

Received 9 October 2014 Accepted 21 October 2014

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; acenaphthylene; hydrazinecarbothioamide; thiosemicarbazones; hydrogen bonding; C— $H \cdots \pi$ interactions

CCDC reference: 1030348 Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\widehat{\odot}$ ACCESS

Crystal structure of (2*E*)-*N*-methyl-2-(2-oxo-1,2-dihydroacenaphthylen-1-ylidene)hydrazinecarbothioamide

G. Vimala,^a J. Govindaraj,^b J. Haribabu,^c R. Karvembu^c and A. SubbiahPandi^{a,c}*

^aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, ^bDepartment of Physics, Pachaiyappa's College for Men, Kancheepuram 631 501, India, and ^cDepartment of Chemistry, National Institute of Technology, Trichy 620 015, India. *Correspondence e-mail: aspandian59@gmail.com

In the title compound, $C_{14}H_{11}N_3OS$, the acenaphthylene ring system and hydrazinecarbothioamide unit (=N-NH-C=S-NH-) are essentially coplanar [with maximum deviations from their mean planes of -0.009 (2) and 0.033 (2) Å, respectively], and make a dihedral angle of 1.59 (9)°. The molecular conformation is stabilized by two weak intramolecular hydrogen bonds (N-H···O and N-H···N), which generate *S*(6) and *S*(5) ring motifs. In the crystal, molecules are linked by N-H···S hydrogen bonds, forming chains along [010]. The chains are linked *via* pairs of C-H···O hydrogen bonds, enclosing $R_2^2(10)$ ring motifs, and C-H··· π interactions, forming a three-dimensional framework. The absolute structure of the title compound was determined by resonant scattering.

1. Chemical context

The design and synthesis of thiosemicarbazones are of considerable interest because of their versatile chemistry and various biological activities, such as antitumor, antibacterial, antiviral, antiamoebic and antimalarial (Kelly *et al.*, 1996). They comprise an intriguing class of chelating molecules, which possess a wide range of beneficial medicinal properties (Prabhakaran *et al.* 2008). Thiosemicarbazones are a versatile class of ligands that have been studied for their biological activity (Chellan *et al.*, 2010), their interesting binding motifs (Lobana *et al.*, 2009) and their use as ligands in catalysis (Xie *et al.*, 2010). In view of their biological importance, the crystal structure of the title compound has been determined and the results are presented herein.

2. Structural commentary

The molecular structure of the title compound is illustrated in Fig. 1. The atoms of both the acenaphthylene ring system and the =N-NH-C=S-NH- segment are essentially coplanar, the maximum deviations from their mean planes being -0.009 (2) and 0.033 (2) Å for atoms C12 and C14, respec-

NH

Figure 1

The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

tively. The dihedral angle between the benzene and cyclopentane rings of the acenapthalene unit is $1.59 (9)^{\circ}$. The molecular structure is stabilized by N-H···O and N-H···N hydrogen bonds, forming S(6) and S(5) ring motifs, respectively (Table 1 and Fig. 1).

3. Supramolecular features

In the crystal, molecules are linked by N-H···S hydrogen bonds (Table 1 and Fig. 2), forming chains along [010]. The chains are linked *via* pairs of C-H···O hydrogen bonds, enclosing $R_2^2(10)$ ring motifs, and C-H··· π interactions, forming a three-dimensional framework (Table 1 and Fig. 2).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Groom & Allen, 2014) for the substructure 2-(imino)acenaphthylen-1(2H)-one gave 13 hits, including that of the ethyl analogue of the title compound,

Table 1Hydrogen-bond geometry (Å, °).

Cg is	the	centroid	of rir	ng C1/	C6-C10.
-------	-----	----------	--------	--------	---------

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N2-H2···O1	0.86	2.03	2.7178 (19)	136
$N3-H3 \cdot \cdot \cdot N1$	0.86	2.26	2.6437 (19)	107
$N3-H3 \cdot \cdot \cdot S1^{i}$	0.86	2.64	3.4407 (15)	156
$C4-H4\cdots O1^{ii}$	0.93	2.47	3.246 (2)	141
$C2-H2A\cdots Cg^{iii}$	0.93	2.76	3.502 (2)	137
Symmetry codes: $x + \frac{1}{2}, -y - \frac{1}{2}, -7$.	(i) $-x + 1$	$, y - \frac{1}{2}, -z + \frac{1}{2};$	(ii) $x + \frac{1}{2}, -y$	$+\frac{1}{2}, -z;$ (iii)

Figure 2

The crystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

acenaphthylene-1,2-dione 4-ethylthiosemicarbazone (GUR-HAD; Pascu *et al.*, 2010). The two molecules differ in the dihedral angle between the mean planes of the acenaphthylene ring system and hydrazinecarbothioamide unit (=N-NH-C=S-NH-) which is 1.59 (9)° in the title compound but 9.14 (6)° in the ethyl analogue (GURHAD; Pascu *et al.*, 2010). In the crystals of both compounds, molecules are linked *via* N-H···S hydrogen bonds, forming chains along [010].

5. Synthesis and crystallization

An ethanolic solution of *N*-methylhydrazinecarbothioamide (0.01 mol) was added to an ethanolic solution (50 ml) containing acenaphthylene-1,2-dione (0.01 mol). The mixture was refluxed for 2 h during which time a yellow precipitate separated out. The reaction mixture was then cooled to room temperature and the precipitate was filtered off. It was then washed with ethanol and dried under vacuum. The yield of the isolated product was 89%. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethanol at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were fixed geom-

research communications

 Table 2

 Experimental details.

Crystal data	
Chemical formula	$C_{14}H_{11}N_3OS$
M _r	269.33
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	293
a, b, c (Å)	6.1110 (6), 10.0547 (11), 21.497 (2)
$V(Å^3)$	1320.8 (2)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.24
Crystal size (mm)	$0.30 \times 0.25 \times 0.20$
Data collection	
Diffractometer	Bruker SMART APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2008)
T_{\min}, T_{\max}	0.932, 0.954
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	23135, 3941, 2929
$R_{\rm e}$	0.030
$(\sin \theta/\lambda)$ (\mathring{A}^{-1})	0.708
$(\sin \theta/\lambda)_{\max}(A)$	0.708
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.100, 0.99
No. of reflections	3941
No. of parameters	173
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.19, -0.21
Absolute structure	Flack (1983); Friedel pairs
Absolute structure parameter	-0.02 (8)
-	

Computer programs: *APEX2* and *SAINT* (Bruker, 2008), *SHELXS97* and *SHELXL97* (Sheldrick, 2008), *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2009).

etrically and allowed to ride on their parent atoms: N-H = 0.86 and C-H = 0.93-0.97 Å and with $U_{iso}(H) = 1.5U_{ea}(C)$ for

methyl H atoms and = $1.2U_{eq}(C)$ for other H atoms. The absolute structure of the title compound was determined by resonant scattering, with a Flack parameter of 0.02 (8).

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India for the data collection.

References

- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chellan, P., Shunmoogam-Gounden, N., Hendricks, D. T., Gut, J., Rosenthal, P. J., Lategan, C., Smith, P. J., Chibale, K. & Smith, G. S. (2010). *Eur. J. Inorg. Chem.* pp, 3520–3528.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Kelly, P. F., Slawin, A. M. Z. & Soriano-Rama, A. (1996). J. Chem. Soc. Dalton Trans. pp. 53–59.

- Pascu, S. I., Waghorn, P. A., Kennedy, B. W. C., Arrowsmith, R. L., Bayly, S. R., Dilworth, J. R., Christlieb, M., Tyrrell, R. M., Zhong, J., Kowalczyk, R. M., Collison, D., Aley, P. K., Churchill, G. C. & Aigbirhio, F. I. (2010). *Chem. Asian J.* 5, 506–519.
- Prabhakaran, R., Huang, R., Renukadevi, S. V., Karvembu, R., Zeller, M. & Natarajan, K. (2008). *Inorg. Chim. Acta*, 361, 2547– 2552.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Xie, G., Chellan, P., Mao, J., Chibale, K. & Smith, G. S. (2010). Adv. Synth. Catal. 352, 1641–1647.

Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.

supporting information

Acta Cryst. (2014). E70, 415-417 [doi:10.1107/S1600536814023216]

Crystal structure of (2*E*)-*N*-methyl-2-(2-oxo-1,2-dihydroacenaphthylen-1-yl-idene)hydrazinecarbothioamide

G. Vimala, J. Govindaraj, J. Haribabu, R. Karvembu and A. SubbiahPandi

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

(2E) - N-Methyl-2-(2-oxo-1,2-dihydroacenaphthylen-1-ylidene) hydrazine carbothio amide

Crystal data	
C ₁₄ H ₁₁ N ₃ OS	Z = 4
$M_r = 269.33$	F(000) = 560
Orthorhombic, $P2_12_12_1$	$D_{\rm x} = 1.354 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: P 2ac 2ab	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.1110 (6) Å	$\mu = 0.24 \ \mathrm{mm^{-1}}$
b = 10.0547 (11) Å	T = 293 K
c = 21.497 (2) Å	Block, yellow
V = 1320.8 (2) Å ³	$0.30 \times 0.25 \times 0.20$ mm
Data collection	
Bruker SMART APEXII CCD	23135 measured reflections
diffractometer	3941 independent reflections
Radiation source: fine-focus sealed tube	2929 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.030$
ω and φ scans	$\theta_{\rm max} = 30.2^\circ, \theta_{\rm min} = 2.2^\circ$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(SADABS; Bruker, 2008)	$k = -13 \rightarrow 14$
$T_{\min} = 0.932, \ T_{\max} = 0.954$	$l = -29 \rightarrow 29$
Refinement	
Refinement on F^2	Secondary atom site location: diffe
Least-squares matrix: full	map

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.100$ S = 0.99 3941 reflections 173 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0532P)^2 + 0.2048P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.19$ e Å⁻³ $\Delta\rho_{min} = -0.21$ e Å⁻³

Absolute structure: Flack (1983); Friedel pairs

Absolute structure parameter: -0.02 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.25692 (8)	0.16757 (4)	0.21243 (2)	0.04960 (13)
N1	0.7542 (2)	-0.05741 (12)	0.17414 (6)	0.0365 (3)
C6	1.2232 (3)	-0.09719 (15)	0.07905 (7)	0.0371 (3)
01	0.8428 (2)	0.16301 (14)	0.08374 (6)	0.0550 (4)
N2	0.6084 (2)	0.04380 (14)	0.17558 (7)	0.0416 (3)
H2	0.6259	0.1109	0.1513	0.050*
C7	1.0847 (3)	-0.14650 (15)	0.12619 (7)	0.0342 (3)
C13	0.4342 (3)	0.04074 (16)	0.21510 (8)	0.0380 (3)
N3	0.4208 (2)	-0.06205 (15)	0.25248 (7)	0.0445 (3)
H3	0.5225	-0.1210	0.2506	0.053*
C12	0.9103 (3)	-0.04864 (16)	0.13442 (7)	0.0350 (3)
C5	1.1533 (3)	0.02565 (17)	0.05510 (8)	0.0425 (4)
C11	0.9539 (3)	0.06370 (17)	0.08912 (8)	0.0403 (4)
C8	1.1346 (3)	-0.26514 (17)	0.15336 (8)	0.0416 (4)
H8	1.0445	-0.3015	0.1838	0.050*
C9	1.3268 (3)	-0.3313 (2)	0.13404 (9)	0.0492 (4)
H9	1.3632	-0.4114	0.1530	0.059*
C14	0.2450 (4)	-0.0824 (2)	0.29673 (10)	0.0634 (5)
H14A	0.2421	-0.0099	0.3258	0.095*
H14B	0.2686	-0.1642	0.3187	0.095*
H14C	0.1080	-0.0866	0.2750	0.095*
C1	1.4122 (3)	-0.16161 (19)	0.05877 (8)	0.0435 (4)
C2	1.5292 (4)	-0.0968 (2)	0.01114 (10)	0.0604 (6)
H2A	1.6559	-0.1356	-0.0045	0.072*
C4	1.2699 (4)	0.0860 (2)	0.00894 (9)	0.0578 (5)
H4	1.2252	0.1668	-0.0078	0.069*
C3	1.4596 (4)	0.0221 (2)	-0.01250 (11)	0.0671 (6)
H3A	1.5408	0.0621	-0.0439	0.080*
C10	1.4618 (3)	-0.2829 (2)	0.08867 (9)	0.0505 (5)
H10	1.5867	-0.3300	0.0775	0.061*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0421 (2)	0.0413 (2)	0.0654 (3)	0.0080 (2)	0.0033 (2)	-0.01024 (19)
N1	0.0345 (6)	0.0331 (6)	0.0420 (7)	0.0008 (6)	0.0020 (7)	-0.0007 (5)
C6	0.0373 (9)	0.0370 (8)	0.0369 (8)	-0.0031 (7)	-0.0004 (7)	-0.0047 (6)
01	0.0621 (8)	0.0423 (7)	0.0605 (8)	0.0123 (7)	0.0046 (7)	0.0140 (6)
N2	0.0397 (7)	0.0361 (7)	0.0488 (8)	0.0054 (6)	0.0055 (7)	0.0043 (6)
C7	0.0353 (8)	0.0338 (8)	0.0336 (7)	0.0004 (6)	-0.0001 (6)	-0.0013 (6)
C13	0.0337 (8)	0.0365 (8)	0.0438 (8)	-0.0028 (6)	0.0001 (7)	-0.0089 (7)
N3	0.0401 (8)	0.0406 (7)	0.0528 (8)	0.0015 (6)	0.0077 (7)	-0.0009 (7)
C12	0.0356 (8)	0.0326 (7)	0.0368 (7)	0.0007 (6)	-0.0014 (7)	0.0021 (6)
C5	0.0498 (10)	0.0395 (9)	0.0381 (8)	-0.0029 (8)	0.0047 (8)	-0.0009(7)
C11	0.0436 (9)	0.0357 (8)	0.0415 (8)	-0.0005 (7)	-0.0003 (7)	0.0040 (7)
C8	0.0454 (10)	0.0386 (9)	0.0407 (9)	0.0029 (8)	0.0000 (8)	0.0019 (7)
C9	0.0523 (10)	0.0432 (9)	0.0521 (10)	0.0129 (9)	-0.0088 (8)	-0.0013 (8)
C14	0.0583 (12)	0.0610 (12)	0.0707 (13)	-0.0037 (11)	0.0226 (12)	0.0021 (9)
C1	0.0388 (9)	0.0476 (9)	0.0441 (9)	-0.0044 (8)	0.0042 (7)	-0.0129 (8)
C2	0.0513 (12)	0.0702 (14)	0.0596 (12)	-0.0090 (10)	0.0196 (10)	-0.0180 (10)
C4	0.0742 (14)	0.0496 (10)	0.0495 (10)	-0.0103 (11)	0.0164 (11)	0.0068 (8)
C3	0.0747 (16)	0.0684 (15)	0.0581 (12)	-0.0179 (12)	0.0285 (12)	-0.0009 (10)
C10	0.0397 (10)	0.0547 (11)	0.0572 (11)	0.0100 (8)	-0.0044 (8)	-0.0157 (9)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

S1—C13	1.6744 (17)	C5—C11	1.472 (3)
N1-C12	1.283 (2)	C8—C9	1.412 (2)
N1—N2	1.3528 (19)	C8—H8	0.9300
C6—C1	1.394 (2)	C9—C10	1.367 (3)
C6—C5	1.405 (2)	С9—Н9	0.9300
С6—С7	1.410 (2)	C14—H14A	0.9600
01—C11	1.213 (2)	C14—H14B	0.9600
N2-C13	1.362 (2)	C14—H14C	0.9600
N2—H2	0.8600	C1—C2	1.409 (3)
С7—С8	1.363 (2)	C1—C10	1.411 (3)
C7—C12	1.461 (2)	C2—C3	1.367 (3)
C13—N3	1.312 (2)	C2—H2A	0.9300
N3—C14	1.449 (2)	C4—C3	1.403 (3)
N3—H3	0.8600	C4—H4	0.9300
C12—C11	1.515 (2)	С3—НЗА	0.9300
C5—C4	1.364 (3)	C10—H10	0.9300
C12—N1—N2	116.93 (13)	С7—С8—Н8	120.9
C1—C6—C5	123.08 (16)	С9—С8—Н8	120.9
C1—C6—C7	123.95 (16)	C10—C9—C8	122.95 (18)
С5—С6—С7	112.96 (15)	С10—С9—Н9	118.5
N1—N2—C13	120.78 (14)	С8—С9—Н9	118.5
N1—N2—H2	119.6	N3—C14—H14A	109.5

C13—N2—H2	119.6	N3—C14—H14B	109.5
C8—C7—C6	118.78 (16)	H14A—C14—H14B	109.5
C8—C7—C12	134.48 (16)	N3—C14—H14C	109.5
C6—C7—C12	106.73 (13)	H14A—C14—H14C	109.5
N3—C13—N2	116.67 (15)	H14B—C14—H14C	109.5
N3—C13—S1	125.49 (13)	C6—C1—C2	115.65 (19)
N2—C13—S1	117.84 (13)	C6—C1—C10	115.92 (16)
C13—N3—C14	124.05 (16)	C2-C1-C10	128.43 (18)
C13—N3—H3	118.0	C3—C2—C1	121.1 (2)
C14—N3—H3	118.0	C3—C2—H2A	119.4
N1—C12—C7	125.20 (14)	C1—C2—H2A	119.4
N1—C12—C11	127.56 (15)	C5—C4—C3	117.9 (2)
C7—C12—C11	107.22 (14)	C5—C4—H4	121.1
C4—C5—C6	119.92 (18)	C3—C4—H4	121.1
C4—C5—C11	132.73 (18)	C2—C3—C4	122.4 (2)
C6—C5—C11	107.34 (15)	С2—С3—НЗА	118.8
O1—C11—C5	129.05 (16)	C4—C3—H3A	118.8
O1—C11—C12	125.21 (16)	C9—C10—C1	120.19 (17)
C5-C11-C12	105.74 (14)	С9—С10—Н10	119.9
C7—C8—C9	118.19 (17)	C1-C10-H10	119.9
C12—N1—N2—C13	178.14 (14)	C6-C5-C11-C12	-0.95 (18)
C1—C6—C7—C8	-1.1 (2)	N1-C12-C11-O1	-0.7 (3)
C5—C6—C7—C8	-179.95 (15)	C7—C12—C11—O1	-179.08 (17)
C1—C6—C7—C12	178.56 (15)	N1—C12—C11—C5	179.18 (16)
C5—C6—C7—C12	-0.34 (19)	C7—C12—C11—C5	0.76 (18)
N1—N2—C13—N3	2.3 (2)	C6—C7—C8—C9	1.7 (2)
N1—N2—C13—S1	-178.08 (12)	C12—C7—C8—C9	-177.74 (17)
N2-C13-N3-C14	-179.01 (17)	C7—C8—C9—C10	-1.3 (3)
S1—C13—N3—C14	1.4 (3)	C5—C6—C1—C2	-1.3 (2)
N2—N1—C12—C7	179.26 (15)	C7—C6—C1—C2	179.96 (16)
N2—N1—C12—C11	1.1 (2)	C5-C6-C1-C10	178.58 (16)
C8—C7—C12—N1	0.8 (3)	C7—C6—C1—C10	-0.2 (2)
C6—C7—C12—N1	-178.75 (15)	C6—C1—C2—C3	0.6 (3)
C8—C7—C12—C11	179.24 (18)	C10—C1—C2—C3	-179.2(2)
C6—C7—C12—C11	-0.29 (17)	C6—C5—C4—C3	-0.7 (3)
C1—C6—C5—C4	1.4 (3)	C11—C5—C4—C3	178.57 (19)
C7—C6—C5—C4	-179.72 (17)	C1—C2—C3—C4	0.0 (4)
C1-C6-C5-C11	-178.08 (15)	C5—C4—C3—C2	0.1 (3)
C7—C6—C5—C11	0.83 (19)	C8—C9—C10—C1	0.0 (3)
C4—C5—C11—O1	-0.5 (4)	C6-C1-C10-C9	0.7 (2)
C6-C5-C11-O1	178.88 (19)	C2-C1-C10-C9	-179.5 (2)
C4—C5—C11—C12	179.7 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H…A
N2—H2…O1	0.86	2.03	2.7178 (19)	136
N3—H3…N1	0.86	2.26	2.6437 (19)	107
N3—H3···S1 ⁱ	0.86	2.64	3.4407 (15)	156
C4—H4····O1 ⁱⁱ	0.93	2.47	3.246 (2)	141
C2—H2A···Cg ⁱⁱⁱ	0.93	2.76	3.502 (2)	137

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1/2; (ii) *x*+1/2, -*y*+1/2, -*z*; (iii) *x*+1/2, -*y*-1/2, -*z*.