

OPEN access

Crystal structure of bis(µ-2,3,4,5-tetrafluorobenzoato- $\kappa^2 O:O'$)bis[(1,10-phenanthroline- $\kappa^2 N:N'$)(2.3.4.5-tetrafluorobenzoato- κO)copper(II)] dihydrate

Junshan Sun

Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China. *Correspondence e-mail: klsz79@163.com

Received 12 September 2014; accepted 7 October 2014

Edited by M. Weil, Vienna University of Technology, Austria

In the title compound, $[Cu_2(C_7HF_4O_2)_4(C_{12}H_8N_2)_2]\cdot 2H_2O$, the Cu^{II} ion has a square-pyramidal coordination sphere. The basal plane consists of two N atoms [Cu-N = 2.008 (3)] and 2.032 (3) Å] from the phenanthroline ligand, and of two carboxylate O atoms [Cu-O = 1.942(3) and 1.948(3) Å]from two 2,3,4,5-tetrafluorobenzoate anions. Another 2,3,4,5tetrafluorobenzoate anion provides the apical carboxylate O atom [Cu-O = 2.262 (3) Å] and bridges two Cu^{II} ions into a binuclear centrosymmetric dimer. Intramolecular π - π interactions between one of the tetrafluorobenzene rings and the middle of the phenenanthroline rings [3.617 (3) Å] stabilize the molecular configuration. $O-H\cdots O$ hydrogen bonds between the lattice water molecules and the unbound carboxylate O atoms of the metal complexes leads to the formation of a chain structure parallel to [100].

Keywords: crystal structure; phenanthroline ligands; tetrafluorobenzoate ligands; copper(II) complex; hydrogen bonding.

CCDC reference: 1027857

1. Related literature

For metal complexes with phenanthroline ligands and their derivatives, see: Liu et al. (2006); Kaizer et al. (2006).

2. Experimental

2.1. Crystal data

 $[Cu_2(C_7HF_4O_2)_4(C_{12}H_8N_2)_2]\cdot 2H_2O$ $M_r = 1295.84$ Monoclinic, $P2_1/c$ a = 7.1880 (8) Å b = 22.611 (2) Å c = 15.2343 (15) Å $\beta = 103.446 (2)^{\circ}$

V = 2408.1 (4) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 1.01 \text{ mm}^{-1}$ T = 298 K $0.34 \times 0.29 \times 0.26 \text{ mm}$

12157 measured reflections

 $R_{\rm int}=0.049$

4246 independent reflections

2683 reflections with $I > 2\sigma(I)$

2.2. Data collection

```
Bruker SMART CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2005)
  T_{\min} = 0.725, T_{\max} = 0.779
```

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	379 parameters
$wR(F^2) = 0.116$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm \AA}^{-3}$
4246 reflections	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O5−H5A···O3	0.85	2.08	2.918 (5)	168
$O5-H5B\cdots O4^{i}$	0.85	1.95	2.785 (5)	168

Symmetry code: (i) x + 1, y, z.

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5062).

References

Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Kaizer, J., Csay, T., Speier, G., Réglier, M. & Giorgi, M. (2006). *Inorg. Chem. Commun.* 9, 1037–1039.

Liu, J.-W., Zhu, B., Tian, Y. & Gu, C.-S. (2006). Acta Cryst. E62, m2030-m2032. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. Westrip, S. P. (2010). *J. Appl. Cryst.* **43**, 920–925.

supporting information

Acta Cryst. (2014). E70, m365-m366 [doi:10.1107/S1600536814022065]

Crystal structure of bis(μ -2,3,4,5-tetrafluorobenzoato- $\kappa^2 O:O'$)bis[(1,10-phenanthroline- $\kappa^2 N:N'$)(2,3,4,5-tetrafluorobenzoato- κO)copper(II)] dihydrate

Junshan Sun

S1. Synthesis and crystallisation

The reaction was carried out under solvothermal conditions. 2,3,4,5-tetrafluorobenzoic acid (0.388 g, 1 mmol), cupric acetate (0.199 g, 1 mmol) and phenanthroline (0.180 g, 2 mmol) were added into an air-tight vessel together with ethanol and water in a volume ratio of 1:2. The vessel was heated at 393 K for three days and was then cooled down to room temperature with a rate of 10 Kh⁻. The resulting blue solution was filtered and the filtrate was left for sevaral days giving blue block-shaped crystals. Yield: 81%. Elemental analysis (performed with a Perkin Elmer Model 2400 Series II): calc. for $C_{26}H_{12}CuF_8N_2O_5$: C 48.26, H 1.61, N 4.40; found: C 48.20, H 1.87, N 4.32.

S2. Refinement

H atoms of the phenanthroline ring and the anion were placed geometrically (C—H = 0.93 Å) and refined with $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms of the water molecule were found from a Fourier difference map and refined with a fixed O—H distance of 0.85 Å and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms. The non-labelled atoms are generated by symmetry code -x + 1, -y + 1, -z + 2.

Figure 2

The packing of the molecular entities of the title compound. O—H…O hydrogen-bonding interactions are indicated by dashed lines.

Bis(μ -2,3,4,5-tetrafluorobenzoato- $\kappa^2 O:O'$)bis[(1,10-phenanthroline- $\kappa^2 N:N'$)(2,3,4,5-tetrafluorobenzoato- κO)copper(II)] dihydrate

F(000) = 1292 $D_x = 1.787 \text{ Mg m}^{-3}$

 $\theta = 2.3 - 25.3^{\circ}$ $\mu = 1.01 \text{ mm}^{-1}$ T = 298 KBlock, blue

 $0.34 \times 0.29 \times 0.26 \text{ mm}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 2862 reflections

Crystal data

$[Cu_2(C_7HF_4O_2)_4(C_{12}H_8N_2)_2] \cdot 2H_2O$
$M_r = 1295.84$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 7.1880 (8) Å
b = 22.611 (2) Å
c = 15.2343 (15) Å
$\beta = 103.446 \ (2)^{\circ}$
$V = 2408.1 (4) \text{ Å}^3$
Z = 2

Data collection

Bruker SMART CCD	12157 measured reflections
diffractometer	4246 independent reflections
Radiation source: fine-focus sealed tube	2683 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.049$
ωscans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$
Absorption correction: multi-scan	$h = -7 \rightarrow 8$
(SADABS; Bruker, 2005)	$k = -25 \rightarrow 26$
$T_{\min} = 0.725, T_{\max} = 0.779$	$l = -18 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.116$	neighbouring sites
S = 1.01	H-atom parameters constrained
4246 reflections	$w = 1/[\sigma^2(F_o^2) + (0.043P)^2 + 2.2045P]$
379 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.48 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.26351 (7)	0.42966 (2)	0.96727 (3)	0.03433 (17)	
F1	0.1254 (4)	0.56914 (13)	0.76852 (17)	0.0710 (8)	
F2	-0.0108 (5)	0.67144 (15)	0.6908 (2)	0.0943 (11)	

F3	-0.0237 (5)	0.76847 (14)	0.7904 (3)	0.0997 (12)
F4	0.1064 (5)	0.76414 (13)	0.9711 (2)	0.0947 (11)
F5	-0.2468 (5)	0.37774 (16)	0.6457 (2)	0.0933 (11)
F6	-0.2536 (6)	0.39045 (19)	0.4738 (2)	0.1363 (17)
F7	0.0539 (8)	0.43382 (19)	0.4210 (2)	0.1446 (19)
F8	0.3701 (7)	0.4633 (2)	0.5452 (3)	0.1405 (17)
N1	0.2919 (5)	0.43593 (14)	1.1012 (2)	0.0332 (8)
N2	0.3007 (5)	0.34263 (15)	0.9999 (2)	0.0369 (8)
01	0.1742 (4)	0.50970 (13)	0.93618(18)	0.0414(7)
02	0.4181(4)	0.56062 (12)	1.01997 (18)	0.0405(7)
03	0.2454(4)	0.41553(13)	0 83942 (18)	0.0444(8)
04	-0.0627(4)	0 39979 (14)	0.8205(2)	0.0528(8)
05	0.0027(4)	0.35119 (16)	0.0203(2) 0.8084(3)	0.0320(0)
H5A	0.3702 (3)	0.3742	0.8189	0.0000 (15)
H5R	0.4904	0.3742	0.8140	0.104
C1	0.0795	0.5760	0.0140	0.104
C_{1}	0.2093(0)	0.55051(18)	0.9008(3)	0.0330(10)
C2 C2	0.1804(5)	0.01237(18)	0.9132(3)	0.0370(10)
C3	0.1170(0)	0.0100(2)	0.8213(3)	0.0403(12)
C4	0.0502(7)	0.0082(2)	0.7804(4)	0.0586(14)
05	0.0448 (7)	0.7175 (2)	0.8309 (4)	0.0636 (15)
C6	0.1115 (7)	0.7149 (2)	0.9221 (4)	0.0594 (14)
C7	0.1842 (6)	0.6634 (2)	0.9644 (3)	0.0466 (11)
H7	0.2315	0.6625	1.0266	0.056*
C8	0.0790 (7)	0.40866 (18)	0.7915 (3)	0.0377 (10)
C9	0.0673 (7)	0.41365 (19)	0.6907 (3)	0.0443 (11)
C10	-0.0898 (8)	0.3995 (2)	0.6260 (3)	0.0610 (14)
C11	-0.0961 (11)	0.4054 (3)	0.5346 (4)	0.080 (2)
C12	0.0596 (13)	0.4274 (3)	0.5097 (4)	0.090 (2)
C13	0.2181 (11)	0.4413 (3)	0.5731 (4)	0.0830 (19)
C14	0.2248 (8)	0.4351 (2)	0.6621 (3)	0.0648 (15)
H14	0.3356	0.4452	0.7045	0.078*
C15	0.2727 (6)	0.48237 (19)	1.1508 (3)	0.0403 (10)
H15	0.2219	0.5170	1.1220	0.048*
C16	0.3258 (6)	0.4814 (2)	1.2446 (3)	0.0492 (12)
H16	0.3102	0.5149	1.2774	0.059*
C17	0.4000 (7)	0.4316 (2)	1.2880 (3)	0.0522 (12)
H17	0.4380	0.4310	1.3507	0.063*
C18	0.4194 (6)	0.3809(2)	1.2385 (3)	0.0427 (11)
C19	0.3594 (5)	0.38506 (18)	1.1446 (3)	0.0341 (10)
C20	0.3611 (6)	0.33451 (18)	1.0892 (3)	0.0360 (10)
C21	0.4190 (6)	0.2798 (2)	1.1298 (3)	0.0471 (12)
C22	0.4042 (7)	0.2311 (2)	1.0711 (4)	0.0628 (15)
H22	0.4401	0.1936	1.0938	0.075*
C23	0.3376 (8)	0.2392 (2)	0.9815 (4)	0.0663 (15)
H23	0.3239	0.2069	0.9427	0.080*
C24	0 2888 (7)	0 2959 (2)	0.9466(3)	0.0523 (13)
H24	0 2472	0 3009	0 8845	0.063*
C25	0.4879 (7)	0 3249 (2)	1 2765 (3)	0.0589 (14)
-25	0.10/2 (/)	5.5217 (2)	1.2700 (3)	5.5505 (17)

supporting information

H25	0.5346	0.3220	1.3386	0.071*
C26	0.4871 (7)	0.2767 (2)	1.2254 (3)	0.0592 (14)
H26	0.5312	0.2409	1.2525	0.071*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0356 (3)	0.0364 (3)	0.0293 (3)	-0.0019 (2)	0.0041 (2)	0.0010 (2)
F1	0.095 (2)	0.063 (2)	0.0478 (16)	0.0002 (17)	0.0018 (15)	0.0055 (15)
F2	0.113 (3)	0.091 (3)	0.066 (2)	0.003 (2)	-0.0062 (19)	0.0388 (18)
F3	0.095 (3)	0.055 (2)	0.140 (3)	0.0138 (18)	0.009 (2)	0.045 (2)
F4	0.114 (3)	0.048 (2)	0.126 (3)	0.0141 (19)	0.038 (2)	-0.0052 (19)
F5	0.071 (2)	0.116 (3)	0.077 (2)	-0.016 (2)	-0.0150 (18)	-0.025 (2)
F6	0.158 (4)	0.136 (4)	0.070 (2)	0.022 (3)	-0.063 (2)	-0.034 (2)
F7	0.255 (6)	0.141 (4)	0.0347 (18)	0.034 (4)	0.027 (3)	0.005 (2)
F8	0.178 (4)	0.178 (4)	0.087 (3)	-0.033 (4)	0.073 (3)	0.023 (3)
N1	0.037 (2)	0.031 (2)	0.0311 (17)	0.0036 (16)	0.0072 (15)	0.0034 (15)
N2	0.034 (2)	0.036 (2)	0.041 (2)	-0.0038 (16)	0.0092 (17)	-0.0027 (16)
01	0.0372 (17)	0.0368 (18)	0.0440 (17)	-0.0052 (14)	-0.0033 (14)	0.0069 (14)
O2	0.0276 (16)	0.0471 (19)	0.0430 (16)	-0.0006 (14)	0.0003 (14)	0.0011 (13)
O3	0.0356 (18)	0.063 (2)	0.0315 (15)	-0.0012 (15)	0.0023 (14)	-0.0011 (14)
O4	0.042 (2)	0.063 (2)	0.053 (2)	-0.0077 (17)	0.0102 (16)	-0.0065 (16)
O5	0.061 (2)	0.072 (3)	0.137 (4)	-0.018 (2)	0.042 (2)	-0.044 (2)
C1	0.028 (2)	0.042 (3)	0.037 (2)	0.004 (2)	0.0105 (19)	0.004 (2)
C2	0.025 (2)	0.037 (3)	0.048 (3)	-0.0019 (19)	0.005 (2)	0.007 (2)
C3	0.041 (3)	0.045 (3)	0.052 (3)	-0.006 (2)	0.007 (2)	0.008 (2)
C4	0.048 (3)	0.060 (4)	0.064 (3)	-0.002 (3)	0.005 (3)	0.027 (3)
C5	0.049 (3)	0.048 (3)	0.093 (4)	0.007 (3)	0.014 (3)	0.029 (3)
C6	0.050 (3)	0.035 (3)	0.097 (4)	0.002 (2)	0.023 (3)	-0.001 (3)
C7	0.040 (3)	0.042 (3)	0.058 (3)	0.000 (2)	0.012 (2)	0.002 (2)
C8	0.041 (3)	0.033 (2)	0.037 (2)	0.003 (2)	0.004 (2)	-0.0046 (19)
C9	0.053 (3)	0.040 (3)	0.036 (2)	0.006 (2)	0.003 (2)	-0.006 (2)
C10	0.064 (4)	0.052 (3)	0.057 (3)	0.002 (3)	-0.007 (3)	-0.013 (3)
C11	0.110 (6)	0.066 (4)	0.042 (3)	0.020 (4)	-0.031 (4)	-0.014 (3)
C12	0.154 (7)	0.072 (5)	0.035 (3)	0.024 (5)	0.006 (4)	-0.001 (3)
C13	0.116 (6)	0.079 (5)	0.059 (4)	0.000 (4)	0.031 (4)	0.011 (3)
C14	0.087 (4)	0.071 (4)	0.037 (3)	-0.002 (3)	0.016 (3)	0.009 (3)
C15	0.039 (3)	0.038 (3)	0.046 (3)	0.002 (2)	0.014 (2)	0.003 (2)
C16	0.054 (3)	0.059 (3)	0.037 (3)	-0.001 (3)	0.015 (2)	-0.011 (2)
C17	0.051 (3)	0.074 (4)	0.032 (2)	-0.005 (3)	0.009 (2)	0.003 (3)
C18	0.037 (3)	0.049 (3)	0.041 (3)	-0.003 (2)	0.008 (2)	0.010 (2)
C19	0.027 (2)	0.041 (3)	0.034 (2)	-0.0019 (19)	0.0068 (18)	0.0064 (19)
C20	0.028 (2)	0.038 (3)	0.043 (3)	-0.0009 (19)	0.0113 (19)	0.007 (2)
C21	0.041 (3)	0.037 (3)	0.066 (3)	0.002 (2)	0.018 (2)	0.011 (2)
C22	0.063 (4)	0.035 (3)	0.093 (4)	0.003 (3)	0.024 (3)	0.011 (3)
C23	0.078 (4)	0.039 (3)	0.088 (4)	-0.007 (3)	0.031 (3)	-0.013 (3)
C24	0.063 (3)	0.045 (3)	0.051 (3)	-0.010 (2)	0.016 (3)	-0.008(2)
C25	0.058 (3)	0.067 (4)	0.050 (3)	0.003 (3)	0.008 (3)	0.024 (3)

					support	ing information
C26	0.060 (3)	0.050 (3)	0.067 (4)	0.010 (3)	0.015 (3)	0.033 (3)
Geome	etric parameters ((Å, °)				
Cu1—	01	1.942 (3)	C6—C7		1.374 (6)
Cu1—	03	1.948 (3)	С7—Н7		0.9300
Cu1—	N1	2.008 (3)	C8—C9		1.523 (6)
Cu1—	N2	2.032 (3)	C9—C10		1.353 (6)
Cu1—	O2 ⁱ	2.262 (3)	C9—C14		1.392 (7)
F1—C	3	1.341 (5)	C10-C11		1.389 (8)
F2—C	4	1.336 (6)	C11—C12		1.357 (9)
F3—C	5	1.346 (5)	C12—C13		1.348 (9)
F4—C	6	1.345 (6)	C13—C14		1.352 (7)
F5—C	10	1.327 (6)	C14—H14		0.9300
F6—C	11	1.329 (6)	C15—C16		1.391 (6)
F7—C	12	1.349 (6)	С15—Н15		0.9300
F8—C	13	1.356 (7)	C16—C17		1.351 (6)
N1-C	215	1.319 (5)	C16—H16		0.9300
N1—C	C19	1.359 (5)	C17—C18		1.396 (6)
N2-C	24	1.323 (5)	C17—H17		0.9300
N2—C	20	1.340 (5)	C18—C19		1.398 (5)
01-0	21	1.265 (5)	C18—C25		1.430 (6)
02-0	21	1.232 (5)	C19—C20		1.423 (6)
02-0	Cu1 ⁱ	2.262 (3)	C20—C21		1.402 (6)
03-0	28	1.257 (5)	C21—C22		1.407 (6)
04-0	28	1.218 (5)	C21—C26		1.427 (6)
05—F	I5A	0.8500	,	C22—C23		1.350 (7)
05—F	15B	0.8499		C22—H22		0.9300
C1-C	12	1.516 (5)	C_{23} — C_{24}		1.402 (7)
C2-C	3	1 371 (6)	C23—H23		0.9300
C2—C	27	1.391 (6)	C24—H24		0.9300
C3-C	24	1.369 (6)	C_{25} — C_{26}		1.339(7)
C4—C	25	1.361 (7)	C25—H25		0.9300
C5—C	26	1.362 (7)	C26—H26		0.9300
01—0	Cu1—O3	88.14 (1	2)	C9—C10—C11		122.3 (6)
01-0	Cu1—N1	97.58 (1	3)	F6—C11—C12		121.5 (6)
03-0	Cu1—N1	174.29 (13)	F6—C11—C10		119.8 (7)
01-0	Cu1—N2	168.38 (13)	C12—C11—C10		118.6 (6)
03-0	Cu1—N2	93.47 (1	3)	C13—C12—F7		121.1 (8)
N1-C	Cu1—N2	80.97 (1	3)	C13—C12—C11		119.9 (6)
01-0	$Cu1 - O2^i$	101.59 (11)	F7—C12—C11		119.0 (7)
03-0	$Cu1 - O2^i$	86.16 (1	1)	C12—C13—C14		121.5 (7)
N1-C	$Cu1 - O2^i$	92.52 (1	2)	C12—C13—F8		117.9 (6)
N2C	$Cu1 - O2^{i}$	90.01 (1	2)	C14—C13—F8		120.6 (6)
C15—	N1—C19	117.9 (3)	C13—C14—C9		120.5 (6)
C15—	N1—Cu1	129.7 (3)	C13—C14—H14		119.7
C19—	N1—Cu1	112.0 (3)	C9—C14—H14		119.7

C24—N2—C20	118.2 (4)	N1-C15-C16	122.3 (4)
C24—N2—Cu1	129.5 (3)	N1—C15—H15	118.8
C20—N2—Cu1	112.0 (3)	C16—C15—H15	118.8
C1—O1—Cu1	125.4 (3)	C17—C16—C15	119.9 (4)
C1—O2—Cu1 ⁱ	139.4 (3)	C17—C16—H16	120.0
C8—O3—Cu1	115.7 (3)	C15—C16—H16	120.0
H5A—O5—H5B	108.7	C16—C17—C18	119.8 (4)
O2—C1—O1	126.9 (4)	C16—C17—H17	120.1
O2—C1—C2	117.5 (4)	C18—C17—H17	120.1
O1—C1—C2	115.6 (4)	C17—C18—C19	116.8 (4)
C3—C2—C7	118.4 (4)	C17—C18—C25	125.2 (4)
C3—C2—C1	122.9 (4)	C19—C18—C25	118.0 (4)
C7—C2—C1	118.7 (4)	N1—C19—C18	123.0 (4)
F1—C3—C4	117.7 (4)	N1—C19—C20	116.3 (3)
F1—C3—C2	120.8 (4)	C18—C19—C20	120.7 (4)
C4—C3—C2	121.3 (5)	N2-C20-C21	124.1 (4)
F2—C4—C5	119.1 (5)	N2-C20-C19	116.5 (4)
F2—C4—C3	120.8 (5)	C21—C20—C19	119.3 (4)
C5—C4—C3	120.1 (5)	C20—C21—C22	116.0 (4)
F3—C5—C4	119.9 (5)	C20—C21—C26	119.3 (4)
F3—C5—C6	120.6 (5)	C22—C21—C26	124.6 (5)
C4—C5—C6	119.5 (5)	C23—C22—C21	119.6 (5)
F4—C6—C5	118.9 (5)	С23—С22—Н22	120.2
F4—C6—C7	119.9 (5)	C21—C22—H22	120.2
C5—C6—C7	121.2 (5)	C22—C23—C24	120.3 (5)
C6—C7—C2	119.4 (5)	С22—С23—Н23	119.8
С6—С7—Н7	120.3	С24—С23—Н23	119.8
С2—С7—Н7	120.3	N2—C24—C23	121.6 (5)
O4—C8—O3	124.9 (4)	N2—C24—H24	119.2
O4—C8—C9	121.6 (4)	C23—C24—H24	119.2
O3—C8—C9	113.5 (4)	C26—C25—C18	122.1 (5)
C10—C9—C14	117.1 (5)	С26—С25—Н25	118.9
C10—C9—C8	123.9 (5)	C18—C25—H25	118.9
C14—C9—C8	118.9 (4)	C25—C26—C21	120.5 (4)
F5—C10—C9	122.2 (5)	С25—С26—Н26	119.8
F5-C10-C11	115.5 (5)	C21—C26—H26	119.8

Symmetry code: (i) -x+1, -y+1, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O5—H5 <i>A</i> ···O3	0.85	2.08	2.918 (5)	168
O5—H5 <i>B</i> ···O4 ⁱⁱ	0.85	1.95	2.785 (5)	168

Symmetry code: (ii) x+1, y, z.