research communications

Received 26 September 2014 Accepted 5 October 2014

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; *N*-arylhydroxylamine; hydroxylamine; *N*-(quinolin-6yl)hydroxylamine; quinoline

CCDC reference: 861650 **Supporting information**: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structure of *N*-(quinolin-6-yl)hydroxylamine

CrossMark

Anuruddha Rajapakse, Roman Hillebrand, Sarah M. Lewis, Zachary D. Parsons, Charles L. Barnes and Kent S. Gates*

125 Chemistry Bldg, University of Missouri Columbia, MO 65211, USA. *Correspondence e-mail: gatesk@missouri.edu

The title compound, $C_9H_8N_2O$, crystallized with four independent molecules in the asymmetric unit. The four molecules are linked *via* one $O-H\cdots N$ and two $N-H\cdots N$ hydrogen bonds, forming a tetramer-like unit. In the crystal, molecules are further linked by $O-H\cdots N$ and $N-H\cdots O$ hydrogen bonds forming layers parallel to (001). These layers are linked *via* $C-H\cdots O$ hydrogen bonds and a number of weak $C-H\cdots \pi$ interactions, forming a threedimensional structure. The crystal was refined as a non-merohedral twin with a minor twin component of 0.319.

1. Chemical context

N-Arylhydroxylamines can be generated in chemical, biochemical and biological systems either by reduction of nitroaromatic compounds or oxidation of arylamines. Interestingly, few aryl hydroxylamines have been crystallographically characterized. In part, this may be due to the instability of these compounds. For example, N-arylhydroxylamines can undergo spontaneous oxidation to generate the nitroso derivatives (Rubin et al., 1987; Veggi et al., 2008). These compounds, in turn, condense with the unreacted hydroxylamine to yield the azoxy derivatives (Pizzolatti & Yunes, 1990; Agrawal & Tratnyek, 1996). They are also of particular importance as intermediates in the bioreductive activation of nitroaromatic prodrugs (Wardman et al., 1995; Fitzsimmons et al., 1996; Rooseboom et al., 2004; Chen & Hu, 2009; Wilson & Hay, 2011; Wilson et al., 1989; Denny & Wilson, 1986; Walton et al., 1989; Wen et al., 2008; James et al., 2001; Patterson et al., 2007). Our longstanding interest in this type of process (Daniels & Gates, 1996; Junnotula et al., 2009, 2010) and our recent interest in the bioreductive activation of 6-nitroquinoline (Rajapakse & Gates, 2012; Rajapakse et al., 2013) led us to prepare and characterize the title compound.

2. Structural commentary

The title compound, $C_9H_8N_2O$, crystallized with four independent molecules (*A*, *B*, *C*, and *D*) in the asymmetric unit (Fig. 1). The O atoms of the hydroxylamino groups in the four

Figure 1

A view of the molecular structure of the four independent molecules (suffixes A, B, C and D) of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

independent molecules A, B, C, and D are displaced from the aromatic ring planes by 0.745 (5), 0.550 (5), 0.971 (6) and 0.293 (5) Å, respectively. The four molecules are linked *via* one $O-H\cdots N$ and two $N-H\cdots N$ hydrogen bonds, forming a tetramer-like unit (Fig. 1 and Table 1).

3. Supramolecular features

In the crystal, the tetramer-like units are linked by $O-H\cdots N$ and $N-H\cdots O$ hydrogen bonds, forming layers parallel to (001); see Table 1 and Fig. 2. These layers are linked *via* C- $H\cdots O$ hydrogen bonds and a number of $C-H\cdots \pi$ interactions (Table 1), forming a three-dimensional structure.

4. Synthesis and crystallization

To a stirred solution of 6-nitroquinoline [(1); 0.5 g, 2.87 mmol]in EtOH/CH₂Cl₂ (1:1 v/v, 20 ml) at 273 K was added a slurry of Raney nickel (0.5 ml). To this mixture, hydrazine hydrate (10 equivalents) was added dropwise with stirring over the course of 1 h while keeping the solution under an inert atmosphere of nitrogen gas. The solid was removed by filtration and the resulting solution diluted with water (2 ml) and then extracted

*Cg*1, *Cg*2, *Cg*5, *Cg*8 and *Cg*11 are the centroids of the N1*A*/C1*A*–C4*A*/C9*A*, C4*A*–C9*A*, C4*B*–C9*B*, C4*C*–C9*C* and C4*D*–C9*D* rings, respectively.

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1A - H1OA \cdots N1B$	0.84	1.88	2.711 (5)	170
$N2A - H2NA \cdots N2C$	0.78 (4)	2.58 (4)	3.351 (5)	169 (4)
$N2D - H2ND \cdots N2A$	0.88(4)	2.35 (4)	3.204 (4)	165 (4)
$O1B - H1OB \cdot \cdot \cdot N1A^{i}$	0.84	1.87	2.689 (4)	166
$O1C - H1C \cdot \cdot \cdot N1D^{ii}$	0.84	1.82	2.628 (5)	160
$O1D - H1OD \cdot \cdot \cdot N1C^{iii}$	0.84	1.93	2.764 (4)	172
$N2B - H2NB \cdots O1D^{iv}$	0.85 (4)	2.14 (4)	2.935 (4)	157 (4)
$N2C-H2NC\cdotsO1B^{ii}$	0.85 (4)	2.12 (4)	2.937 (4)	159 (4)
$C7C - H7C \cdot \cdot \cdot O1B^{ii}$	0.95	2.58	3.300 (4)	133
$C3A - H3A \cdots Cg5^{v}$	0.95	2.64	3.333 (3)	130
$C3B-H3B\cdots Cg2^{vi}$	0.95	2.59	3.265 (4)	129
$C3C - H3C \cdot \cdot \cdot Cg11^{vii}$	0.95	2.61	3.355 (3)	136
$C3D - H3D \cdots Cg8^{viii}$	0.95	2.85	3.436 (4)	121
$C7D - H7D \cdots Cg8$	0.95	2.99	3.664 (4)	129
$C8B - H8B \cdots Cg1^{iv}$	0.95	2.85	3.527 (4)	129

Symmetry codes: (i) x + 1, y + 1, z; (ii) x, y - 1, z; (iii) x - 1, y, z; (iv) x + 1, y, z; (v) -x + 1, -y + 1, -z; (vi) x, y + 1, z; (vii) -x + 1, -y + 1, -z + 1; (viii) x - 1, y + 1, z.

with ethyl acetate (2 × 10 ml). The combined organic extracts were washed with brine and dried over sodium sulfate. Column chromatography on silica gel, eluted with ethyl acetate and MeOH/CH₂Cl₂, gave the title compound as a yellow solid (yield: 100 mg, 25% yield, $R_{\rm F} = 0.1$ in MeOH/ CH₂Cl₂ 4:96). It was found to be unstable upon standing in organic solvents. Crystals of the title compound were obtained by dissolving pure product in warm ethyl acetate followed by

A view along the *a* axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details). Cbound H atoms have been omitted for clarity. Color key: molecule Ablack, B red, C green and D blue.

research communications

 Table 2

 Experimental details.

Crystal data	
Chemical formula	$C_9H_8N_2O$
$M_{\rm r}$	160.17
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	173
a, b, c (Å)	9.3730 (15), 9.7117 (16), 18.937 (3)
α, β, γ (°)	84.855 (2), 83.043 (2), 67.477 (2)
$V(\dot{A}^3)$	1578.8 (4)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09
Crystal size (mm)	$0.35 \times 0.20 \times 0.20$
Data collection	
Data collection	Desta ADEVIL COD
Diffractometer	detector
Absorption correction	Multi-scan (<i>TWINABS</i> ; Bruker, 2008)
T_{\min}, T_{\max}	0.89, 0.98
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	31957, 7120, 5311
Rint	0.028
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.650
Refinement	
$R[F^2 > 2\sigma(F^2)] = wR(F^2)$ S	0.074 0.224 1.06
No of reflections	7120
No of parameters	454
H-atom treatment	H atoms treated by a mixture of
	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.96, -0.70

Computer programs: *APEX2* and *SAINT* (Bruker, 2008), *SHELXS97* and *SHELXL97* (Sheldrick, 2008), *ORTEPIII* (Burnett & Johnson, 1996), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

rapid cooling to give yellow crystals. ¹H NMR (CD₃OD, 300 MHz): δ 8.53 (*d*, *J* = 5.0 Hz, 1H), 8.07 (*d*, *J* = 8.0 Hz, 1H), 7.82 (*m*, 1H), 7.33 (*m*, 3H). ¹³C NMR (CD₃OD, 75.5 MHz) δ 151.40, 147.64, 144.76, 136.72, 131.05, 129.15, 122.54, 121.01, 107.68. HRMS (ESI, *M*+H⁺) *m*/*z* calculated for C₉H₉N₂O: 160.0715; found: 160.0707.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H atoms were located in a difference Fourier map and freely refined. The OH and C-bound H atoms were included in calculated positions and treated as riding: O-H = 0.84, C-H = 0.95 Å with $U_{iso}(H) = 1.2U_{eq}(O,C)$.

Several crystals examined proved to have multiple domains. The final data crystal, while still a multiple, could be described having primarily two domains and was treated as such. Orientation matrices for the two domains were determined using the program *CELL_NOW* (Bruker, 2008) and the data were processed further using *TWINABS* (Bruker, 2008). The model converged well using the HKLF5 data but the final difference map shows several peaks of 0.4 to 0.96 e Å⁻³ near two of the four independent molecules. While this residual

electron density could be interpreted as disorder of parts of those molecules, attempts to model such disorder were unsatisfactory, requiring considerable restraints/constraints to achieve convergence, and were not included in the final model. An alternative explanation of this residual electron density is a possible contribution from crystalline domains not included in the twinning description.

Acknowledgements

We are grateful to the National Institutes of Health (CA 100757) for partial support of this work.

References

Agrawal, A. & Tratnyek, P. G. (1996). *Environ. Sci. Technol.* **30**, 153–160.

- Bruker (2008). APEX2, SAINT, TWINABS and CELL_NOW. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). *ORTEPIII*. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Chen, Y. & Hu, L. (2009). Med. Res. Rev. 29, 29-64.
- Daniels, J. S. & Gates, K. S. (1996). J. Am. Chem. Soc. 118, 3380-3385.
- Denny, W. A. & Wilson, W. R. (1986). J. Med. Chem. 29, 879-887.
- Fitzsimmons, S. A., Workman, P. A., Grever, M., Paull, K., Camalier, R. & Lewis, A. D. J. (1996). *J. Natl Cancer Inst.* **88**, 259–269.
- James, A. L., Perry, J. D., Jay, C., Monget, D., Rasburn, J. W. & Gould, F. K. (2001). Lett. Appl. Microbiol. 33, 403–408.
- Junnotula, V., Rajapakse, A., Arbillaga, L., de Cerain, A. L., Solano, B., Villar, R., Monge, A. & Gates, K. S. (2010). *Bioorg. Med. Chem.* 18, 3125–3132.
- Junnotula, V., Sarkar, U., Sinha, S. & Gates, K. S. (2009). J. Am. Chem. Soc. 131, 1015–1024.
- Patterson, A. V., Ferry, D. M., Edmunds, S. J., Gu, Y., Singleton, R. S., Patel, K. B., Pullen, S. M., Hicks, K. O., Syddall, S. P., Atwell, G. J., Yang, S., Denny, W. A. & Wilson, W. R. (2007). *Clin. Cancer Res.* 13, 3922–3932.
- Pizzolatti, M. G. & Yunes, R. A. (1990). J. Chem. Soc. Perkin Trans. 2, pp. 759–764.
- Rajapakse, A. & Gates, K. S. (2012). J. Org. Chem. 77, 3531-3537.
- Rajapakse, A., Linder, C., Morrison, R. D., Sarkar, U., Leigh, N. D., Barnes, C. L., Daniels, J. S. & Gates, K. S. (2013). *Chem. Res. Toxicol.* 26, 555–563.
- Rooseboom, M., Commandeur, J. N. M. & Vermeulen, N. P. E. (2004). *Pharm. Rev.* 56, 53–102.
- Rubin, R. L., Uetrecht, J. P. & Jones, J. E. J. (1987). *Pharmacol. Exp. Ther.* **242**, 833–841.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Veggi, L. M., Pretto, L., Ochoa, E. J., Catania, V. A., Luquita, M. G., Taborda, D. R., Sánchez Pozzi, E. J., Ikushiro, S., Coleman, P. A., Roma, M. G. & Mottino, A. D. (2008). *Life Sci.* 83, 155–163.
- Walton, M. I., Wolf, C. R. & Workman, P. (1989). Int. J. Radiat. Oncol. Biol. Phys. 16, 983–986.
- Wardman, P., Dennis, M. F., Everett, S. A., Patel, K. B., Stratford, M. R. L. & Tracy, M. (1995). *Biochem. Soc. Trans.* 61, 171–194.
- Wen, B., Coe, K. J., Rademacher, P., Fitch, W. L., Monshouwer, M. & Nelson, S. D. (2008). *Chem. Res. Toxicol.* 21, 2393–2406.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Wilson, W. R., Anderson, R. F. & Denny, W. A. (1989). J. Med. Chem. **32**, 23–30.
- Wilson, W. R. & Hay, M. P. (2011). Nat. Rev. Cancer, 11, 393-410.

supporting information

Acta Cryst. (2014). E70, 322-324 [doi:10.1107/S160053681402193X]

Crystal structure of N-(quinolin-6-yl)hydroxylamine

Anuruddha Rajapakse, Roman Hillebrand, Sarah M. Lewis, Zachary D. Parsons, Charles L. Barnes and Kent S. Gates

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

N-(Quinolin-6-yl)hydroxylamine

Crystal data

C₉H₈N₂O $M_r = 160.17$ Triclinic, *P*I Hall symbol: -P 1 a = 9.3730 (15) Å b = 9.7117 (16) Å c = 18.937 (3) Å $a = 84.855 (2)^{\circ}$ $\beta = 83.043 (2)^{\circ}$ $\gamma = 67.477 (2)^{\circ}$ $V = 1578.8 (4) \text{ Å}^{3}$

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*TWINABS*; Bruker, 2008) $T_{\min} = 0.89, T_{\max} = 0.98$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.074$ $wR(F^2) = 0.224$ S = 1.067120 reflections 454 parameters 0 restraints Z = 8 F(000) = 672 $D_x = 1.348 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7244 reflections $\theta = 2.4-27.4^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 173 K Prism, yellow $0.35 \times 0.20 \times 0.20 \text{ mm}$

31957 measured reflections 7120 independent reflections 5311 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 1.1^{\circ}$ $h = -12 \rightarrow 12$ $k = -12 \rightarrow 12$ $I = 0 \rightarrow 24$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1048P)^{2} + 1.3081P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$

$$\Delta \rho_{\text{max}} = 0.96 \text{ e } \text{\AA}^{-3}$$

 $\Delta \rho_{\text{min}} = -0.70 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger. The data crystal was a two- domain pseudo-merohedral twin. Data was processed using TWINABS and the final refinement was carried out with the HKLF 5 data. The H atoms on the N2 atoms were located and refined with isotropic thermal parameters. The H atoms on the OH groups appeared in difference maps, but were placed at calculated positions and allowed to find maximum overlap with the electron density in a riding model. Residual electron density near two of the four independent molecules was not amenable to reasonable modelling as disorder and may indicate contribution of an additional minor crystalline domain.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
O1A	0.5904 (3)	0.2741 (3)	0.13946 (17)	0.0658 (7)	
H1OA	0.5705	0.3626	0.1239	0.079*	
N1A	0.0069 (3)	0.1121 (3)	0.12381 (13)	0.0364 (5)	
C1A	-0.0514 (3)	0.1592 (4)	0.06231 (16)	0.0401 (7)	
H1A	-0.1319	0.1301	0.0515	0.048*	
N2A	0.4790 (3)	0.2709 (4)	0.19701 (17)	0.0485 (7)	
C2A	-0.0015 (3)	0.2493 (4)	0.01207 (16)	0.0450 (7)	
H2A	-0.0468	0.2799	-0.0318	0.054*	
C3A	0.1137 (3)	0.2929 (3)	0.02709 (15)	0.0396 (6)	
H3A	0.1489	0.3547	-0.0063	0.047*	
C4A	0.1803 (3)	0.2457 (3)	0.09231 (14)	0.0291 (5)	
C5A	0.3032 (3)	0.2823 (3)	0.11080 (15)	0.0335 (6)	
H5A	0.3441	0.3418	0.0787	0.040*	
C6A	0.3633 (3)	0.2317 (3)	0.17532 (15)	0.0355 (6)	
C7A	0.3028 (4)	0.1425 (4)	0.22270 (16)	0.0446 (7)	
H7A	0.3433	0.1093	0.2675	0.054*	
C8A	0.1871 (4)	0.1032 (4)	0.20521 (16)	0.0414 (7)	
H8A	0.1498	0.0410	0.2373	0.050*	
C9A	0.1224 (3)	0.1541 (3)	0.13994 (14)	0.0303 (5)	
O1B	0.8871 (3)	0.9329 (3)	0.20442 (14)	0.0576 (6)	
H1OB	0.9352	0.9852	0.1843	0.069*	
N1B	0.5281 (3)	0.5673 (4)	0.1053 (2)	0.0600 (8)	
C1B	0.3984 (5)	0.6582 (5)	0.0806 (3)	0.0928 (19)	
H1B	0.3288	0.6161	0.0685	0.111*	
N2B	0.9495 (3)	0.7941 (3)	0.17819 (17)	0.0483 (7)	
C2B	0.3559 (5)	0.8113 (5)	0.0709 (4)	0.112 (3)	
H2B	0.2598	0.8712	0.0530	0.134*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C3B	0.4536 (5)	0.8747 (4)	0.0874 (3)	0.0774 (15)
H3B	0.4278	0.9791	0.0795	0.093*
C4B	0.5933 (3)	0.7849 (4)	0.11611 (18)	0.0463 (8)
C5B	0.6977 (3)	0.8430 (4)	0.13731 (17)	0.0416 (7)
H5B	0.6724	0.9478	0.1354	0.050*
C6B	0.8354 (3)	0.7477 (4)	0.16065 (16)	0.0405 (7)
C7B	0.8759 (4)	0.5891 (4)	0.16110 (18)	0.0467 (7)
H7B	0.9753	0.5234	0.1737	0.056*
C8B	0.7744 (4)	0.5321 (4)	0.14376 (18)	0.0467 (7)
H8B	0.8010	0.4271	0.1461	0.056*
C9B	0.6279 (3)	0.6292 (4)	0.12197 (17)	0.0427 (7)
O1C	0.6927 (4)	-0.0383 (4)	0.39244 (18)	0.0834 (9)
H1C	0.6157	-0.0636	0.3975	0.100*
N1C	0.8919 (3)	0.5060 (3)	0.38596 (13)	0.0395 (6)
C1C	0.8513 (4)	0.5683 (3)	0.44833 (17)	0.0429 (7)
H1OC	0.8899	0.6423	0.4563	0.051*
N2C	0.6800 (4)	0.0668 (3)	0.33013 (15)	0.0482 (7)
C2C	0.7559 (4)	0.5330 (3)	0.50310 (16)	0.0425 (7)
H2C	0.7304	0.5817	0.5468	0.051*
C3C	0.6997 (3)	0.4265 (3)	0.49252 (15)	0.0369 (6)
H3C	0.6354	0.3999	0.5294	0.044*
C4C	0.7365 (3)	0.3563 (3)	0.42747 (14)	0.0308 (5)
C5C	0.6859 (3)	0.2431 (3)	0.41290 (15)	0.0349 (6)
H5C	0.6239	0.2104	0.4486	0.042*
C6C	0.7249 (3)	0.1798 (3)	0.34798 (15)	0.0353 (6)
C7C	0.8151 (4)	0.2316 (3)	0.29446 (15)	0.0386 (6)
H7C	0.8372	0.1924	0.2484	0.046*
C8C	0.8702 (4)	0.3363 (3)	0.30816 (15)	0.0394 (6)
H8C	0.9345	0.3656	0.2723	0.047*
C9C	0.8333 (3)	0.4017 (3)	0.37463 (14)	0.0325 (6)
O1D	0.1032 (3)	0.5575 (3)	0.28275 (14)	0.0602 (7)
H1OD	0.0452	0.5404	0.3169	0.072*
N1D	0.4155 (3)	0.9499 (3)	0.40248 (15)	0.0443 (6)
C1D	0.3083 (4)	1.0657 (3)	0.43441 (18)	0.0481 (8)
H1D	0.3411	1.1335	0.4545	0.058*
N2D	0.2499 (4)	0.5174 (4)	0.30317 (17)	0.0524 (7)
C2D	0.1504 (4)	1.0939 (4)	0.4402 (2)	0.0541 (9)
H2D	0.0783	1.1795	0.4634	0.065*
C3D	0.1000(4)	0.9987 (4)	0.41264 (18)	0.0479 (8)
H3D	-0.0077	1.0171	0.4163	0.058*
C4D	0.2084 (3)	0.8717 (3)	0.37835 (14)	0.0354 (6)
C5D	0.1665 (4)	0.7640 (3)	0.35065 (15)	0.0390 (6)
H5D	0.0602	0.7781	0.3519	0.047*
C6D	0.2797 (4)	0.6380 (3)	0.32161 (15)	0.0418 (7)
C7D	0.4385 (4)	0.6209 (4)	0.31648 (18)	0.0468 (8)
H7D	0.5158	0.5356	0.2952	0.056*
C8D	0.4805 (4)	0.7250 (3)	0.34159 (17)	0.0443 (7)
H8D	0.5867	0.7126	0.3373	0.053*

C9D	0.3671 (3)	0.8519 (3)	0.37414 (15)	0.0363 (6)
H2NB	1.008 (4)	0.742 (4)	0.209 (2)	0.052 (11)*
H2NC	0.748 (4)	0.008 (4)	0.301 (2)	0.051 (10)*
H2NA	0.521 (5)	0.215 (4)	0.227 (2)	0.055 (12)*
H2ND	0.315 (5)	0.465 (5)	0.269 (2)	0.064 (12)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
OlA	0.0467 (14)	0.0799 (18)	0.080 (2)	-0.0340 (14)	0.0043 (13)	-0.0167 (15)
N1A	0.0344 (12)	0.0440 (13)	0.0362 (13)	-0.0209 (10)	-0.0002 (9)	-0.0056 (10)
C1A	0.0325 (14)	0.0558 (18)	0.0361 (15)	-0.0196 (13)	-0.0028 (11)	-0.0098 (13)
N2A	0.0376 (14)	0.0678 (19)	0.0485 (17)	-0.0266 (14)	-0.0068 (12)	-0.0104 (15)
C2A	0.0372 (15)	0.068 (2)	0.0300 (14)	-0.0185 (14)	-0.0080 (12)	-0.0004 (13)
C3A	0.0355 (14)	0.0502 (17)	0.0299 (14)	-0.0146 (13)	-0.0023 (11)	0.0058 (12)
C4A	0.0251 (12)	0.0322 (12)	0.0276 (12)	-0.0083 (10)	0.0010 (9)	-0.0048 (10)
C5A	0.0308 (13)	0.0392 (14)	0.0319 (14)	-0.0161 (11)	0.0028 (10)	-0.0037 (11)
C6A	0.0304 (13)	0.0407 (15)	0.0367 (15)	-0.0137 (11)	-0.0009 (11)	-0.0098 (11)
C7A	0.0481 (17)	0.0598 (19)	0.0302 (15)	-0.0237 (15)	-0.0111 (12)	0.0017 (13)
C8A	0.0456 (16)	0.0544 (18)	0.0297 (14)	-0.0262 (14)	-0.0048 (12)	0.0050 (12)
C9A	0.0295 (12)	0.0345 (13)	0.0272 (13)	-0.0130 (11)	0.0004 (10)	-0.0031 (10)
O1B	0.0628 (15)	0.0658 (16)	0.0545 (15)	-0.0373 (13)	0.0085 (12)	-0.0137 (12)
N1B	0.0422 (15)	0.0627 (19)	0.080 (2)	-0.0199 (14)	-0.0133 (15)	-0.0185 (16)
C1B	0.046 (2)	0.072 (3)	0.161 (5)	-0.003 (2)	-0.041 (3)	-0.052 (3)
N2B	0.0488 (16)	0.0511 (16)	0.0539 (17)	-0.0289 (13)	-0.0117 (13)	0.0074 (13)
C2B	0.061 (3)	0.069 (3)	0.195 (6)	0.017 (2)	-0.073 (4)	-0.065 (4)
C3B	0.051 (2)	0.047 (2)	0.122 (4)	0.0118 (17)	-0.039 (2)	-0.039 (2)
C4B	0.0311 (14)	0.0577 (19)	0.0453 (17)	-0.0072 (13)	-0.0029 (12)	-0.0232 (15)
C5B	0.0350 (14)	0.0441 (16)	0.0423 (16)	-0.0103 (13)	0.0015 (12)	-0.0127 (13)
C6B	0.0395 (15)	0.0547 (17)	0.0325 (14)	-0.0257 (14)	-0.0020 (11)	0.0058 (12)
C7B	0.0449 (17)	0.0488 (17)	0.0505 (18)	-0.0224 (14)	-0.0153 (14)	0.0120 (14)
C8B	0.0500 (18)	0.0449 (17)	0.0501 (19)	-0.0228 (14)	-0.0152 (14)	0.0095 (14)
C9B	0.0370 (15)	0.0522 (17)	0.0403 (16)	-0.0175 (13)	-0.0037 (12)	-0.0062 (13)
OIC	0.100 (3)	0.088 (2)	0.076 (2)	-0.053 (2)	-0.0081 (18)	0.0077 (17)
N1C	0.0423 (13)	0.0459 (14)	0.0384 (13)	-0.0249 (11)	-0.0076 (10)	-0.0002 (10)
C1C	0.0503 (17)	0.0427 (16)	0.0440 (17)	-0.0245 (14)	-0.0129 (13)	-0.0011 (13)
N2C	0.0646 (18)	0.0509 (16)	0.0415 (15)	-0.0389 (15)	0.0111 (13)	-0.0077 (12)
C2C	0.0516 (17)	0.0421 (16)	0.0336 (15)	-0.0155 (14)	-0.0089 (13)	-0.0044 (12)
C3C	0.0376 (14)	0.0388 (14)	0.0294 (13)	-0.0098 (12)	-0.0031 (11)	0.0017 (11)
C4C	0.0288 (12)	0.0312 (13)	0.0293 (13)	-0.0080 (10)	-0.0057 (10)	0.0039 (10)
C5C	0.0339 (13)	0.0376 (14)	0.0335 (14)	-0.0165 (11)	0.0027 (11)	0.0025 (11)
C6C	0.0366 (14)	0.0394 (14)	0.0340 (14)	-0.0200 (12)	-0.0011 (11)	0.0014 (11)
C7C	0.0469 (16)	0.0486 (16)	0.0280 (13)	-0.0273 (14)	-0.0021 (11)	0.0003 (12)
C8C	0.0457 (16)	0.0526 (17)	0.0284 (14)	-0.0301 (14)	0.0007 (11)	0.0020 (12)
C9C	0.0320 (13)	0.0377 (14)	0.0308 (13)	-0.0162 (11)	-0.0075 (10)	0.0043 (10)
O1D	0.0689 (17)	0.0762 (17)	0.0451 (14)	-0.0371 (14)	-0.0142 (12)	0.0054 (12)
N1D	0.0527 (15)	0.0360 (13)	0.0465 (15)	-0.0218 (12)	0.0028 (12)	0.0010 (11)
C1D	0.063 (2)	0.0353 (15)	0.0463 (18)	-0.0186 (15)	-0.0040 (15)	-0.0015 (13)

supporting information

N2D	0.0618 (18)	0.0619 (18)	0.0456 (16)	-0.0371 (15)	0.0022 (14)	-0.0095 (14)
C2D	0.059 (2)	0.0370 (16)	0.051 (2)	0.0014 (15)	-0.0083 (16)	-0.0096 (14)
C3D	0.0393 (16)	0.0454 (17)	0.0465 (18)	0.0003 (13)	-0.0104 (13)	-0.0045 (14)
C4D	0.0417 (15)	0.0325 (13)	0.0272 (13)	-0.0090 (11)	-0.0067 (11)	0.0053 (10)
C5D	0.0418 (15)	0.0444 (16)	0.0304 (14)	-0.0158 (13)	-0.0077 (11)	0.0048 (12)
C6D	0.0599 (19)	0.0409 (15)	0.0275 (14)	-0.0243 (14)	0.0018 (12)	-0.0003 (11)
C7D	0.0499 (18)	0.0427 (16)	0.0451 (17)	-0.0187 (14)	0.0152 (14)	-0.0087 (13)
C8D	0.0423 (16)	0.0412 (16)	0.0470 (17)	-0.0173 (13)	0.0113 (13)	-0.0039 (13)
C9D	0.0434 (15)	0.0312 (13)	0.0334 (14)	-0.0161 (12)	0.0028 (11)	0.0038 (11)

Geometric parameters (Å, °)

O1A—N2A	1.422 (4)	O1C—N2C	1.474 (4)
O1A—H1OA	0.8400	O1C—H1C	0.8400
N1A—C1A	1.316 (4)	N1C—C1C	1.323 (4)
N1A—C9A	1.368 (3)	N1C—C9C	1.366 (4)
C1A—C2A	1.395 (5)	C1C—C2C	1.393 (4)
C1A—H1A	0.9500	C1C—H1OC	0.9500
N2A—C6A	1.393 (4)	N2C—C6C	1.397 (4)
N2A—H2NA	0.78 (4)	N2C—H2NC	0.85 (4)
C2A—C3A	1.369 (4)	C2C—C3C	1.365 (4)
C2A—H2A	0.9500	C2C—H2C	0.9500
C3A—C4A	1.411 (4)	C3C—C4C	1.403 (4)
СЗА—НЗА	0.9500	СЗС—НЗС	0.9500
C4A—C9A	1.417 (4)	C4C—C5C	1.412 (4)
C4A—C5A	1.417 (4)	C4C—C9C	1.423 (4)
C5A—C6A	1.378 (4)	C5C—C6C	1.370 (4)
C5A—H5A	0.9500	C5C—H5C	0.9500
C6A—C7A	1.411 (4)	C6C—C7C	1.421 (4)
C7A—C8A	1.363 (4)	C7C—C8C	1.360 (4)
C7A—H7A	0.9500	C7C—H7C	0.9500
C8A—C9A	1.408 (4)	C8C—C9C	1.406 (4)
C8A—H8A	0.9500	C8C—H8C	0.9500
O1B—N2B	1.361 (4)	O1D—N2D	1.372 (4)
O1B—H1OB	0.8400	O1D—H1OD	0.8400
N1B—C1B	1.311 (5)	N1D—C1D	1.322 (4)
N1B—C9B	1.368 (4)	N1D—C9D	1.371 (4)
C1B—C2B	1.385 (7)	C1D—C2D	1.391 (5)
C1B—H1B	0.9500	C1D—H1D	0.9500
N2B—C6B	1.393 (4)	N2D—C6D	1.385 (4)
N2B—H2NB	0.85 (4)	N2D—H2ND	0.88 (4)
C2B—C3B	1.361 (6)	C2D—C3D	1.353 (5)
C2B—H2B	0.9500	C2D—H2D	0.9500
C3B—C4B	1.408 (5)	C3D—C4D	1.414 (4)
СЗВ—НЗВ	0.9500	C3D—H3D	0.9500
C4B—C5B	1.413 (4)	C4D—C5D	1.410 (4)
C4B—C9B	1.417 (5)	C4D—C9D	1.418 (4)
C5B—C6B	1.366 (4)	C5D—C6D	1.382 (4)

C5B—H5B	0.9500	C5D—H5D	0.9500
C6B—C7B	1.438 (5)	C6DC7D	1.426 (5)
C7B—C8B	1.353 (4)	C7D	1.356 (5)
C7B—H7B	0.9500	C7D—H7D	0.9500
C8B—C9B	1.422 (4)	C8D—C9D	1.415 (4)
C8B—H8B	0.9500	C8D—H8D	0.9500
N2A—O1A—H1OA	109.5	N2C—O1C—H1C	109.5
C1A—N1A—C9A	118.5 (2)	C1C—N1C—C9C	117.2 (3)
N1A—C1A—C2A	123.7 (3)	N1C—C1C—C2C	124.5 (3)
N1A—C1A—H1A	118.2	N1C—C1C—H1OC	117.7
C2A—C1A—H1A	118.2	C2C—C1C—H1OC	117.7
C6A—N2A—O1A	111.7 (3)	C6C—N2C—O1C	108.0 (3)
C6A—N2A—H2NA	110 (3)	C6C—N2C—H2NC	112 (3)
O1A—N2A—H2NA	109 (3)	O1C—N2C—H2NC	99 (3)
C3A—C2A—C1A	118.8 (3)	C3C—C2C—C1C	118.5 (3)
C3A—C2A—H2A	120.6	C3C—C2C—H2C	120.8
C1A—C2A—H2A	120.6	C1C—C2C—H2C	120.8
C2A—C3A—C4A	119.9 (3)	C2C—C3C—C4C	120.3 (3)
С2А—С3А—НЗА	120.1	С2С—С3С—Н3С	119.8
С4А—С3А—Н3А	120.1	C4C—C3C—H3C	119.8
C3A—C4A—C9A	117.3 (2)	C3C—C4C—C5C	123.8 (3)
C3A—C4A—C5A	123.2 (3)	C3C—C4C—C9C	116.8 (3)
C9A—C4A—C5A	119.5 (2)	C5C—C4C—C9C	119.4 (2)
C6A—C5A—C4A	120.1 (3)	C6C—C5C—C4C	120.9 (2)
С6А—С5А—Н5А	119.9	C6C—C5C—H5C	119.6
C4A—C5A—H5A	119.9	C4C—C5C—H5C	119.6
C5A—C6A—N2A	122.0 (3)	C5C—C6C—N2C	123.9 (3)
C5A—C6A—C7A	119.7 (3)	C5C—C6C—C7C	119.1 (3)
N2A—C6A—C7A	118.2 (3)	N2C—C6C—C7C	116.9 (3)
C8A—C7A—C6A	121.0 (3)	C8C—C7C—C6C	121.0 (3)
С8А—С7А—Н7А	119.5	C8C—C7C—H7C	119.5
С6А—С7А—Н7А	119.5	C6C—C7C—H7C	119.5
C7A—C8A—C9A	120.6 (3)	C7C—C8C—C9C	120.9 (3)
C7A—C8A—H8A	119.7	C7C—C8C—H8C	119.5
C9A—C8A—H8A	119.7	C9C—C8C—H8C	119.5
N1A—C9A—C8A	119.2 (2)	N1CC9CC8C	118.8 (2)
N1A—C9A—C4A	121.8 (2)	N1C—C9C—C4C	122.7 (2)
C8A—C9A—C4A	119.0 (2)	C8C—C9C—C4C	118.6 (3)
N2B—O1B—H1OB	109.5	N2D—O1D—H1OD	109.5
C1B—N1B—C9B	117.1 (3)	C1D—N1D—C9D	117.7 (3)
N1B—C1B—C2B	124.5 (4)	N1D—C1D—C2D	123.8 (3)
N1B—C1B—H1B	117.7	N1D—C1D—H1D	118.1
C2B—C1B—H1B	117.7	C2D—C1D—H1D	118.1
O1B—N2B—C6B	111.6 (3)	O1D—N2D—C6D	112.9 (3)
O1B—N2B—H2NB	104 (3)	O1D—N2D—H2ND	107 (3)
C6B—N2B—H2NB	118 (3)	C6D—N2D—H2ND	115 (3)
C3B—C2B—C1B	119.1 (4)	C3D—C2D—C1D	119.6 (3)
	× /		

245 245 VIS		245 245 MAD	
C3B—C2B—H2B	120.4	C3D—C2D—H2D	120.2
C1B—C2B—H2B	120.4	C1D—C2D—H2D	120.2
C2B—C3B—C4B	119.8 (4)	C2D—C3D—C4D	119.6 (3)
C2B—C3B—H3B	120.1	C2D—C3D—H3D	120.2
C4B-C3B-H3B	120.1	C4D $C3D$ $H3D$	120.2
$C_{4}D$ $C_{5}D$ $H_{5}D$	120.1 122.2(2)	$C_{4D} = C_{3D} = H_{3D}$	120.2 122.2(2)
$C_{3}D_{-}C_{4}D_{-}C_{3}D_{-}C_{3$	125.2(3)	$C_{3}D = C_{4}D = C_{3}D$	123.5(3)
C3B—C4B—C9B	110.0 (3)	C3D—C4D—C9D	119.5 (3)
C5B—C4B—C9B	120.3 (3)	C3D—C4D—C9D	117.2 (3)
C6B—C5B—C4B	119.6 (3)	C6DC5DC4D	120.1 (3)
C6B—C5B—H5B	120.2	C6D—C5D—H5D	119.9
C4B—C5B—H5B	120.2	C4D—C5D—H5D	119.9
C5B—C6B—N2B	123.6 (3)	C5D—C6D—N2D	123.4 (3)
C5B—C6B—C7B	120.0 (3)	C5D—C6D—C7D	119.8 (3)
N2B-C6B-C7B	1161(3)	N^2D —C6D—C7D	1165(3)
C_{R}^{R} C_{R}^{T} C_{R}^{R} C_{R}^{R}	120.9(3)	C_{2D} C_{2D} C_{2D} C_{2D}	120.8(3)
$C^{0}D$ $C^{7}D$ $U^{7}D$	120.9 (3)	$C^{0}D$ $C^{7}D$ $U^{7}D$	120.8 (3)
	119.0	$C_{0} = C_{0} = H_{0}$	119.0
С6В—С/В—Н/В	119.6	C6D - C/D - H/D	119.6
С/В—С8В—С9В	120.0 (3)	C/D—C8D—C9D	120.4 (3)
C7B—C8B—H8B	120.0	C7D—C8D—H8D	119.8
C9B—C8B—H8B	120.0	C9D—C8D—H8D	119.8
N1B—C9B—C4B	122.8 (3)	N1D—C9D—C8D	118.5 (3)
N1B-C9B-C8B	118.2 (3)	N1DC9DC4D	122.1 (3)
C4B—C9B—C8B	118.9 (3)	C8D—C9D—C4D	119.4 (3)
C0A N1A $C1A$ $C2A$	0.4.(4)	$C_{0}C_{0}N_{1}C_{0}C_{1}C_{0}C_{2}C_{0}$	11(5)
$\frac{C}{M} = \frac{C}{M} + \frac{C}$	0.4(4)	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	1.1(5)
NIA = CIA = C2A = C3A	-0.4(3)	NIC - CIC - C2C - C3C	0.2(3)
CIA—C2A—C3A—C4A	0.4 (5)		-0.7(4)
C2A—C3A—C4A—C9A	-0.2 (4)	C2C—C3C—C4C—C5C	178.6 (3)
C2A—C3A—C4A—C5A	178.0 (3)	C2C—C3C—C4C—C9C	-0.1(4)
C3A—C4A—C5A—C6A	-179.6 (3)	C3C—C4C—C5C—C6C	179.5 (3)
C9A—C4A—C5A—C6A	-1.4 (4)	C9C—C4C—C5C—C6C	-1.9 (4)
C4A—C5A—C6A—N2A	-176.9 (3)	C4C—C5C—C6C—N2C	179.5 (3)
C4A—C5A—C6A—C7A	0.4 (4)	C4C—C5C—C6C—C7C	-1.3(4)
01A—N2A—C6A—C5A	-39.0(4)	O1C—N2C—C6C—C5C	-40.2(4)
O1A - N2A - C6A - C7A	143.7(3)	$01C - N^2C - C^2C - C^2C$	140.5(3)
$C_{5} - C_{6} - C_{7} - C_{8}$	115.7(5) 11(5)	$C_{12} = C_{12} = C$	38(5)
N2A C6A C7A C8A	1.1(3) 179 5 (2)	$N_{2}^{2} = C_{0}^{2} C_$	-176.0(3)
$N_{2}A - C_{0}A - C_{0}A - C_{0}A$	1/0.3(3)	$N_2 C = C_0 C = C_1 C = C_0 C$	-170.9(3)
C6A - C/A - C8A - C9A	-1.6 (5)		-3.1 (5)
CIA—NIA—C9A—C8A	-179.3(3)	CIC—NIC—C9C—C8C	178.1 (3)
C1A—N1A—C9A—C4A	-0.2(4)	C1C—N1C—C9C—C4C	-2.0 (4)
C7A—C8A—C9A—N1A	179.7 (3)	C7C—C8C—C9C—N1C	179.8 (3)
C7A—C8A—C9A—C4A	0.6 (4)	C7C—C8C—C9C—C4C	-0.1 (4)
C3A—C4A—C9A—N1A	0.2 (4)	C3C—C4C—C9C—N1C	1.5 (4)
C5A—C4A—C9A—N1A	-178.2 (2)	C5C—C4C—C9C—N1C	-177.3 (2)
C3A—C4A—C9A—C8A	179.2 (3)	C3C—C4C—C9C—C8C	-178.7 (2)
C5A—C4A—C9A—C8A	0.9 (4)	C5C—C4C—C9C—C8C	2.6 (4)
C9B-N1B-C1B-C2B	-0.5(9)	C9D - N1D - C1D - C2D	-0.6(5)
N1B - C1B - C2B - C3B	0.4(11)	N1D - C1D - C2D - C3D	0.6(5)
	··· (· · <i>)</i>		0.0 (0)

C1B—C2B—C3B—C4B	-2.1 (9)	C1D—C2D—C3D—C4D	0.0 (5)
C2B—C3B—C4B—C5B	-177.3 (5)	C2D-C3D-C4D-C5D	177.5 (3)
C2B—C3B—C4B—C9B	3.9 (7)	C2D-C3D-C4D-C9D	-0.6 (4)
C3B—C4B—C5B—C6B	-176.0 (4)	C3D-C4D-C5D-C6D	-176.1 (3)
C9B—C4B—C5B—C6B	2.8 (5)	C9D—C4D—C5D—C6D	2.0 (4)
C4B—C5B—C6B—N2B	175.7 (3)	C4DC5DC6DN2D	170.0 (3)
C4B—C5B—C6B—C7B	2.3 (5)	C4DC5DC6DC7D	-3.2 (4)
O1B—N2B—C6B—C5B	31.3 (4)	O1D-N2D-C6D-C5D	30.3 (4)
O1B—N2B—C6B—C7B	-155.1 (3)	O1D-N2D-C6D-C7D	-156.3 (3)
C5B—C6B—C7B—C8B	-5.0 (5)	C5D—C6D—C7D—C8D	1.9 (5)
N2B—C6B—C7B—C8B	-178.9 (3)	N2D-C6D-C7D-C8D	-171.8 (3)
C6B—C7B—C8B—C9B	2.6 (5)	C6D-C7D-C8D-C9D	0.7 (5)
C1B—N1B—C9B—C4B	2.5 (6)	C1D-N1D-C9D-C8D	-178.2 (3)
C1B—N1B—C9B—C8B	-175.3 (4)	C1D—N1D—C9D—C4D	-0.1 (4)
C3B—C4B—C9B—N1B	-4.2 (5)	C7D—C8D—C9D—N1D	176.3 (3)
C5B—C4B—C9B—N1B	176.9 (3)	C7D-C8D-C9D-C4D	-1.9 (4)
C3B—C4B—C9B—C8B	173.7 (4)	C5D-C4D-C9D-N1D	-177.5 (3)
C5B—C4B—C9B—C8B	-5.2 (5)	C3D—C4D—C9D—N1D	0.7 (4)
C7B—C8B—C9B—N1B	-179.6 (3)	C5D-C4D-C9D-C8D	0.6 (4)
C7B—C8B—C9B—C4B	2.5 (5)	C3D-C4D-C9D-C8D	178.8 (3)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg5, Cg8 and Cg11 are the centroids of the N1A/C1A–C4A/C9A, C4A–C9A, C4B–C9B, C4C–C9C and C4D–C9D rings, respectively.

D—H···A	D—H	H···A	$D^{\dots}A$	D—H···A
01 <i>A</i> —H1 <i>OA</i> ···N1 <i>B</i>	0.84	1.88	2.711 (5)	170
N2 <i>A</i> —H2 <i>NA</i> ···N2 <i>C</i>	0.78 (4)	2.58 (4)	3.351 (5)	169 (4)
N2D—H2ND····N2A	0.88 (4)	2.35 (4)	3.204 (4)	165 (4)
$O1B$ —H1 OB ····N1 A^{i}	0.84	1.87	2.689 (4)	166
01 <i>C</i> —H1 <i>C</i> ···N1 <i>D</i> ⁱⁱ	0.84	1.82	2.628 (5)	160
01 <i>D</i> —H1 <i>OD</i> ···N1 <i>C</i> ⁱⁱⁱ	0.84	1.93	2.764 (4)	172
N2B—H2NB····O1 D^{iv}	0.85 (4)	2.14 (4)	2.935 (4)	157 (4)
$N2C$ — $H2NC$ ···O1 B^{ii}	0.85 (4)	2.12 (4)	2.937 (4)	159 (4)
С7 <i>С</i> —Н7 <i>С</i> …О1 <i>В</i> ^{іі}	0.95	2.58	3.300 (4)	133
$C3A$ — $H3A$ ··· $Cg5^{v}$	0.95	2.64	3.333 (3)	130
$C3B$ — $H3B$ ···· $Cg2^{vi}$	0.95	2.59	3.265 (4)	129
$C3C$ — $H3C$ ··· $Cg11^{vii}$	0.95	2.61	3.355 (3)	136
$C3D$ — $H3D$ ···· $Cg8^{viii}$	0.95	2.85	3.436 (4)	121
C7 <i>D</i> —H7 <i>D</i> … <i>Cg</i> 8	0.95	2.99	3.664 (4)	129
$C8B$ — $H8B$ ···· $Cg1^{iv}$	0.95	2.85	3.527 (4)	129

Symmetry codes: (i) x+1, y+1, z; (ii) x, y-1, z; (iii) x-1, y, z; (iv) x+1, y, z; (v) -x+1, -y+1, -z; (vi) x, y+1, z; (vii) -x+1, -y+1, -z+1; (viii) x-1, y+1, z.