STRUCTURE
REPORTS

ISSN 1600-5368

Received 19 September 2014
Accepted 26 September 2014

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: Crystal structure; triazole; 2-(5-amino-1H-1,2,4-triazol-3-yl)acetic acid; chelating ligand; nickel coordination compound; crystal structure

CCDC reference: 1026535
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of bis[(5-amino-1H-1,2,4-triazol-$3-y \mathrm{l}-\kappa \mathrm{N}^{4}$)acetato- κ O]diaquanickel(II) dihydrate

Victor M. Chernyshev, ${ }^{\text {a* }}$ Anna V. Chernysheva, ${ }^{\text {a }}$ Raisa S. Abagyan ${ }^{\text {a }}$ and Victor B. Rybakov ${ }^{\text {b }}$

${ }^{\text {a }}$ South-Russia State Technical University Prosveschenya, 132, Novocherkassk, Rostov Region, 346428, Russian Federation, and ${ }^{\mathbf{b}}$ Department of Chemistry, Moscow State University, 119992 Moscow, Russian Federation. *Correspondence e-mail: chern13@yandex.ru

The title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, represents the first transition metal complex of the novel chelating triazole ligand, 2-(5-amino$1 H-1,2,4$-triazol-3-yl)acetic acid ($A T A A$), to be structurally characterized. In the molecule of the title complex, the nickel(II) cation is located on an inversion centre and is coordinated by two water molecules in axial positions and two O and two N atoms from two trans-oriented chelating anions of the deprotonated $A T A A$ ligand, forming a slightly distorted octahedron. The trans angles of the octahedron are all 180° due to the inversion symmetry of the molecule. The cisangles are in the range $87.25(8)-92.75(8)^{\circ}$. The six-membered chelate ring adopts a slightly twisted boat conformation with puckering parameters $Q=$ 0.542 (2) $\AA, \Theta=88.5$ (2) and $\varphi=15.4$ (3) $)^{\circ}$. The molecular conformation is stabilized by intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the amino group and the chelating carboxylate O atom of two trans-oriented ligands. In the crystal, the complex molecules and lattice water molecules are linked into a three-dimensional framework by an extensive network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

1. Chemical context

C-amino-1,2,4-triazoles are employed as polydentate ligands for the synthesis of coordination compounds with various metals that demonstrate useful spectroscopic, magnetic, biological and catalytic properties (Aromí et al., 2011; Liu et al., 2011; Gao et al., 2013; Hernández-Gil et al., 2014). Generally, aminotriazoles coordinate metals by either pyri-dine-type endocyclic nitrogen atoms or by the amino group (Aromí et al., 2011; Liu et al., 2011). Furthermore, aminotriazoles containing substituents with favorably oriented atoms bearing unshared electron pairs ($\mathrm{N}, \mathrm{S}, \mathrm{O}$ etc.) can act as chelating polydentate ligands (Biagini-Cingi et al., 1994; Prins et al., 1996; Ferrer et al., 2004, 2012). 5-Amino-1H-1,2,4-tri-azole-3-carboxylic acid (ATCA, Fig. 1) was found to be a promising chelating ligand for which complexes with various metal cations have been reported recently (Chen et al., 2011; Sun et al., 2011; Wang et al., 2011; Hernández-Gil et al., 2012; Tseng et al., 2014). In these complexes, metal cations are

ATCA

ATAA

Figure 1
Structural formulas of 5-amino-1H-1,2,4-triazole-3-carboxylic acid ($A T C A$) and 2-(5-amino-1H-1,2,4-triazol-3-yl)acetic acid ($A T A A$).
chelated by the anions of $A T C A$ owing to the formation of coordination bonds with nitrogen atoms of the triazole ring and the oxygen atom of the deprotonated carboxylic group.

In a continuation of our work on the synthesis and reactivity of aminotriazole carboxylic acids (Chernyshev et al., 2006, 2009, 2010), we have focused our attention on another chelating ligand, namely 2-(5-amino-1H-1,2,4-triazol-3yl)acetic acid ($A T A A$, Fig. 1), which can be considered as a homologue of $A T C A$. To the best of our knowledge, $A T A A$ or its derivatives have not been studied previously for the synthesis of coordination compounds. Herein, we report the synthesis and crystal structure of an $\mathrm{Ni}^{\mathrm{II}}$ complex of $A T A A$, the title compound $\left[\mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1).

2. Structural commentary

In the molecule of the title complex (1), the $\mathrm{Ni}^{\mathrm{II}}$ cation is sixcoordinated by two bidentate chelating ligands, anions of $A T A A$, and by two water molecules, forming a slightly distorted octahedron (Fig. 2). The trans-angles of the octahedron are all 180° due to the inversion symmetry of the complete molecule. The cis-angles are in the range 87.25 (8)$92.75(8)^{\circ}$. The third water molecule is not involved in coordination. The anions of $A T A A$ coordinate the $\mathrm{Ni}^{\mathrm{II}}$ cation through the nitrogen atom N 1 of the triazole ring and the oxygen atom O53 of the carboxylate group (Fig. 2), similarly to the complexes of $A T C A$ with various metal cations (Chen et al., 2011; Sun et al., 2011; Wang et al., 2011; Hernández-Gil et al., 2012). The six-membered chelate ring adopts a slightly

Figure 2

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines. Equivalent atoms are generated by symmetry code $-x,-y,-z$.

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 21-\mathrm{H} 21 A \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.83(2)$	$2.04(2)$	$2.876(3)$	$176(3)$
$\mathrm{N} 21-\mathrm{H} 21 B \cdots \mathrm{O} 53^{\mathrm{ii}}$	$0.83(2)$	$2.19(2)$	$2.941(3)$	$151(3)$
$\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\text {iii }}$	$0.83(3)$	$2.10(3)$	$2.885(3)$	$156(3)$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\text {iv }}$	$0.82(2)$	$1.92(2)$	$2.739(3)$	$176(3)$
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{O} 54^{\mathrm{v}}$	$0.82(2)$	$1.96(2)$	$2.780(3)$	$173(4)$
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 4^{\text {vi }}$	$0.83(2)$	$2.09(2)$	$2.903(3)$	$164(3)$
$\mathrm{O} 2-\mathrm{H} 2 B \cdots \mathrm{O}^{\text {vii }}$	$0.83(2)$	$1.98(2)$	$2.811(3)$	$176(3)$

Symmetry codes: (i) $x, y, z-1$; (ii) $-x,-y,-z$; (iii) $x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (iv)
$x-\frac{1}{2},-y-\frac{1}{2}, z-\frac{1}{2} ;(\mathrm{v})-x-1,-y,-z ;(\mathrm{vi}) x+1, y, z+1$; (vii) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$.
twisted boat conformation with puckering parameters of $Q=$ $0.542(2) \AA, \Theta=88.5(2), \varphi=15.4$ (3) $)^{\circ}$. The $\mathrm{Ni}-\mathrm{N} 1$ bond length is 2.051 (2) \AA, and the $\mathrm{Ni}-\mathrm{O} 1$ and $\mathrm{Ni}-\mathrm{O} 53$ bond lengths are 2.083 (2) and 2.059 (2) \AA, respectively, within the normal ranges for other reported $\mathrm{Ni}^{\mathrm{II}}$ complexes (Lenstra et al., 1989; Virovets et al., 2000; Bushuev et al., 2002; Drozdzewski et al., 2003; Fan et al., 2010; Zheng et al., 2011; Jin et al., 2011). The aminotriazole fragment $\mathrm{N} 1 / \mathrm{C} 2 / \mathrm{N} 3 / \mathrm{N} 4 / \mathrm{C} 5 / \mathrm{N} 21$ is planar (maximum deviation $=0.021(3) \AA$ for $C 2$), its bond lengths and angles being analogous to complexes of C-amino-1,2,4-triazoles with transition metals (Ferrer et al., 2004; Siddiqui et al., 2011; Tabatabaee et al., 2011). The bonds C2$\mathrm{N} 3[1.330(4) \AA]$ and $\mathrm{C} 5-\mathrm{N} 4[1.304(3) \AA]$ are shorter than the bonds $\mathrm{C} 2-\mathrm{N} 1[1.342$ (3) \AA A and C5-N1 [1.365 (3) \AA]. The molecular conformation is stabilized by intramolecular $\mathrm{N} 21-\mathrm{H} 21 B \cdots \mathrm{O} 53$ hydrogen bonds (Fig. 2, Table 1).

3. Supramolecular features

In the crystal, molecules of the complex and lattice water molecules are linked into a three-dimensional framework by extensive $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 1, Fig. 3).

4. Database survey

More than twenty structures of chelate complexes of 3substituted 5-amino-1,2,4-triazoles, in which N , O or S atoms

Figure 3
The crystal packing of the title compound viewed along the axis. Hydrogen bonds are shown as dashed lines.

Figure 4
Reaction scheme showing the synthesis of the title compound (1).
of the substituent in the position 3 of the triazole ring play the role of a donor atom, were found in the Cambridge Structural Database (Version 5.35, November 2013 with 2 updates; Thomas et al., 2010). The database reveals a total of seven structures of coordination compounds of 5 -amino- $1 \mathrm{H}-1,2,4-$ triazole-3-carboxylic acid (ATCA) with various metals (Chen et al., 2011; Sun et al., 2011; Wang et al., 2011; Hernández-Gil et al., 2012; Tseng et al., 2014; Siddiqui et al., 2011), six of which are chelate complexes. Coordination compounds of metals with the $A T A A$ ligands or its derivatives were not found in the literature.

5. Synthesis and crystallization

All attempts to prepare crystals of complex (1) suitable for X-ray investigation by mixing solutions of $A T A A$ or its sodium salt with solutions of $\mathrm{Ni}^{\mathrm{II}}$ salts were unsuccessful and only microcrystalline precipitates of the sparingly soluble complex were obtained. Crystals of acceptable quality were prepared by slow hydrolysis of ethyl 2-(5-amino- $1 \mathrm{H}-1,2,4-$ triazol-3-yl)acetate (2) in an aqueous solution of nickel nitrate (Fig. 4). A solution of 0.65 g (3.8 mmol) of compound (2) in water $(10 \mathrm{ml})$ was added to a solution of $0.55 \mathrm{~g},(1.9 \mathrm{mmol})$ of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in water $(5 \mathrm{ml})$. After standing at room temperature for two weeks, the formed crystals were collected by filtration yielding the target compound (1).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.97 \AA$ for the CH_{2} group and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The $\mathrm{N}, \mathrm{O}-$ bound H atoms that are involved in hydrogen bonds were found from difference Fourier maps. Their distances to the parent atoms were refined to be equal, with a common $U_{\text {iso }}(\mathrm{H})$ value for pairs of related H atoms.

Table 2
Experimental details.
Crystal data
Chemical formula

Crystal system, space group
412.99

Temperature (K)
Monoclinic, $P 2_{1} / n$
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S \quad 0.035,0.077,1.02$
No. of reflections 1640
No. of parameters
140
No. of restraints 3
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right) \quad 0.34,-0.31$
295
91.91 (2)
751.6 (3)

2
$\mathrm{Ag} K \alpha, \lambda=0.56085 \AA$
0.72
$0.20 \times 0.20 \times 0.20$

Enraf-Nonius CAD-4
ψ scan (North et al., 1968)
0.945, 0.958

1706, 1640, 1215
0.021
0.638
7.6270 (17), 7.2603 (16), 13.580 (3)

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), XCAD4 (Harms \&
Wocadlo, 1995), SHELXS97 and SHELXL2013 (Sheldrick, 2008), ORTEP-3 for Windows and WinGX (Farrugia, 2012).

Acknowledgements

This work was supported financially by the Ministry of Education and Science of the Russian Federation (project No. 2945 of State Order No. 2014/143).

References

Aromí, G., Barrios, L. A., Roubeau, O. \& Gamez, P. (2011). Coord. Chem. Rev. 255, 485-546.
Biagini-Cingi, M., Manotti-Lanfredi, A. M., Ugozzoli, F. \& Haasnoot, J. G. (1994). Inorg. Chim. Acta, 227, 181-184.

Bushuev, M. B., Virovets, A. V., Garcia, Y., Gieck, C., Sheludyakova, L. A., Ikorskii, V. N., Tremel, W., Gütlich, P. \& Lavrenova, L. G. (2002). Polyhedron, 21, 797-804.

Chen, Y.-C., Xu, J.-J., Wang, K.-B. \& Wang, Y. (2011). Chin. J. Struct. Chem. 30, 799-804.
Chernyshev, V. M., Chernysheva, A. V. \& Starikova, Z. A. (2010). Heterocycles, 81, 2291-2311.
Chernyshev, V. M., Chernysheva, A. V. \& Taranushich, V. A. (2006). Russ. J. Appl. Chem. 79, 783-786.
Chernyshev, V. M., Chernysheva, A. V. \& Taranushich, V. A. (2009). Russ. J. Appl. Chem. 82, 276-281.
Drożdżewski, P., Pawlak, B. \& Głowiak, T. (2003). Transition Met. Chem. 28, 727-731.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Fan, R.-Z., Li, S.-J., Song, W.-D., Miao, D.-L. \& Hu, S.-W. (2010). Acta Cryst. E66, m897-m898.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Ferrer, S., Ballesteros, R., Sambartolomé, A., González, M., Alzuet, G., Borrás, J. \& Liu, M. (2004). J. Inorg. Biochem. 98, 1436-1446.

Ferrer, S., Lloret, F., Pardo, E., Clemente-Juan, J. M., Liu-González, M. \& García-Granda, S. (2012). Inorg. Chem. 51, 985-1001.

Gao, J.-Y., Xiong, X.-H., Chen, C.-J., Xie, W.-P., Ran, X.-R. \& Yue, S.-T. (2013). Z. Anorg. Allg. Chem. 639, 582-586.

Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Hernández-Gil, J., Ferrer, S., Castiñeiras, A., Liu-González, M., Lloret, F., Ribes, Á., Coga, L., Bernecker, A. \& Mareque-Rivas, J. C. (2014). Inorg. Chem. 53, 578-593.

Hernández-Gil, J., Ferrer, S., Castiñeiras, A. \& Lloret, F. (2012). Inorg. Chem. 51, 9809-9819.
Jin, G.-H., Li, X., Hu, C. \& Hu, L. (2011). Acta Cryst. E67, m988.
Lenstra, A. T. H., Slot, H. J. B., Beurskens, P. T., Haasnoot, J. G. \& Reedijk, J. (1989). Rec. Trav. Chim. Pays-Bas, 108, 133-138.
Liu, K., Shi, W. \& Cheng, P. (2011). Dalton Trans. 40, 8475-8490.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Prins, R., Biagini-Cingi, M., Drillon, M., de Graaff, R. A. G., Haasnoot, J., Manotti-Lanfredi, A.-M., Rabu, P., Reedijk, J. \& Ugozzoli, F. (1996). Inorg. Chim. Acta, 248, 35-44.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siddiqui, K. A., Mehrotra, G. K., Narvi, S. S. \& Butcher, R. J. (2011). Inorg. Chem. Commun. 14, 814-817.
Sun, Y.-G., Xiong, G., Guo, M.-Y., Ding, F., Wang, L., Gao, E.-J., Zhu, M.-C. \& Verpoort, F. (2011). Z. Anorg. Allg. Chem. 637, 293300.

Tabatabaee, M., Kukovec, B.-M. \& Kazeroonizadeh, M. (2011). Polyhedron, 30, 1114-1119.
Thomas, I. R., Bruno, I. J., Cole, J. C., Macrae, C. F., Pidcock, E. \& Wood, P. A. (2010). J. Appl. Cryst. 43, 362-366.
Tseng, T.-W., Luo, T.-T. \& Lu, K.-H. (2014). CrystEngComm, 16, 5516-5519.
Virovets, A. V., Bushuev, M. B. \& Lavrenova, L. G. (2000). J. Struct. Chem. 41, 717-720.
Wang, J., Li, W.-Z., Wang, J.-G. \& Xiao, H.-P. (2011). Z. Kristallogr. New Cryst. Struct. 226, 163-164.
Zheng, S., Cai, S., Fan, J. \& Zhang, W. (2011). Acta Cryst. E67, m865.

supporting information

Acta Cryst. (2014). E70, 286-289 [doi:10.1107/S1600536814021436]

Crystal structure of bis[(5-amino-1 $\mathrm{H}-1,2,4$-triazol-3-yl- $\kappa \mathrm{N}^{4}$)acetato- $\kappa \mathrm{O}$]diaquanickel(II) dihydrate

Victor M. Chernyshev, Anna V. Chernysheva, Raisa S. Abagyan and Victor B. Rybakov

Computing details

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf-Nonius, 1994); data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

$\operatorname{Bis}\left[\left(5-\right.\right.$ amino-1 $H-1,2,4$-triazol-3-yl- $\left.\kappa N^{4}\right)$ acetato- $\left.\kappa O\right]$ diaquanickel(II) dihydrate

Crystal data

$M_{r}=412.99$

Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=7.6270$ (17) \AA
$b=7.2603$ (16) \AA
$c=13.580(3) \AA$
$\beta=91.91(2)^{\circ}$
$V=751.6(3) \AA^{3}$
$Z=2$

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
non-profiled ω-scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.945, T_{\text {max }}=0.958$
1706 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.077$
$S=1.02$
1640 reflections
140 parameters
$F(000)=428$
$D_{\mathrm{x}}=1.825 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Ag} K \alpha$ radiation, $\lambda=0.56085 \AA$
Cell parameters from 25 reflections
$\theta=10.8-12.9^{\circ}$
$\mu=0.72 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prism, light green
$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$

1640 independent reflections
1215 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=21.0^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-9 \rightarrow 9$
$k=0 \rightarrow 9$
$l=0 \rightarrow 17$
1 standard reflections every 60 min intensity decay: 1%

3 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier

$$
\operatorname{map}_{w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0282 P)^{2}+0.467 P\right]}
$$

$$
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.34 \mathrm{e} \AA^{-3}$

$$
\Delta \rho_{\min }=-0.31 \mathrm{e} \AA^{-3}
$$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $\mathrm{w} R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\dot{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Ni	0.0000	0.0000	0.0000	$0.01840(14)$
N 1	$-0.0590(3)$	$0.0113(4)$	$-0.14834(14)$	$0.0215(5)$
C 2	$0.0459(3)$	$0.0087(5)$	$-0.22579(18)$	$0.0237(5)$
N 21	$0.2095(3)$	$-0.0555(4)$	$-0.22436(19)$	$0.0380(8)$
H 21 A	$0.278(3)$	$-0.036(5)$	$-0.2696(17)$	$0.040(7)^{*}$
H 21 B	$0.248(4)$	$-0.090(5)$	$-0.1692(15)$	$0.040(7)^{*}$
N 3	$-0.0433(3)$	$0.0713(4)$	$-0.30469(18)$	$0.0307(6)$
H 3	$-0.010(4)$	$0.083(4)$	$-0.362(2)$	$0.029(9)^{*}$
N 4	$-0.2124(3)$	$0.1187(4)$	$-0.28023(17)$	$0.0289(6)$
C5	$-0.2135(4)$	$0.0798(4)$	$-0.18651(19)$	$0.0218(6)$
C51	$-0.3727(3)$	$0.1003(4)$	$-0.12754(19)$	$0.0242(6)$
H51A	-0.4200	-0.0215	-0.1160	0.029^{*}
H51B	-0.4597	0.1678	-0.1668	0.029^{*}
C52	$-0.3496(3)$	$0.1962(4)$	$-0.02933(19)$	$0.0206(6)$
O53	$-0.2044(2)$	$0.1806(3)$	$0.01848(14)$	$0.0248(5)$
O54	$-0.4765(3)$	$0.2802(3)$	$0.00309(17)$	$0.0335(5)$
O1	$-0.1634(3)$	$-0.2263(3)$	$0.01911(18)$	$0.0327(5)$
H1A	$-0.129(4)$	$-0.313(3)$	$0.053(2)$	$0.048(8)^{*}$
H1B	$-0.271(2)$	$-0.238(5)$	$0.017(3)$	$0.048(8)^{*}$
O2	$0.4528(3)$	$0.0268(3)$	$0.62437(15)$	$0.0320(5)$
H2A	$0.556(3)$	$0.054(5)$	$0.641(2)$	$0.039(7)^{*}$
H2B	$0.404(4)$	$0.110(4)$	$0.591(2)$	$0.039(7)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni	$0.0162(2)$	$0.0239(3)$	$0.0150(2)$	$0.0020(2)$	$-0.00011(16)$	$0.0011(3)$
N 1	$0.0180(10)$	$0.0313(13)$	$0.0150(9)$	$0.0003(12)$	$-0.0003(8)$	$0.0021(12)$
C 2	$0.0253(13)$	$0.0265(14)$	$0.0193(12)$	$-0.0005(14)$	$0.0020(10)$	$0.0020(15)$
N 21	$0.0282(14)$	$0.063(2)$	$0.0236(13)$	$0.0098(13)$	$0.0102(10)$	$0.0131(13)$
N 3	$0.0322(14)$	$0.0449(16)$	$0.0152(12)$	$0.0033(12)$	$0.0051(10)$	$0.0053(11)$
N 4	$0.0275(13)$	$0.0400(16)$	$0.0190(12)$	$0.0058(12)$	$-0.0017(9)$	$0.0048(11)$
C 5	$0.0225(13)$	$0.0246(14)$	$0.0181(13)$	$-0.0026(12)$	$-0.0009(11)$	$0.0006(11)$

C51	$0.0161(13)$	$0.0340(17)$	$0.0224(14)$	$0.0006(12)$	$-0.0015(11)$	$0.0017(13)$
C52	$0.0202(13)$	$0.0221(14)$	$0.0196(13)$	$0.0002(11)$	$0.0032(10)$	$0.0040(11)$
O53	$0.0208(10)$	$0.0322(11)$	$0.0210(10)$	$0.0049(9)$	$-0.0042(8)$	$-0.0041(9)$
O54	$0.0238(11)$	$0.0486(13)$	$0.0282(10)$	$0.0106(10)$	$0.0032(9)$	$-0.0058(12)$
O1	$0.0202(10)$	$0.0327(13)$	$0.0448(14)$	$-0.0046(10)$	$-0.0041(10)$	$0.0108(11)$
O2	$0.0309(11)$	$0.0371(14)$	$0.0280(11)$	$-0.0022(11)$	$0.0007(9)$	$0.0026(11)$

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

$\mathrm{Ni}-\mathrm{N} 1$	2.051 (2)	N3-H3	0.83 (3)
$\mathrm{Ni}-\mathrm{N} 1^{\text {i }}$	2.051 (2)	N4-C5	1.304 (3)
$\mathrm{Ni}-\mathrm{O} 53$	2.0590 (19)	C5-C51	1.484 (4)
$\mathrm{Ni}-\mathrm{O} 53{ }^{\text {i }}$	2.0590 (19)	C51-C52	1.509 (4)
$\mathrm{Ni}-\mathrm{O} 1$	2.083 (2)	C51-H51A	0.9700
$\mathrm{Ni}-\mathrm{O} 1^{\text {i }}$	2.084 (2)	C51-H51B	0.9700
N1-C2	1.342 (3)	C52-O54	1.238 (3)
N1-C5	1.365 (3)	C52-O53	1.270 (3)
C2-N3	1.330 (4)	O1-H1A	0.822 (19)
$\mathrm{C} 2-\mathrm{N} 21$	1.332 (4)	O1-H1B	0.822 (19)
N21-H21A	0.834 (19)	$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	0.83 (2)
N21-H21B	0.834 (19)	$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~B}$	0.83 (2)
N3-N4	1.386 (3)		
$\mathrm{N} 1-\mathrm{Ni}-\mathrm{N} 1^{\mathrm{i}}$	180.0	$\mathrm{H} 21 \mathrm{~A}-\mathrm{N} 21-\mathrm{H} 21 \mathrm{~B}$	120 (3)
$\mathrm{N} 1-\mathrm{Ni}-\mathrm{O} 53$	87.25 (8)	C2-N3-N4	110.3 (2)
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Ni}-\mathrm{O} 53$	92.75 (8)	C2-N3-H3	129 (2)
$\mathrm{N} 1-\mathrm{Ni}-\mathrm{O} 53{ }^{\text {i }}$	92.75 (8)	N4-N3-H3	121 (2)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Ni}-\mathrm{O} 53{ }^{\text {i }}$	87.25 (8)	C5-N4-N3	102.5 (2)
$\mathrm{O} 53-\mathrm{Ni}-\mathrm{O} 53^{\mathrm{i}}$	180.00 (13)	N4-C5-N1	114.6 (2)
$\mathrm{N} 1-\mathrm{Ni}-\mathrm{O} 1$	92.36 (9)	N4-C5-C51	122.5 (2)
$\mathrm{N} 1-\mathrm{Ni}-\mathrm{O} 1$	87.63 (9)	N1-C5-C51	122.9 (2)
$\mathrm{O} 53-\mathrm{Ni}-\mathrm{O} 1$	91.63 (9)	C5-C51-C52	116.7 (2)
O53 ${ }^{\text {i }}-\mathrm{Ni}-\mathrm{O} 1$	88.37 (9)	C5-C51-H51A	108.1
$\mathrm{N} 1-\mathrm{Ni}-\mathrm{O} 1^{\mathrm{i}}$	87.63 (9)	C52-C51-H51A	108.1
$\mathrm{N} 1-\mathrm{Ni}-\mathrm{O} 1^{\text {i }}$	92.37 (9)	C5-C51-H51B	108.1
O53-Ni-O1 ${ }^{\text {i }}$	88.37 (9)	C52-C51-H51B	108.1
O53 ${ }^{\text {- }}-\mathrm{Ni}-\mathrm{O} 1^{\mathrm{i}}$	91.63 (9)	H51A-C51-H51B	107.3
$\mathrm{O} 1-\mathrm{Ni}-\mathrm{O} 1^{\text {i }}$	180.0	O54-C52-O53	122.8 (3)
C2-N1-C5	103.7 (2)	O54-C52-C51	118.2 (2)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Ni}$	130.69 (17)	O53-C52-C51	119.0 (2)
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{Ni}$	123.09 (17)	C52-O53-Ni	130.20 (18)
N3-C2-N21	125.8 (2)	$\mathrm{Ni}-\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A}$	120 (2)
N3-C2-N1	108.9 (2)	$\mathrm{Ni}-\mathrm{O} 1-\mathrm{H} 1 \mathrm{~B}$	132 (3)
$\mathrm{N} 21-\mathrm{C} 2-\mathrm{N} 1$	125.2 (2)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{O} 1-\mathrm{H} 1 \mathrm{~B}$	104 (3)
$\mathrm{C} 2-\mathrm{N} 21-\mathrm{H} 21 \mathrm{~A}$	123 (2)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{O} 2-\mathrm{H} 2 \mathrm{~B}$	112 (3)
C2-N21-H21B	115 (2)		
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3$	-0.3 (3)	$\mathrm{Ni}-\mathrm{N} 1-\mathrm{C} 5-\mathrm{N} 4$	163.8 (2)

$\mathrm{Ni}-\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3$	$-162.2(2)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 21$	$-177.1(3)$
$\mathrm{Ni}-\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 21$	$21.0(5)$
$\mathrm{N} 21-\mathrm{C} 2-\mathrm{N} 3-\mathrm{N} 4$	$177.1(3)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3-\mathrm{N} 4$	$0.4(4)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{N} 4-\mathrm{C} 5$	$-0.2(3)$
$\mathrm{N} 3-\mathrm{N} 4-\mathrm{C} 5-\mathrm{N} 1$	$0.0(3)$
$\mathrm{N} 3-\mathrm{N} 4-\mathrm{C} 5-\mathrm{C} 51$	$-177.2(3)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5-\mathrm{N} 4$	$0.2(4)$

$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 51$	$177.4(3)$
$\mathrm{Ni}-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 51$	$-18.9(4)$
$\mathrm{N} 4-\mathrm{C} 5-\mathrm{C} 51-\mathrm{C} 52$	$-133.3(3)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 51-\mathrm{C} 52$	$49.6(4)$
$\mathrm{C} 5-\mathrm{C} 51-\mathrm{C} 52-\mathrm{O} 54$	$151.7(3)$
$\mathrm{C} 5-\mathrm{C} 51-\mathrm{C} 52-\mathrm{O} 53$	$-31.5(4)$
$\mathrm{O} 54-\mathrm{C} 52-\mathrm{O} 53-\mathrm{Ni}$	$162.5(2)$
$\mathrm{C} 51-\mathrm{C} 52-\mathrm{O} 53-\mathrm{Ni}$	$-14.2(4)$

Symmetry code: (i) $-x,-y,-z$.

Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{o}$)

$\underline{D-H \cdots A}$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D^{\cdots} A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 21-\mathrm{H} 21 A^{\cdots} \mathrm{O}^{2 i}{ }^{\text {ii }}$	0.83 (2)	2.04 (2)	2.876 (3)	176 (3)
$\mathrm{N} 21-\mathrm{H} 21 B \cdots \mathrm{O} 3^{\text {i }}$	0.83 (2)	2.19 (2)	2.941 (3)	151 (3)
N3-H3 $\cdots 54^{\text {iii }}$	0.83 (3)	2.10 (3)	2.885 (3)	156 (3)
$\mathrm{O} 1-\mathrm{H} 1 A^{\cdots} \mathrm{O}^{\text {iv }}$	0.82 (2)	1.92 (2)	2.739 (3)	176 (3)
$\mathrm{O} 1-\mathrm{H} 1 B^{\cdots} \mathrm{O}^{5}{ }^{\text {v}}$	0.82 (2)	1.96 (2)	2.780 (3)	173 (4)
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 4^{\text {vi }}$	0.83 (2)	2.09 (2)	2.903 (3)	164 (3)
$\mathrm{O} 2-\mathrm{H} 2 B^{\cdots} \mathrm{O} 53{ }^{\text {vii }}$	0.83 (2)	1.98 (2)	2.811 (3)	176 (3)

Symmetry codes: (i) $-x,-y,-z$; (ii) $x, y, z-1$; (iii) $x+1 / 2,-y+1 / 2, z-1 / 2$; (iv) $x-1 / 2,-y-1 / 2, z-1 / 2$; (v) $-x-1,-y,-z$; (vi) $x+1, y, z+1$; (vii) $x+1 / 2,-y+1 / 2$, $z+1 / 2$.

