0.0369 (4)
N2	-0.09265 (11)	1.1051 (2)	0.82265 (7)	0.0398 (4)
C1	0.17226 (12)	0.6698 (3)	0.90106 (8)	0.0358 (4)
C2	0.26251 (12)	0.6034 (3)	0.91315 (9)	0.0376 (5)
C3	0.30280 (14)	0.4504 (3)	0.94752 (10)	0.0455 (5)
C4	0.38301 (14)	0.3792 (3)	0.95534 (10)	0.0526 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C5	0.42300 (14)	0.4690 (3)	0.92756 (10)	0.0528 (6)
C6	0.38504 (15)	0.6250 (4)	0.89423 (10)	0.0559 (6)
C7	0.30619 (13)	0.6933 (3)	0.88676 (9)	0.0461 (5)
H7	0.2818	0.7993	0.8642	0.055*
C8	0.3839 (2)	0.0534 (4)	0.97619 (15)	0.0901 (10)
H8A	0.3280	0.0668	0.9438	0.135*
H8B	0.3763	0.0010	1.0071	0.135*
H8C	0.4200	-0.0298	0.9671	0.135*
С9	0.11689 (15)	1.1166 (3)	0.97473 (9)	0.0464 (5)
H9	0.1694	1.0716	0.9772	0.056*
C10	0.11616 (19)	1.1904 (3)	1.02325 (10)	0.0585 (7)
H10	0.1674	1.1971	1.0570	0.070*
C11	0.0396 (2)	1.2524 (3)	1.02041 (11)	0.0605 (7)
H11	0.0379	1.2988	1.0527	0.073*
C12	-0.03715 (17)	1.2468 (3)	0.96895 (10)	0.0502 (6)
C13	-0.02984 (14)	1.1751 (3)	0.92162 (9)	0.0394 (5)
C14	-0.10486 (14)	1.1669 (3)	0.86735 (9)	0.0409 (5)
C15	-0.18697 (15)	1.2216 (3)	0.86204 (12)	0.0547 (6)
C16	-0.25805 (17)	1.2051 (4)	0.80864 (14)	0.0686 (8)
H16	-0.3137	1.2370	0.8034	0.082*
C17	-0.24616 (15)	1.1424 (4)	0.76409 (13)	0.0640(7)
H17	-0.2934	1.1314	0.7284	0.077*
C18	-0.16170(15)	1.0947 (3)	0.77263 (10)	0.0521 (6)
H18	-0.1540	1.0541	0.7418	0.063*
C19	-0.1918(2)	1.2905 (3)	0.91190 (16)	0.0704 (8)
H19	-0.2458	1.3263	0.9090	0.084*
C20	-0.1211(2)	1.3044 (3)	0.96194 (14)	0.0669 (8)
H20	-0.1267	1.3526	0.9928	0.080*
F4	0.79608 (8)	0.6899 (2)	0.83581 (5)	0.0640 (4)
F5	0.49409 (10)	0.7502(3)	0.77106 (9)	0.1131(7)
F6	0 46705 (9)	0.6963(3)	0.66524 (8)	0.1035 (6)
07	0.75824 (10)	0.6564(3)	0.67096(7)	0.0624(5)
08	0.85075 (9)	0.5774(2)	0.75883 (6)	0.0494(4)
09	0 66903 (14)	0.7478(5)	0.86077 (9)	0.1250(11)
C21	0.77750 (13)	0.6287(3)	0.72160 (9)	0.0398(5)
C22	0.70364 (13)	0.6598(3)	0.72700(9)	0.0378(5)
C23	0.71580 (13)	0.6863 (3)	0.79192 (9)	0.0370(5)
C24	0.64763 (16)	0.0003(3) 0.7167(4)	0.80576(11)	0.0632(7)
C25	0.56427 (16)	0.7107(4) 0.7200(4)	0.76156 (12)	0.0052(7)
C26	0.50427(10) 0.55010(14)	0.7200(4) 0.6927(4)	0.70130(12) 0.70685(12)	0.0008(7)
C27	0.55010(11) 0.61828(14)	0.6927(1) 0.6647(3)	0.69431 (10)	0.0030(7)
H27	0.6077	0.6489	0.6569	0.064*
C28	0.6204 (3)	0 7241 (9)	0.88452 (16)	0.169 (3)
H28A	0 5735	0.8145	0.8699	0.253*
H28R	0.6540	0.7421	0.9245	0.253*
H28C	0.5969	0 5978	0.8772	0.253*
11200	0.0707	0.0910	0.0772	5.233

Atomic displacement parameters $(Å^2)$

	<i>U</i> ¹¹	U ²²	U ³³	U^{12}	U ¹³	U^{23}
Col	0.03164 (16)	0.03054 (15)	0.03758 (16)	-0.00071 (10)	0.01767 (12)	-0.00163 (11)
F1	0.0532 (8)	0.0698 (10)	0.0854 (11)	0.0073 (7)	0.0282 (8)	0.0347 (8)
F2	0.0357 (8)	0.0979 (12)	0.0941 (12)	0.0176 (8)	0.0207 (8)	-0.0184 (9)
F3	0.0553 (9)	0.1373 (16)	0.1000 (13)	0.0088 (9)	0.0510 (10)	0.0268 (11)
01	0.0360 (8)	0.0348 (8)	0.0701 (11)	-0.0005 (6)	0.0236 (8)	0.0001 (7)
O2	0.0343 (8)	0.0324 (8)	0.0613 (9)	0.0017 (6)	0.0186 (7)	0.0006 (7)
O3	0.0479 (10)	0.0503 (11)	0.0954 (14)	0.0101 (8)	-0.0043 (10)	0.0101 (10)
O4	0.0299 (7)	0.0383 (8)	0.0498 (8)	-0.0009 (6)	0.0162 (7)	0.0008 (6)
O5	0.0585 (10)	0.0714 (11)	0.0481 (9)	-0.0273 (8)	0.0332 (8)	-0.0229 (8)
O6	0.0413 (8)	0.0343 (7)	0.0486 (8)	-0.0027 (6)	0.0251 (7)	-0.0046 (6)
N1	0.0414 (10)	0.0327 (9)	0.0412 (10)	-0.0059 (7)	0.0227 (8)	-0.0031 (7)
N2	0.0370 (9)	0.0333 (9)	0.0484 (11)	0.0003 (7)	0.0188 (9)	0.0021 (8)
C1	0.0335 (11)	0.0333 (11)	0.0376 (11)	0.0014 (9)	0.0136 (9)	-0.0038 (9)
C2	0.0320 (10)	0.0342 (11)	0.0420 (12)	0.0002 (8)	0.0127 (9)	-0.0051 (9)
C3	0.0352 (12)	0.0414 (12)	0.0525 (14)	-0.0022 (9)	0.0133 (10)	0.0013 (10)
C4	0.0333 (12)	0.0398 (12)	0.0641 (16)	0.0040 (10)	0.0040 (11)	-0.0044 (11)
C5	0.0293 (11)	0.0587 (15)	0.0595 (15)	0.0078 (10)	0.0107 (11)	-0.0145 (12)
C6	0.0395 (13)	0.0749 (17)	0.0589 (15)	-0.0032 (12)	0.0272 (12)	-0.0021 (13)
C7	0.0368 (12)	0.0494 (13)	0.0493 (13)	0.0042 (10)	0.0171 (11)	0.0046 (10)
C8	0.075 (2)	0.0420 (15)	0.117 (3)	0.0082 (14)	0.0108 (19)	0.0039 (16)
C9	0.0517 (13)	0.0425 (12)	0.0446 (13)	-0.0117 (10)	0.0214 (12)	-0.0031 (10)
C10	0.0800 (19)	0.0488 (14)	0.0462 (14)	-0.0213 (13)	0.0281 (14)	-0.0070 (11)
C11	0.107 (2)	0.0386 (13)	0.0527 (15)	-0.0197 (13)	0.0503 (17)	-0.0102 (11)
C12	0.0781 (17)	0.0293 (11)	0.0666 (16)	-0.0064 (11)	0.0533 (15)	-0.0033 (11)
C13	0.0503 (13)	0.0271 (10)	0.0519 (13)	-0.0052 (9)	0.0329 (11)	-0.0020 (9)
C14	0.0447 (12)	0.0260 (10)	0.0625 (15)	0.0011 (9)	0.0336 (12)	0.0022 (9)
C15	0.0467 (14)	0.0363 (12)	0.0914 (19)	0.0067 (10)	0.0402 (15)	0.0103 (12)
C16	0.0457 (15)	0.0502 (15)	0.115 (3)	0.0113 (12)	0.0409 (17)	0.0192 (16)
C17	0.0377 (13)	0.0542 (15)	0.0792 (19)	0.0011 (11)	0.0080 (13)	0.0183 (14)
C18	0.0464 (14)	0.0460 (13)	0.0542 (15)	-0.0014 (11)	0.0142 (12)	0.0066 (11)
C19	0.078 (2)	0.0483 (15)	0.124 (3)	0.0137 (14)	0.080 (2)	0.0077 (16)
C20	0.098 (2)	0.0439 (14)	0.097 (2)	0.0037 (14)	0.078 (2)	-0.0019 (14)
F4	0.0363 (7)	0.1105 (12)	0.0457 (8)	-0.0016 (7)	0.0190 (6)	-0.0098 (8)
F5	0.0470 (9)	0.190 (2)	0.1187 (15)	0.0118 (11)	0.0517 (10)	-0.0143 (14)
F6	0.0335 (8)	0.1689 (19)	0.0909 (12)	0.0075 (9)	0.0129 (8)	0.0109 (12)
O7	0.0456 (9)	0.1017 (14)	0.0431 (10)	0.0044 (9)	0.0229 (8)	0.0051 (9)
08	0.0359 (8)	0.0670 (10)	0.0460 (9)	0.0094 (7)	0.0193 (7)	-0.0012 (8)
09	0.0612 (13)	0.260 (4)	0.0701 (14)	-0.0121 (17)	0.0444 (12)	-0.0422 (18)
C21	0.0371 (12)	0.0403 (12)	0.0441 (13)	-0.0032 (9)	0.0201 (10)	-0.0048 (9)
C22	0.0341 (11)	0.0355 (11)	0.0445 (12)	-0.0003 (8)	0.0185 (10)	0.0018 (9)
C23	0.0311 (11)	0.0537 (13)	0.0484 (13)	-0.0015 (9)	0.0182 (10)	-0.0026 (10)
C24	0.0470 (15)	0.089 (2)	0.0621 (16)	-0.0047 (13)	0.0322 (13)	-0.0105 (14)
C25	0.0389 (14)	0.091 (2)	0.081 (2)	0.0059 (13)	0.0361 (14)	-0.0008 (16)
C26	0.0289 (12)	0.0825 (18)	0.0704 (18)	0.0039 (12)	0.0144 (12)	0.0074 (14)
C27	0.0414 (13)	0.0652 (15)	0.0503 (14)	0.0001 (11)	0.0187 (11)	0.0034 (12)

					supporti	rting information	
C28	0.092 (3)	0.349 (8)	0.084 (3)	0.051 (4)	0.057 (2)	0.034 (4)	
Geom	etric parameters	(Å, °)					
Co1-	-06	2.093	1 (13)	C10-C11		1.354 (4)	
Co1-	-04	2.101	6 (14)	C10—H10		0.9300	
Co1-	-02	2.107	4 (14)	C11—C12		1.405 (4)	
Co1-	-05	2.114	3 (14)	C11—H11		0.9300	
Co1-	-N1	2.129	0 (16)	C12—C13		1.411 (3)	
Co1-	-N2	2.165	2 (17)	C12—C20		1.427 (4)	
F1—C	23	1.353	(3)	C13—C14		1.434 (3)	
F2—C	25	1.348	(2)	C14—C15		1.406 (3)	
F3—C	C6	1.358	(3)	C15—C16		1.395 (4)	
01-0	C1	1.256	(2)	C15—C19		1.447 (4)	
02—0	C1	1.250	(2)	C16—C17		1.361 (4)	
03-0	- C4	1.370	(3)	C16—H16		0.9300	
03-0	- C8	1.411	(3)	C17—C18		1.404 (3)	
04—I	H4A	0.848	1	С17—Н17		0.9300	
04—I	H4B	0.849	4	C18—H18		0.9300	
05—I	H5A	0.848	9	C19—C20		1.337 (4)	
05—I	H5B	0.849	0	С19—Н19		0.9300	
06—I	H6A	0.847	6	C20—H20		0.9300	
06—I	H6B	0.850	8	F4—C23		1.343 (2)	
N1-0	C9	1.324	(3)	F5—C25		1.356 (3)	
N1-0	C13	1.356	(3)	F6—C26		1.352 (3)	
N2	C18	1.322	(3)	O7—C21		1.245 (2)	
N2(C14	1.366	(3)	O8—C21		1.250 (2)	
C1-C	22	1.508	(3)	O9—C28		1.264 (4)	
C2—0	C3	1.378	(3)	O9—C24		1.353 (3)	
C2—(C7	1.389	(3)	C21—C22		1.525 (3)	
C3—(C4	1.390	(3)	C22—C23		1.373 (3)	
C4—0	C5	1.369	(3)	C22—C27		1.394 (3)	
C5—(C6	1.376	(3)	C23—C24		1.393 (3)	
C6—(27	1.364	(3)	C24—C25		1.380 (4)	
C7—H	47	0.930	0	C25—C26		1.373 (4)	
C8—I	-18A	0.960	0	C26—C27		1.369 (3)	
C8—F	-18B	0.960	0	С27—Н27		0.9300	
C8—I	-18C	0.960	0	C28—H28A		0.9600	
С9—(C10	1.394	(3)	C28—H28B		0.9600	
C9—I	-19	0.930	0	C28—H28C		0.9600	
06—0	Co1—O4	176.42	2 (5)	С11—С10—С9		118.9 (2)	
06—0	Co1—O2	90.94	(5)	C11—C10—H10		120.5	
04—0	Co1—O2	88.54	(5)	C9—C10—H10		120.5	
06—0	Co1—O5	81.85	(6)	C10-C11-C12		120.3 (2)	
04—0	Co1—O5	94.63	(6)	C10-C11-H11		119.8	
02—0	Co1—O5	92.40	(6)	C12—C11—H11		119.8	
06—0	Col—N1	88.89	(6)	C11—C12—C13		116.9 (2)	

O4—Co1—N1	94.67 (6)	C11—C12—C20	124.5 (2)
O2—Co1—N1	92.83 (6)	C13—C12—C20	118.6 (2)
O5—Co1—N1	169.43 (6)	N1—C13—C12	122.4 (2)
O6—Co1—N2	98.62 (6)	N1—C13—C14	117.17 (17)
O4—Co1—N2	82.53 (6)	C12—C13—C14	120.5 (2)
02-Co1-N2	166.20 (6)	N2-C14-C15	122.8 (2)
05-Co1-N2	98.76 (7)	N2-C14-C13	117.61 (17)
N1-Co1-N2	77 52 (7)	C_{15} C_{14} C_{13}	119.6(2)
C1 = O2 = Co1	129.80(13)	C_{16} C_{15} C_{14}	117.0(2)
C4 - C3 - C8	129.00(13)	C_{16} C_{15} C_{19}	124.8(2)
$C_{1} = 0.04 = H_{14} \Delta$	104.6	C_{14} C_{15} C_{19}	124.0(2) 1181(3)
$C_{01} = 04 = H4R$	110 /	$C_{17} = C_{15} = C_{15}$	110.1(3) 120.2(2)
	117.4	C17 - C16 - C15	120.2(2)
$\Pi_{4} = \Pi_{4} = \Pi_{4$	111.3	$C_{1} = C_{10} = H_{10}$	119.9
	110.4	C16 C17 C18	119.9
	155.2	C16 - C17 - C18	119.2 (5)
H5A—O5—H5B	110.2	C10-C17-H17	120.4
	115.4	C18—C17—H17	120.4
Co1—O6—H6B	113.3	N2-C18-C17	122.7 (2)
H6A—O6—H6B	108.4	N2—C18—H18	118.7
C9—N1—C13	118.23 (18)	C17—C18—H18	118.7
C9—N1—Co1	127.37 (14)	C20—C19—C15	122.0 (2)
C13—N1—Co1	114.34 (13)	С20—С19—Н19	119.0
C18—N2—C14	117.97 (18)	C15—C19—H19	119.0
C18—N2—Co1	128.57 (15)	C19—C20—C12	121.2 (2)
C14—N2—Co1	112.24 (13)	С19—С20—Н20	119.4
O2—C1—O1	126.14 (18)	С12—С20—Н20	119.4
O2—C1—C2	116.75 (17)	C28—O9—C24	126.8 (3)
O1—C1—C2	117.10 (17)	O7—C21—O8	125.34 (19)
C3—C2—C7	117.77 (19)	O7—C21—C22	115.47 (18)
C3—C2—C1	122.87 (18)	O8—C21—C22	119.18 (18)
C7—C2—C1	119.28 (18)	C23—C22—C27	117.68 (19)
F1—C3—C2	120.08 (18)	C23—C22—C21	124.19 (18)
F1—C3—C4	116.8 (2)	C27—C22—C21	118.12 (19)
C2—C3—C4	123.2 (2)	F4—C23—C22	121.42 (17)
$C_{5}-C_{4}-O_{3}$	120.2(2)	F4—C23—C24	115.07(19)
$C_{5}-C_{4}-C_{3}$	1173(2)	C^{22} C^{23} C^{24}	123 5 (2)
03-C4-C3	1224(2)	$09-C^{24}-C^{25}$	125.8(2)
F_{2} C_{5} C_{4}	122.4(2) 120.0(2)	$09 - C^{24} - C^{23}$	123.0(2) 117.4(2)
$F_{2} = C_{5} = C_{4}$	120.0(2) 110 5 (2)	$C_{25} = C_{24} = C_{23}^{23}$	117.7(2) 116.8(2)
12 - 05 - 00	119.5(2) 120.5(2)	$C_{23} = C_{24} = C_{23}$	110.0(2)
$E_{4} = C_{5} = C_{0}$	120.3(2)	$F_{5} = C_{25} = C_{20}$	110.2(2)
$F_{3} = C_{0} = C_{1}$	119.7(2)	$F_{3} = C_{23} = C_{24}$	120.8(2)
$F_3 = C_0 = C_3$	118.7(2)	$C_{20} = C_{23} = C_{24}$	121.0(2)
C = C = C = C = C = C = C = C = C = C =	121.7(2)	$F_{0} = \frac{1}{20} = \frac{1}{20}$	120.4(2)
	119.0 (2)	$r_0 - U_2 0 - U_2 3$	118.5 (2)
	120.2	$C_2/-C_26-C_25$	121.1 (2)
С2—С/—Н7	120.2	C26—C27—C22	120.0 (2)
03—C8—H8A	109.5	С26—С27—Н27	120.0
O3—C8—H8B	109.5	С22—С27—Н27	120.0

H8A—C8—H8B	109.5	O9—C28—H28A	109.5
O3—C8—H8C	109.5	O9—C28—H28B	109.5
H8A—C8—H8C	109.5	H28A—C28—H28B	109.5
H8B—C8—H8C	109.5	O9—C28—H28C	109.5
N1—C9—C10	123.2 (2)	H28A—C28—H28C	109.5
N1—C9—H9	118.4	H28B—C28—H28C	109.5
С10—С9—Н9	118.4		
O6—Co1—O2—C1	-162.24 (18)	C10-C11-C12-C20	178.5 (2)
O4—Co1—O2—C1	14.22 (18)	C9—N1—C13—C12	-2.8 (3)
O5—Co1—O2—C1	-80.36 (18)	Co1—N1—C13—C12	174.58 (15)
N1—Co1—O2—C1	108.82 (18)	C9—N1—C13—C14	178.83 (17)
N2-Co1-O2-C1	63.7 (3)	Co1—N1—C13—C14	-3.8 (2)
O6—Co1—N1—C9	-76.76 (17)	C11—C12—C13—N1	2.5 (3)
O4—Co1—N1—C9	102.89 (17)	C20-C12-C13-N1	-176.21 (19)
O2—Co1—N1—C9	14.12 (17)	C11—C12—C13—C14	-179.17 (18)
O5—Co1—N1—C9	-105.5 (4)	C20-C12-C13-C14	2.1 (3)
N2—Co1—N1—C9	-175.84 (17)	C18—N2—C14—C15	-0.9 (3)
O6—Co1—N1—C13	106.12 (13)	Co1—N2—C14—C15	-169.32 (16)
O4—Co1—N1—C13	-74.23 (13)	C18—N2—C14—C13	179.10 (18)
O2—Co1—N1—C13	-163.00 (13)	Co1—N2—C14—C13	10.6 (2)
O5-Co1-N1-C13	77.4 (4)	N1—C13—C14—N2	-4.9 (3)
N2—Co1—N1—C13	7.04 (13)	C12—C13—C14—N2	176.77 (17)
O6-Co1-N2-C18	96.75 (18)	N1—C13—C14—C15	175.11 (18)
O4—Co1—N2—C18	-79.82 (18)	C12—C13—C14—C15	-3.3 (3)
O2-Co1-N2-C18	-129.9(3)	N2-C14-C15-C16	1.9 (3)
O5-Co1-N2-C18	13.75 (19)	C13—C14—C15—C16	-178.1 (2)
N1—Co1—N2—C18	-176.32 (19)	N2-C14-C15-C19	-178.05 (19)
O6-Co1-N2-C14	-96.30 (13)	C13—C14—C15—C19	2.0 (3)
O4—Co1—N2—C14	87.13 (13)	C14—C15—C16—C17	-1.4 (3)
O2—Co1—N2—C14	37.0 (3)	C19—C15—C16—C17	178.5 (2)
O5-Co1-N2-C14	-179.31 (13)	C15—C16—C17—C18	0.0 (4)
N1—Co1—N2—C14	-9.37 (13)	C14—N2—C18—C17	-0.7 (3)
Co1—O2—C1—O1	-19.6 (3)	Co1—N2—C18—C17	165.64 (17)
Co1—O2—C1—C2	159.01 (13)	C16—C17—C18—N2	1.1 (4)
O2—C1—C2—C3	150.4 (2)	C16—C15—C19—C20	-179.5 (2)
O1—C1—C2—C3	-30.9 (3)	C14—C15—C19—C20	0.5 (4)
O2—C1—C2—C7	-32.7 (3)	C15—C19—C20—C12	-1.7 (4)
O1—C1—C2—C7	146.1 (2)	C11—C12—C20—C19	-178.3 (2)
C7—C2—C3—F1	176.35 (19)	C13—C12—C20—C19	0.4 (3)
C1—C2—C3—F1	-6.7 (3)	O7—C21—C22—C23	-162.0 (2)
C7—C2—C3—C4	-2.2 (3)	O8—C21—C22—C23	18.6 (3)
C1—C2—C3—C4	174.8 (2)	O7—C21—C22—C27	16.9 (3)
C8—O3—C4—C5	-115.6 (3)	O8—C21—C22—C27	-162.5 (2)
C8—O3—C4—C3	68.5 (3)	C27—C22—C23—F4	-177.8 (2)
F1—C3—C4—C5	-177.9 (2)	C21—C22—C23—F4	1.2 (3)
C2—C3—C4—C5	0.7 (3)	C27—C22—C23—C24	0.3 (3)
F1-C3-C4-O3	-1.8 (3)	C21—C22—C23—C24	179.2 (2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 176.7 (2) \\ 4.9 (3) \\ -179.0 (2) \\ -175.1 (2) \\ 1.1 (4) \\ -0.5 (4) \\ 179.4 (2) \\ 178.8 (2) \\ -1.3 (4) \\ 179.0 (2) \\ -0.3 (4) \\ 1.9 (3) \\ -175.2 (2) \\ 0.8 (3) \\ -176.24 (16) \\ 1.5 (3) \\ -1.7 (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 24.9 \ (6) \\ -157.9 \ (4) \\ 0.6 \ (4) \\ -177.6 \ (3) \\ 178.0 \ (2) \\ -0.1 \ (4) \\ -2.3 \ (5) \\ -179.5 \ (3) \\ 177.7 \ (3) \\ 0.6 \ (4) \\ -0.3 \ (4) \\ 179.6 \ (3) \\ 178.9 \ (3) \\ -1.2 \ (5) \\ -179.5 \ (2) \\ 1.3 \ (4) \\ -0.8 \ (3) \end{array}$
C9—C10—C11—C12	-1.7 (3)	C23—C22—C27—C26	-0.8 (3)
C10—C11—C12—C13	-0.2 (3)	C21—C22—C27—C26	-179.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	D···· A	D—H··· A
O4—H4 <i>A</i> …O1	0.85	1.78	2.604 (2)	163
O4— $H4B$ ···O8 ⁱ	0.85	1.89	2.729 (2)	169
O5—H5 <i>A</i> ···O8 ⁱⁱ	0.85	1.94	2.791 (2)	176
O5—H5 <i>B</i> ···O6 ⁱⁱⁱ	0.85	2.15	2.976 (2)	165
O6—H6A···O1 ^{iv}	0.85	1.90	2.738 (2)	167
O6—H6 <i>B</i> ···O7 ⁱⁱ	0.85	1.77	2.623 (2)	176

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1, *y*+1/2, -*z*+3/2; (iii) -*x*, *y*-1/2, -*z*+3/2; (iv) *x*, *y*+1, *z*.