

Received 30 September 2014 Accepted 27 October 2014

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: crystal structure; platinum(II) complex; methyleugenol; hydrogen bonding

CCDC reference: 1031185

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of chlorido{4,5-dimethoxy-2-[(2,3- η)-2-prop-2-en-1-yl]phenyl- κ C¹}-(piperidine- κ N)platinum(II) ethanol monosolvate

Peter Mangwala Kimpende,^a Tran Thi Da,^b Dinh Nguyen Huu^b and Luc Van Meervelt^c*

^aChemistry Department, University of Kinshasa, Kinshasa XI BP 190, D.R. Congo, ^bChemistry Department, Hanoi National University of Education, 136 – Xuan Thuy – Cau Giay, Hanoi, Vietnam, and ^cChemistry Department, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven (Heverlee), Belgium. *Correspondence e-mail: luc.vanmeervelt@chem.kuleuven.be

In the title compound, $[Pt(C_{11}H_{13}O_2)Cl(C_5H_{11}N)]\cdot C_2H_5OH$, the Pt^{II} cation is pentacoordinated in a distorted square-planar geometry. In the crystal, inversion dimers showing $C-H\cdots Cl$ and $C-H\cdots \pi$ interactions are further stacked in columns along the *a* axis via $C-H\cdots \pi$ interactions. The ethanol solvate molecule interacts with neighbouring methoxy groups of methyleugenol through $O-H\cdots O$ hydrogen bonds.

1. Chemical context

Methyleugenol or 4-allyl-1,2-dimethoxybenzene (Meug, $C_{11}H_{14}O_2$ is a natural product occurring in a number of plants such as fennel, pimento, lemongrass and nutmeg, and frequently used in perfumery and as flavouring agent (Ford et al., 2000). Methyleugenol is used as a fruit-fly attractant in agriculture (Todd et al., 2008) and in the formulation of UV absorbers, analgesics, and psychotropic drugs in medicine (Darshan & Doreswamy, 2004; Freeman & Alder, 2002). Platinum(II) complexes containing methyleugenol of formula [PtCl₂(Meug)(Amine)] and deprotonated methyleugenol of formula [PtCl(Meug-1H)(Amine)] have been described in very few works (Da et al., 2007, 2010, 2015). It is interesting that some of these complexes exhibit strong activities on human cancer cells KB with $IC_{50} = 3.2-3.7 \ \mu g/mL$ (Da et al., 2015). Based on these observations and prompted by the fact that one of our research areas focuses on the design and synthesis of compounds with high biological activity starting from inexpensive natural products, we have prepared the title compound [PtCl(Meug-1H)(Piperidine)] and determined its crystal structure.

research communications

Figure 1

Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level and the $O-H\cdots O$ interactions shown as dashed lines.

2. Structural commentary

In [PtCl(Meug-1H)(piperidine)], the Pt^{II} cation is pentacoordinated with Pt^{II} at the centre of a distorted square-planar geometry. The methyleugenol is bound with the Pt^{II} cation both at the ethylenic double bond and at a deprotonated benzene carbon atom (Fig. 1). The two methoxy groups of the methyleugenol part are almost in the phenyl plane, as illustrated by the torsion angles C2-C3-O1-C7 [-7.9 (6)°] and C5-C4-O2-C8 [-4.0 (6)°]. The piperidine is in the *cis* position with respect to the ethylenic double bond. The piperidine ring occurs in the usual chair conformation with the N1-Pt1 bond in the equatorial position. The best planes through the two six-membered rings make a dihedral angle of 24.6 (2)°. In order to avoid steric hindrance between Cl1 and the two ring systems, especially atoms C2 and C12, both rings rotate along their bond with Pt1. This is easier for the piper-

Figure 2

View of the crystal packing for the title compound, with $O-H\cdots O$, $C-H\cdots Cl$ and $C-H\cdots \pi$ hydrogen bonds shown as red, green and blue dashed lines, respectively. Cg1 is the centroid of the C1-C6 ring. [Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z; (iii) -x + 1, -y + 1, -z + 1.]

Table 1	
Hydrogen-bond geometry (Å	, °).

Cg1 is the centroid of the C1-C6 ring.

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.84	2.10	2.869 (4)	152
0.84	2.47	3.158 (4)	140
0.95	2.74	3.466 (4)	134
0.98	2.59	3.276 (6)	127
0.99	2.68	3.572 (5)	149
0.99	2.61	3.529 (5)	154
	<i>D</i> —H 0.84 0.95 0.98 0.99 0.99	$\begin{array}{c ccccc} D-H & H\cdots A \\ \hline 0.84 & 2.10 \\ 0.95 & 2.74 \\ 0.95 & 2.59 \\ 0.99 & 2.68 \\ 0.99 & 2.61 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes: (1) -x, -y + 1, -z + 1; (n) -x + 1, -y + 1, -z; (-x + 1, -y + 1, -z + 1.

idine ring [resulting in a C12-N1-Pt1-Cl1 torsion angle of 70.7 (2)°] than for the phenyl ring [C2-C1-Pt1-Cl1 torsion angle of only -25.0 (4)°]. As a consequence the H12 $B\cdots$ Cl1 distance (2.831 Å) is larger than the H2 \cdots Cl1 distance (2.789 Å).

3. Supramolecular features

In the crystal packing (Fig. 2), the complex forms inversion dimers by pairs of $C-H\cdots Cl$ and $C-H\cdots \pi$ interactions $(C10-H10\cdots Cl1$ and $C15-H15A\cdots Cg1$ interactions, Cg1 is the centroid of the C1-C6 aromatic ring, see Table 1). These dimers are stacked in columns along [100] by C12-H12 $A\cdots Cg1$ interactions. The ethanol molecule interacts by bifurcated $O-H\cdots O$ hydrogen bonds with both methoxy groups of methyleugenol and further on by $C-H\cdots O$ interactions to a neighboring methoxy group. No voids are present in the crystal packing.

4. Database survey

The Cambridge Structural Database (CSD, Version 5.35, May 2014; Groom & Allen, 2014) contains 52 1,2-dimethoxyphenyl fragments in which the methoxy oxygen atoms interact simultaneously with a third oxygen atom ($O \cdots O$ distance less than the sum of the van der Waals radii). The third oxygen atom belongs in descending order to a water, alcohol, oxime or carboxylic acid, and the mean $O \cdots O$ distance is 2.916 Å. In the 690 4-substituted 1,2-dimethoxyphenyl fragments present in the CSD, the majority of the C $-C-O-CH_3$ torsion angles vary between -28 and $+32^\circ$ (only 11 torsion angles are outside this region).

5. Synthesis and crystallization

The dinuclear complex $[Pt_2Cl_2(Meug-1H)_2]$ was prepared from K[PtCl_3(Meug)] in high yield (85%) according to Da *et al.* (2010).

The title compound was synthesized by adding a solution of 1 mmol of piperidine in 3 ml of acetone to a mixture of 408 mg (0.5 mmol) of $[Pt_2Cl_2(Meug-1H)_2]$ and 6ml of acetone. The reaction mixture was stirred at room temperature for 30 min. The obtained solution was cooled to 255 K after which the precipitate was collected and washed with Et₂O. The yield was

Table 2	
Experimental	details.

Crystal data	
Chemical formula	$[Pt(C_{11}H_{13}O_2)Cl(C_5H_{11}N)] \cdot C_2H_6O$
$M_{\rm r}$	538.97
Crystal system, space group	Triclinic, P1
Temperature (K)	100
a, b, c (Å)	8.5280 (2), 8.7520 (2), 13.3309 (3)
α, β, γ (°)	97.905 (1), 97.684 (1), 99.880 (1)
$V(Å^3)$	958.21 (4)
Ζ	2
Radiation type	Cu Kα
$\mu (\text{mm}^{-1})$	15.10
Crystal size (mm)	$0.60 \times 0.15 \times 0.07$
Data collection	
Diffractometer	Bruker SMART 6000
Absorption correction	Multi-scan (SADABS; Bruker, 2003)
T_{\min}, T_{\max}	0.107, 0.347
No. of measured, independent and	13448, 3533, 3410
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.050
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.612
Refinement	
$R[F^2 > 2\sigma(F^2)] wR(F^2) S$	0.027 0.069 1.08
No of reflections	3533
No. of parameters	220
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}$, $\Delta \rho_{\rm min}$ (e Å ⁻³)	1.572.16
$r_{110}a_{X7}$ $r_{110}a_{X7}$ r_{1}	

Computer programs: *SMART* and *SAINT* (Bruker, 2003), *SHELXS97* and *SHELXL97* (Sheldrick, 2008) and *OLEX2* (Dolomanov *et al.*, 2009).

320 mg (65%). The powder was dissolved in an acetone– ethanol mixture. Colourless plate-like crystals were harvested after slow evaporation of acetone at room temperature.

IR (cm⁻¹): 3512 (ν_{OH} from ethanol solvate); 3247 (ν_{NH}); 3060, 2946, 2838 (ν_{CH}); 1581, 1557 ($\nu_{C=C}$). ¹H NMR (δ p.p.m.; d_6 -acetone, Bruker Avance 500 MHz): 7.00 (1H, s, ³J _{PtH} = 38 Hz, H2), 6.57 (1H, s, H5), 4.71 (1H, m, ²J _{PtH} = 74 Hz, H10), 3.86 (1H, d, ³J = 7 Hz, ²J _{PtH} = 76 Hz, H11A), 3.71 (3H, s, methyl C7), 3.66 (3H, s, methyl C8), 3.61 (1H, dd, ²J = 17 Hz, ³J = 6 Hz, H9B), 3.57 (1H, d, ³J = 13 Hz, ²J _{PtH} = 70 Hz, H11B), 3.19 (1H, t, ³ J_{ae} = 13 Hz, H12B), 2.95 (1H, dd, ² J_{ae} = 13 Hz, ³ J_{aa} = 12 Hz, ³ J_{ae} = 3 Hz, H12A), 2.93 (1H, dd, ² J_{ae} = 13 Hz, ³ J_{aa} = 12 Hz, ³ J_{ae} = 3 Hz, H16B), 2.53 (1H, d, ²J = 17 Hz, H9A), 1.68

 $(3H, d, {}^{2}J_{ae} = 12 \text{ Hz}, H13A, H14B, H15B), 1.59 (2H, m, H13B, H15A), 1.48 (1H, m, H14A). Calculated for [PtCl(Meug-1H)(Piperidine)]: C_{16}H_{24}ClNO_2Pt, <math>M = 491-495$ au; found (by ESI MS, m/z): 490–494 ($[M-H]^+$).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were placed in idealized positions and refined in riding mode with $U_{\rm iso}$ assigned the values to be 1.2 times those of their parent atoms (1.5 times for methyl and hydroxyl groups) with C–H distances of 0.95 (aromatic), 0.98 (methyl) and 0.99 Å (methylene), N–H distance of 0.93 (NH) and O–H distance of 0.84 Å.

Acknowledgements

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant No. 104.02–2012.66. We thank VLIR–UOS and the Chemistry Department of KU Leuven for support of this work.

References

- Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Da, T. T., Chi, N. T. T., Van Meervelt, L., Mangwala Kimpende, P. & Dinh, N. H. (2015). *Polyhedron*, 85, 104–109.
- Da, T. T., Kim, Y., Mai, T. T. C., Cuong, N. C. & Dinh, N. H. (2010). J. Coord. Chem. 63, 473–483.
- Da, T. T., Minh, N. T. T., Chi, N. T. T. & Dinh, N. H. (2007). Polyhedron, 26, 3271–3276.
- Darshan, S. & Doreswamy, R. (2004). Phytother. Res. 18, 343-357.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Ford, R. A., Domeyer, B., Easterday, O., Maier, K. & Middleton, J. (2000). Regul. Toxicol. Pharmacol. 31, 166–181.
- Freeman, S. & Alder, J. F. (2002). Eur. J. Med. Chem. 37, 527-539.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Todd, E. S., James, E., Elaine, P., Suk, L. W. & Ritsuo, N. (2008). *Entomol. Exp. Appl.* **128**, 380–388.

supporting information

Acta Cryst. (2014). E70, 435-437 [doi:10.1107/S1600536814023575]

Crystal structure of chlorido{4,5-dimethoxy-2-[(2,3- η)-2-prop-2-en-1-yl]phenyl- κC^{1} (piperidine- κN)platinum(II) ethanol monosolvate

Peter Mangwala Kimpende, Tran Thi Da, Dinh Nguyen Huu and Luc Van Meervelt

Computing details

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT* (Bruker, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

Chlorido{4,5-dimethoxy-2-[(2,3- η)-2-prop-2-en-1-yl]phenyl- κ C¹}(piperidine- κ N)platinum(II) ethanol monosolvate

Crystal data $[Pt(C_{11}H_{13}O_2)Cl(C_5H_{11}N)]\cdot C_2H_6O$ Z = 2F(000) = 528 $M_r = 538.97$ Triclinic, P1 $D_{\rm x} = 1.868 {\rm Mg} {\rm m}^{-3}$ Hall symbol: -P 1 Cu Ka radiation, $\lambda = 1.54178$ Å a = 8.5280(2) Å Cell parameters from 5133 reflections b = 8.7520(2) Å $\theta = 3.4 - 70.6^{\circ}$ c = 13.3309 (3) Å $\mu = 15.10 \text{ mm}^{-1}$ $\alpha = 97.905 (1)^{\circ}$ T = 100 KPlate, colourless $\beta = 97.684 \ (1)^{\circ}$ $\gamma = 99.880 (1)^{\circ}$ $0.6 \times 0.15 \times 0.07 \text{ mm}$ V = 958.21 (4) Å³ Data collection Bruker SMART 6000 13448 measured reflections diffractometer 3533 independent reflections Radiation source: fine-focus sealed tube 3410 reflections with $I > 2\sigma(I)$ Crossed Globel mirrors monochromator $R_{\rm int} = 0.050$ $\theta_{\rm max} = 70.6^\circ, \ \theta_{\rm min} = 3.4^\circ$ ω and φ scan $h = -10 \rightarrow 9$ Absorption correction: multi-scan (SADABS; Bruker, 2003) $k = -10 \rightarrow 10$ $l = -16 \rightarrow 16$ $T_{\rm min} = 0.107, \ T_{\rm max} = 0.347$ Refinement Refinement on F^2 0 restraints Least-squares matrix: full Primary atom site location: structure-invariant $R[F^2 > 2\sigma(F^2)] = 0.027$ direct methods $wR(F^2) = 0.069$ Secondary atom site location: difference Fourier S = 1.08map 3533 reflections Hydrogen site location: inferred from neighbouring sites 220 parameters

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.002$
$w = 1/[\sigma^2(F_o^2) + (0.0436P)^2]$	$\Delta ho_{ m max} = 1.57 \ { m e} \ { m \AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -2.16 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

_	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.2696 (5)	0.6176 (4)	0.3785 (3)	0.0129 (7)	
C2	0.2869 (5)	0.5527 (4)	0.2787 (3)	0.0139 (7)	
H2	0.2772	0.4422	0.2609	0.017*	
C3	0.3180 (5)	0.6489 (5)	0.2064 (3)	0.0143 (8)	
C4	0.3316 (5)	0.8132 (4)	0.2317 (3)	0.0148 (8)	
C5	0.3171 (5)	0.8779 (4)	0.3304 (3)	0.0158 (8)	
H5	0.3271	0.9884	0.3483	0.019*	
C6	0.2877 (5)	0.7806 (4)	0.4034 (3)	0.0140 (7)	
C7	0.3414 (6)	0.4356 (4)	0.0807 (3)	0.0204 (8)	
H7A	0.4284	0.4094	0.1271	0.031*	
H7B	0.3615	0.4150	0.0099	0.031*	
H7C	0.2383	0.3710	0.0868	0.031*	
C8	0.3631 (6)	1.0615 (4)	0.1765 (3)	0.0251 (9)	
H8A	0.2608	1.0792	0.1971	0.038*	
H8B	0.3794	1.1091	0.1154	0.038*	
H8C	0.4519	1.1094	0.2325	0.038*	
C9	0.2713 (5)	0.8472 (4)	0.5106 (3)	0.0155 (7)	
H9A	0.1642	0.8765	0.5106	0.019*	
H9B	0.3548	0.9433	0.5359	0.019*	
C10	0.2902 (5)	0.7269 (4)	0.5813 (3)	0.0149 (8)	
H10	0.2109	0.7020	0.6233	0.018*	
C11	0.4226 (5)	0.6527 (4)	0.5851 (3)	0.0168 (8)	
H11A	0.5023	0.6771	0.5433	0.020*	
H11B	0.4331	0.5777	0.6296	0.020*	
C12	0.2720 (6)	0.2472 (4)	0.6279 (3)	0.0167 (8)	
H12A	0.3856	0.3012	0.6512	0.020*	
H12B	0.2655	0.1824	0.5600	0.020*	
C13	0.2216 (6)	0.1398 (5)	0.7040 (3)	0.0198 (9)	
H13A	0.2973	0.0666	0.7116	0.024*	
H13B	0.1124	0.0766	0.6773	0.024*	
C14	0.2212 (6)	0.2365 (5)	0.8087 (3)	0.0183 (8)	
H14A	0.3325	0.2908	0.8392	0.022*	

H14B	0.1806	0.1661	0.8556	0.022*
C15	0.1132 (5)	0.3579 (5)	0.7960 (3)	0.0175 (8)
H15A	0.0000	0.3028	0.7727	0.021*
H15B	0.1187	0.4247	0.8631	0.021*
C16	0.1647 (6)	0.4609 (5)	0.7188 (3)	0.0166 (8)
H16A	0.0888	0.5336	0.7096	0.020*
H16B	0.2732	0.5251	0.7463	0.020*
C17	0.0871 (8)	0.8141 (7)	-0.0783 (4)	0.0431 (13)
H17A	0.0314	0.7151	-0.1220	0.065*
H17B	0.0305	0.8987	-0.0937	0.065*
H17C	0.0883	0.8032	-0.0061	0.065*
C18	0.2570 (7)	0.8527 (5)	-0.0987 (3)	0.0289 (10)
H18A	0.2551	0.8623	-0.1720	0.035*
H18B	0.3109	0.9554	-0.0572	0.035*
N1	0.1688 (4)	0.3676 (4)	0.6172 (2)	0.0129 (6)
H1	0.0645	0.3105	0.5953	0.016*
O1	0.3355 (4)	0.5974 (3)	0.10741 (19)	0.0179 (6)
O2	0.3593 (4)	0.8968 (3)	0.1539 (2)	0.0199 (6)
O3	0.3470 (4)	0.7364 (4)	-0.0749 (2)	0.0259 (6)
H3	0.3504	0.7292	-0.0124	0.039*
C11	0.10276 (11)	0.26360 (9)	0.38151 (6)	0.01464 (19)
Pt1	0.224748 (17)	0.495406 (13)	0.492434 (9)	0.01051 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.014 (2)	0.0130 (17)	0.0109 (18)	0.0030 (13)	-0.0011 (13)	-0.0001 (13)
C2	0.016 (2)	0.0157 (17)	0.0102 (17)	0.0041 (13)	-0.0001 (14)	0.0019 (13)
C3	0.017 (2)	0.0165 (18)	0.0079 (17)	0.0031 (14)	0.0011 (14)	-0.0007 (13)
C4	0.017 (2)	0.0154 (17)	0.0109 (18)	0.0013 (14)	0.0008 (14)	0.0035 (14)
C5	0.021 (2)	0.0137 (17)	0.0130 (18)	0.0057 (14)	0.0019 (15)	0.0020 (14)
C6	0.018 (2)	0.0138 (17)	0.0101 (18)	0.0037 (14)	0.0016 (14)	0.0003 (13)
C7	0.032 (2)	0.0185 (18)	0.0117 (17)	0.0053 (15)	0.0067 (15)	0.0010 (13)
C8	0.043 (3)	0.0166 (18)	0.0144 (19)	0.0030 (17)	0.0038 (16)	0.0037 (14)
C9	0.022 (2)	0.0131 (16)	0.0122 (17)	0.0061 (14)	0.0033 (14)	0.0006 (13)
C10	0.019 (2)	0.0155 (16)	0.0079 (17)	0.0007 (14)	0.0002 (13)	-0.0004 (13)
C11	0.013 (2)	0.0238 (18)	0.0117 (17)	0.0022 (14)	-0.0050 (13)	0.0040 (14)
C12	0.026 (2)	0.0146 (17)	0.0105 (17)	0.0056 (15)	0.0028 (15)	0.0024 (13)
C13	0.033 (3)	0.0168 (18)	0.0119 (19)	0.0080 (16)	0.0059 (16)	0.0031 (14)
C14	0.027 (2)	0.0189 (18)	0.0108 (18)	0.0088 (15)	0.0041 (15)	0.0036 (14)
C15	0.023 (2)	0.0224 (19)	0.0087 (17)	0.0091 (15)	0.0037 (14)	0.0022 (14)
C16	0.027 (2)	0.0171 (18)	0.0078 (17)	0.0080 (15)	0.0052 (14)	0.0008 (14)
C17	0.043 (3)	0.053 (3)	0.033 (3)	0.019 (3)	0.001 (2)	-0.002 (2)
C18	0.044 (3)	0.025 (2)	0.020 (2)	0.0132 (19)	0.0033 (18)	0.0073 (16)
N1	0.0166 (18)	0.0134 (14)	0.0081 (15)	0.0034 (12)	0.0001 (12)	0.0007 (11)
01	0.0315 (17)	0.0161 (12)	0.0057 (12)	0.0041 (11)	0.0029 (10)	0.0011 (9)
O2	0.0338 (18)	0.0150 (12)	0.0115 (12)	0.0043 (11)	0.0038 (11)	0.0051 (10)
O3	0.0371 (19)	0.0297 (15)	0.0174 (14)	0.0148 (13)	0.0097 (12)	0.0104 (11)

supporting information

~ .						
CII	0.0205 (5)	0.0124 (4)	0.0082 (4)	0.0003 (3)	-0.0003(3)	-0.0018(3)
Pt1	0.01549 (13)	0.01067 (11)	0.00481 (11)	0.00278 (6)	0.00084 (7)	-0.00016 (6)

Geometric parameters (Å, °)

1	/			
C1—C2	1.410 (6)	C11—Pt1	2.109 (4)	_
C1—C6	1.396 (5)	C12—H12A	0.9900	
C1—Pt1	2.014 (4)	C12—H12B	0.9900	
С2—Н2	0.9500	C12—C13	1.528 (5)	
С2—С3	1.387 (6)	C12—N1	1.493 (5)	
C3—C4	1.412 (6)	C13—H13A	0.9900	
C3—O1	1.371 (5)	C13—H13B	0.9900	
C4—C5	1.388 (6)	C13—C14	1.531 (5)	
C4—O2	1.372 (5)	C14—H14A	0.9900	
С5—Н5	0.9500	C14—H14B	0.9900	
С5—С6	1.400 (5)	C14—C15	1.533 (6)	
С6—С9	1.501 (5)	C15—H15A	0.9900	
С7—Н7А	0.9800	C15—H15B	0.9900	
С7—Н7В	0.9800	C15—C16	1.517 (5)	
С7—Н7С	0.9800	C16—H16A	0.9900	
C7—O1	1.423 (5)	C16—H16B	0.9900	
C8—H8A	0.9800	C16—N1	1.491 (5)	
C8—H8B	0.9800	C17—H17A	0.9800	
C8—H8C	0.9800	C17—H17B	0.9800	
C8—O2	1.425 (5)	C17—H17C	0.9800	
С9—Н9А	0.9900	C17—C18	1.500 (9)	
С9—Н9В	0.9900	C18—H18A	0.9900	
C9—C10	1.521 (5)	C18—H18B	0.9900	
C10—H10	0.9500	C18—O3	1.420 (6)	
C10-C11	1.395 (6)	N1—H1	0.9300	
C10-Pt1	2.143 (4)	N1—Pt1	2.188 (3)	
C11—H11A	0.9500	O3—H3	0.8400	
C11—H11B	0.9500	Cl1—Pt1	2.3289 (8)	
C2—C1—Pt1	125.6 (3)	C12—C13—H13B	109.5	
C6—C1—C2	118.6 (3)	C12—C13—C14	110.7 (3)	
C6—C1—Pt1	115.7 (3)	H13A—C13—H13B	108.1	
C1—C2—H2	119.8	C14—C13—H13A	109.5	
C3—C2—C1	120.5 (4)	C14—C13—H13B	109.5	
С3—С2—Н2	119.8	C13—C14—H14A	109.8	
C2—C3—C4	120.4 (4)	C13—C14—H14B	109.8	
O1—C3—C2	125.0 (3)	C13—C14—C15	109.6 (3)	
O1—C3—C4	114.7 (3)	H14A—C14—H14B	108.2	
C5—C4—C3	119.4 (3)	C15—C14—H14A	109.8	
O2—C4—C3	115.5 (3)	C15—C14—H14B	109.8	
O2—C4—C5	125.1 (3)	C14—C15—H15A	109.4	
C4—C5—H5	120.0	C14—C15—H15B	109.4	
C4—C5—C6	120.1 (4)	H15A—C15—H15B	108.0	

a. a	100.0		
С6—С5—Н5	120.0	C16—C15—C14	111.3 (4)
C1—C6—C5	121.1 (4)	C16—C15—H15A	109.4
C1—C6—C9	117.7 (3)	C16—C15—H15B	109.4
C5—C6—C9	121.2 (3)	C15—C16—H16A	109.1
H7A—C7—H7B	109.5	C15—C16—H16B	109.1
H7A—C7—H7C	109.5	H16A—C16—H16B	107.8
H7B—C7—H7C	109.5	N1-C16-C15	112.5 (3)
O1—C7—H7A	109.5	N1-C16-H16A	109.1
O1—C7—H7B	109.5	N1—C16—H16B	109.1
O1—C7—H7C	109.5	H17A—C17—H17B	109.5
H8A—C8—H8B	109.5	H17A—C17—H17C	109.5
H8A—C8—H8C	109.5	H17B—C17—H17C	109.5
H8B—C8—H8C	109.5	С18—С17—Н17А	109.5
02—C8—H8A	109.5	C18—C17—H17B	109.5
02—C8—H8B	109.5	C18—C17—H17C	109.5
02-C8-H8C	109.5	C17—C18—H18A	109.2
C6-C9-H9A	109.5	C17 - C18 - H18B	109.2
C6-C9-H9B	109.6	H18A - C18 - H18B	107.9
C6 C9 C10	110.2 (3)	$O_3 C_{18} C_{17}$	107.9 112.2(4)
	108.1	$O_{3}^{2} = C_{18}^{18} = H_{18A}^{18A}$	112.2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.6	$O_2 = C_{18} = H_{18}$	109.2
$C_{10} = C_{2} = H_{2} = H_{2}$	109.0	$C_{12} = 0.0000000000000000000000000000000000$	109.2
C_{10} C_{10} H_{10}	109.0	C12 - N1 - H1	103.2
C9-C10-H10	119.0	CI2—NI—PII	110.7 (2)
C9—C10—Pt1	109.1 (2)	C16-N1-C12	111.2 (3)
C11—C10—C9	120.7 (4)	CI6—NI—HI	105.2
C11—C10—H10	119.6	C16—N1—Pt1	118.0 (2)
C11—C10—Pt1	69.5 (2)	Pt1—N1—H1	105.2
Pt1C10H10	91.3	C3—O1—C7	117.2 (3)
C10—C11—H11A	120.0	C4—O2—C8	116.0 (3)
C10—C11—H11B	120.0	C18—O3—H3	109.5
C10-C11-Pt1	72.2 (2)	C1—Pt1—C10	81.39 (15)
H11A—C11—H11B	120.0	C1—Pt1—C11	86.96 (15)
Pt1-C11-H11A	107.8	C1—Pt1—N1	177.85 (13)
Pt1-C11-H11B	90.0	C1—Pt1—Cl1	94.15 (11)
H12A—C12—H12B	107.8	C10—Pt1—N1	97.56 (13)
C13—C12—H12A	109.1	C10—Pt1—Cl1	167.26 (12)
C13—C12—H12B	109.1	C11—Pt1—C10	38.29 (16)
N1—C12—H12A	109.1	C11—Pt1—N1	93.39 (13)
N1—C12—H12B	109.1	C11—Pt1—C11	153.95 (12)
N1-C12-C13	112.6 (4)	N1—Pt1—C11	86.47 (8)
C12—C13—H13A	109 5		
	109.0		
C1 - C2 - C3 - C4	-0.4(6)	C9C10Pt1C11	-49.7(6)
$C_1 = C_2 = C_3 = C_1$	-1795(4)	C10-C11-Pt1-C1	79.9(2)
$C_1 C_2 C_3 C_1 C_1 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2$	18.0 (5)	$C_{10} = C_{11} = C_{11} = C_{11}$	-070(2)
$C_{1} = C_{0} = C_{2} = C_{10}$	21(6)	$C_{10} = C_{11} = C_{11} = C_{11}$	97.7 (4) 172 10 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.1(0) -170.1(4)	$C_{10} - C_{11} - F_{11} - C_{11}$	1/3.10(18)
$C_2 = C_1 $	-1/9.1(4)	$C_{11} = C_{10} = P(1) = C_{11}$	-90.0 (2)
C2-C1-Pt1-C10	10/.0(4)	C11-C10-Pt1-N1	85.9 (2)

C2-C1-Pt1-C11	128.9 (4)	C11—C10—Pt1—Cl1	-166.3 (4)
C2-C1-Pt1-Cl1	-25.0 (4)	C12-C13-C14-C15	55.2 (5)
C2—C3—C4—C5	1.4 (6)	C12-N1-Pt1-C10	-121.5 (3)
C2—C3—C4—O2	-178.8 (4)	C12-N1-Pt1-C11	-83.2 (3)
C2-C3-O1-C7	-7.9 (6)	C12—N1—Pt1—Cl1	70.7 (2)
C3—C4—C5—C6	-0.6 (6)	C13—C12—N1—C16	54.6 (4)
C3—C4—O2—C8	176.2 (4)	C13-C12-N1-Pt1	-172.1 (3)
C4—C3—O1—C7	173.0 (4)	C13—C14—C15—C16	-55.4 (5)
C4—C5—C6—C1	-1.2 (6)	C14—C15—C16—N1	55.6 (5)
C4—C5—C6—C9	-180.0 (4)	C15-C16-N1-C12	-54.4 (5)
C5-C4-O2-C8	-4.0 (6)	C15-C16-N1-Pt1	176.0 (3)
C5—C6—C9—C10	-163.2 (4)	C16—N1—Pt1—C10	8.4 (3)
C6-C1-C2-C3	-1.3 (6)	C16—N1—Pt1—C11	46.6 (3)
C6-C1-Pt1-C10	-11.7 (3)	C16—N1—Pt1—Cl1	-159.5 (3)
C6-C1-Pt1-C11	-49.8 (3)	N1-C12-C13-C14	-55.7 (5)
C6-C1-Pt1-Cl1	156.3 (3)	O1—C3—C4—C5	-179.5 (4)
C6-C9-C10-C11	51.5 (5)	O1—C3—C4—O2	0.4 (5)
C6-C9-C10-Pt1	-25.5 (4)	O2—C4—C5—C6	179.6 (4)
C9-C10-C11-Pt1	-100.7 (3)	Pt1-C1-C2-C3	-179.9 (3)
C9-C10-Pt1-C1	20.5 (3)	Pt1-C1-C6-C5	-179.1 (3)
C9-C10-Pt1-C11	116.6 (4)	Pt1-C1-C6-C9	-0.3 (5)
C9-C10-Pt1-N1	-157.6 (3)		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O3—H3…O1	0.84	2.10	2.869 (4)	152
O3—H3…O2	0.84	2.47	3.158 (4)	140
C10—H10···Cl1 ⁱ	0.95	2.74	3.466 (4)	134
С7—Н7А…ОЗ ^{іі}	0.98	2.59	3.276 (6)	127
C15—H15 A ···Cg1 ⁱ	0.99	2.68	3.572 (5)	149
C12—H12 A ···Cg1 ⁱⁱⁱ	0.99	2.61	3.529 (5)	154

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1.