STRUCTURE REPORTS

ISSN 1600-5368

Received 13 October 2014
Accepted 17 October 2014

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; diphenylhydrazine; hydrazinium; hydrogen bonding

CCDC reference: 1029761
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 2,2-diphenylhydrazinium chloride

Amit Kumal Paul, ${ }^{\text {a }}$ Soma Mukherjee ${ }^{\text {a }}$ and Helen Stoeckli-Evans ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Environmental Science, University of Kalyani, Kalyani, Nadia 741 235, West Bengal, India, and ${ }^{\mathbf{b}}$ Institute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland. *Correspondence e-mail: helen.stoeckli-evans@unine.ch

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Cl}^{-}$, the chloride salt of $1,1^{\prime}$-diphenylhydrazine, the phenyl rings are inclined to one another by $78.63(17)^{\circ}$. The $\mathrm{N}-{ }^{+} \mathrm{NH}_{3}$ bond lengths is 1.445 (3) \AA, and the $\mathrm{N}-\mathrm{C}_{\text {phenyl }}$ bond lengths are 1.435 (3) and 1.447 (4) \AA. In the crystal, molecules are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, forming chains along [10 $\overline{1}]$, which enclose two adjacent $R_{2}^{4}(6)$ ring motifs. The chains are reinforced by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

1. Chemical context

1,1 '-Diphenylhydrazine is a 'free' hydrazine, viz with an NH_{2} group. It has been used as a starting reagent for the preparation of Schiff bases as fluorescent sensors for fluoride (Mukherjee et al., 2014), and metal complexes (Stender et al., 2003; Clulow et al., 2008). The title compound, (I), crystallized out of a reaction of $1,1^{\prime}$-diphenylhydrazine with 2,6 -diacetylpyridine in an attempt to prepare the ligand 2,6 -diacetylpyridine bis(N, N-diphenylhydrazone). The latter compound is one of a series that has been used to prepare bis(imino)pyridyl iron and cobalt complexes to study the effect of nitrogen substituents on ethylene oligomerization and polymerization (Britovsek et al., 2001).

2. Structural commentary

The molecular structure of the title salt, (I), is illustrated in Fig. 1, and selected bond distances and bond angles are given

A view of the molecular structure of the title compound with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{N} 1-\mathrm{N} 2$	$1.445(3)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.447(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.435(3)$		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	$113.4(2)$	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7$	$111.5(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	$116.0(2)$		

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 1 N \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.92(3)$	$2.31(3)$	$3.208(3)$	$165(3)$
$\mathrm{N} 2-\mathrm{H} 2 N \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	$0.96(3)$	$2.23(3)$	$3.167(3)$	$167(3)$
$\mathrm{N} 2-\mathrm{H} 3 N \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	$0.86(4)$	$2.30(4)$	$3.154(3)$	$175(3)$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 1^{1}$	0.95	2.96	$3.696(3)$	135

Symmetry codes: (i) $x,-y+1, z+\frac{1}{2}$; (ii) $x,-y+2, z+\frac{1}{2}$; (iii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.
in Table 1. The two phenyl rings ($\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 7-\mathrm{C} 12$) are inclined to one another by $78.63(17)^{\circ}$. The $\mathrm{N} 1-\mathrm{N} 2$ bond lengths is 1.445 (3) \AA and the $\mathrm{N} 1-\mathrm{C} 1$ and $\mathrm{N} 1-\mathrm{C} 7$ bond lengths are 1.435 (3) and 1.447 (4) A. respectively. Atom N1 is displaced from the plane of the three connected atoms, ($\mathrm{N} 2 /$ C1/C7), by 0.370 (2) \AA, while the sum of the three angles involving atom N1 is 340.9°. This illustrates clearly the pyramidal nature of the central N atom, N 1 .

3. Supramolecular features

In the crystal of compound (I), molecules are linked via N $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, forming chains along [10 $\overline{1}$], which enclose two adjacent $R_{2}^{4}(6)$ ring motifs (Table 2 and Fig. 2). The chains are reinforced by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Fig. 3 and Table 2).

Figure 2
A partial view normal to ($10 \overline{1}$) of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 2 for details; C-bound H atoms have been omitted for clarity).

Figure 3
A view along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 2 for details; Cbound H atoms not involved in hydrogen bonding have been omitted for clarity).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Groom \& Allen, 2014) yielded only two hits for the sub-structure 1,1'-diphenylhydrazine: viz. 1,1'-diphenylhydrazinium dicyanogold(I) monohydrate (II) (Stender et al., 2003) and 1,1'-diphenylhydrazine (III) itself (Clulow et al., 2008).

The structure of salt (II) is very similar to that of the title compound, (I). The two phenyl rings are inclined to one another by 80.04 (19) ${ }^{\circ}$ compared to 78.63 (17) ${ }^{\circ}$ in (I). The bond lengths and angles involving the central N atom are also very similar to those in (I). The central N atom is displaced by 0.358 (3) \AA from the plane of the three attached N and C atoms, and the sum of their bond angles is 342.0°, indicating clearly the pyramidal nature of the central N atom, as in (I).

In $1,1^{\prime}$-diphenylhydrazine (III), which crystallized with two independent molecules per asymmetric unit, the phenyl rings are inclined to one another by only 58.39 (2) and $52.30(9)^{\circ}$, and the $\mathrm{N}-\mathrm{NH}_{2}$ bond lengths are 1.418 (2) and 1.411 (3) \AA. The central N atoms are displaced by 0.1199 (17) and 0.0828 (19) A from the planes of the three attached N and C atoms, with the sums of their bond angles being 357.85 and 358.97°. This confirms the trigonal-planar conformation of the central N atom.

In the crystal of compound (II), molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming two-dimensional networks parallel to (001). These sheets are linked via $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, forming a threedimensional structure. In the crystal of compound (III), there are no hydrogen bonds present with only weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions linking the molecules to form chains along [100]. There are no $\pi-\pi$ interactions present in the crystal structures of any of the three compounds.

5. Synthesis and crystallization

Brown block-like crystals of the title compound were obtained during an attempt to prepare the ligand 2,6-diacetylpyridine bis(N, N-diphenylhydrazone) by a condensation reaction involving 1,1'-diphenylhydrazinium hydrochloride and 2,6-diacetylpyridine in methanol.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3. The ammonium H atoms were located in a difference Fourier map and freely refined. The Cbound H atoms were included in calculated positions and treated as riding atoms: $\mathrm{C}-\mathrm{H}=0.95 \AA$ with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

Acknowledgements

Financial support from the CSIR, UGC, DST-FIST and DSTPURSE, New Delhi, and the Indo Swiss Joint Research Program (ISJRP) for Joint Utilization of Advanced Facilities (JUAF) are gratefully acknowledged. We are also grateful to the University of Kalyani for providing infrastructural facilities, and to the XRD Application Laboratory, CSEM, Neuchâtel, Switzerland, for access to the X-ray diffraction equipment.

References

Britovsek, G. J. P., Gibson, V. C., Kimberley, B. S., Mastroianni, S., Redshaw, C., Solan, G. A., White, A. J. P. \& Williams, D. J. (2001). J. Chem. Soc. Dalton Trans. pp. 1639-1644.
Clulow, A. J., Selby, J. D., Cushion, M. G., Schwarz, A. D. \& Mountford, P. (2008). Inorg. Chem. 47, 12049-12062.
Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Table 3
Experimental details.
Crystal data Chemical formula $M_{\text {r }}$
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e}^{\AA^{-3}}\right)$
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2}^{+} \cdot \mathrm{Cl}^{-}$
220.69

Monoclinic, C2/c
173
21.341 (3), 5.3728 (4), 19.940 (3)
98.291 (10)
2262.4 (5)

8
Mo $K \alpha$
0.31
$0.45 \times 0.35 \times 0.25$

STOE IPDS 2
Multi-scan (MULscanABS in
PLATON; Spek, 2009)
0.578, 1.000

7392, 2140, 1517
0.120
0.609

$$
\begin{aligned}
& 0.057,0.141,0.93 \\
& 2140 \\
& 148 \\
& \text { H atoms treated by a mixture of } \\
& \text { independent and constrained } \\
& \text { refinement } \\
& 0.30,-0.47 \\
& \hline
\end{aligned}
$$

Computer programs: X-AREA and X-RED32 (Stoe \& Cie, 2009), SHELXS2013 and SHELXL2013 (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2008), and publCIF (Westrip, 2010).

Mukherjee, S., Paul, A. K. \& Stoeckli-Evans, H. (2014). Sens. Actuators B Chem. 202, 1190-1199.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stender, M., Olmstead, M. M., Balch, A. L., Rios, D. \& Attar, S. (2003). Dalton Trans. pp. 4282-4287.

Stoe \& Cie. (2009). X-AREA and X-RED32. Stoe \& Cie GmbH, Darmstadt, Germany.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, 382-384 [doi:10.1107/S1600536814022879]

Crystal structure of 2,2-diphenylhydrazinium chloride

Amit Kumal Paul, Soma Mukherjee and Helen Stoeckli-Evans

Computing details

Data collection: X-AREA (Stoe \& Cie, 2009); cell refinement: X-AREA (Stoe \& Cie, 2009); data reduction: X-RED32 (Stoe \& Cie, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

2,2-Diphenylhydrazinium chloride

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=220.69$
Monoclinic, $C 2 / c$
$a=21.341$ (3) A
$b=5.3728$ (4) \AA
$c=19.940$ (3) \AA
$\beta=98.291(10)^{\circ}$
$V=2262.4(5) \AA^{3}$
$Z=8$

Data collection

STOE IPDS 2
diffractometer
Radiation source: fine-focus sealed tube
Plane graphite monochromator
$\varphi+\omega$ scans
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
$T_{\text {min }}=0.578, T_{\text {max }}=1.000$
$F(000)=928$
$D_{\mathrm{x}}=1.296 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5046 reflections
$\theta=1.9-26.0^{\circ}$
$\mu=0.31 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Block, brown
$0.45 \times 0.35 \times 0.25 \mathrm{~mm}$

7392 measured reflections
2140 independent reflections
1517 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.120$
$\theta_{\text {max }}=25.6^{\circ}, \theta_{\text {min }}=1.9^{\circ}$
$h=-24 \rightarrow 25$
$k=-6 \rightarrow 5$
$l=-24 \rightarrow 24$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.141$
$S=0.93$
2140 reflections
148 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0794 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.30 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.47 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
N1	$0.14173(10)$	$0.9765(4)$	$0.38714(11)$	$0.0284(5)$
N2	$0.17735(12)$	$0.9687(5)$	$0.45449(12)$	$0.0296(5)$
H1N	$0.1692(14)$	$0.834(6)$	$0.4807(14)$	$0.032(8)^{*}$
H2N	$0.1695(15)$	$1.113(6)$	$0.4803(14)$	$0.034(8)^{*}$
H3N	$0.217(2)$	$0.982(7)$	$0.4537(17)$	$0.046(10)^{*}$
C1	$0.15920(13)$	$0.7846(5)$	$0.34332(13)$	$0.0282(6)$
C2	$0.20210(14)$	$0.5967(5)$	$0.36467(14)$	$0.0312(6)$
H2	0.2207	0.5880	0.4108	0.037^{*}
C3	$0.21793(14)$	$0.4209(5)$	$0.31865(14)$	$0.0345(7)$
H3	0.2470	0.2917	0.3336	0.041^{*}
C4	$0.19146(15)$	$0.4339(6)$	$0.25115(15)$	$0.0376(7)$
H4	0.2025	0.3151	0.2196	0.045^{*}
C5	$0.14855(14)$	$0.6226(6)$	$0.23008(14)$	$0.0357(7)$
H5	0.1301	0.6317	0.1838	0.043^{*}
C6	$0.13236(14)$	$0.7966(5)$	$0.27525(14)$	$0.0336(6)$
H6	0.1030	0.9246	0.2601	0.040^{*}
C7	$0.07462(14)$	$1.0052(5)$	$0.38918(15)$	$0.0334(7)$
C8	$0.04095(15)$	$0.8348(7)$	$0.42154(16)$	$0.0438(8)$
H8	0.0617	0.6955	0.4442	0.053^{*}
C9	$-0.02370(18)$	$0.8694(9)$	$0.42060(19)$	$0.0622(11)$
H9	-0.0474	0.7536	0.4427	0.075^{*}
C10	$-0.05343(18)$	$1.0729(10)$	$0.3874(2)$	$0.0708(14)$
H10	-0.0976	1.0975	0.3870	0.085^{*}
C11	$-0.0194(2)$	$1.2384(9)$	$0.3551(3)$	$0.0798(15)$
H11	-0.0405	1.3756	0.3317	0.096^{*}
C12	$0.04547(17)$	$1.2096(7)$	$0.3560(2)$	$0.0561(10)$
H12	0.0691	1.3272	0.3344	0.067^{*}
C11	$0.17516(3)$	$0.53583(13)$	$0.04013(3)$	$0.0316(2)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0175(11)$	$0.0303(12)$	$0.0360(12)$	$0.0013(9)$	$-0.0004(9)$	$-0.0032(9)$
N2	$0.0203(13)$	$0.0317(13)$	$0.0361(13)$	$-0.0011(11)$	$0.0012(10)$	$-0.0047(11)$
C1	$0.0192(14)$	$0.0282(14)$	$0.0376(14)$	$-0.0040(11)$	$0.0052(11)$	$-0.0018(11)$
C2	$0.0271(15)$	$0.0305(15)$	$0.0363(14)$	$-0.0017(12)$	$0.0055(12)$	$0.0028(11)$
C3	$0.0308(17)$	$0.0290(15)$	$0.0460(16)$	$0.0025(12)$	$0.0128(13)$	$0.0030(12)$
C4	$0.0348(18)$	$0.0366(16)$	$0.0441(16)$	$-0.0056(14)$	$0.0148(13)$	$-0.0082(13)$
C5	$0.0291(16)$	$0.0414(16)$	$0.0363(15)$	$-0.0084(13)$	$0.0039(12)$	$-0.0036(12)$

C6	$0.0255(15)$	$0.0348(15)$	$0.0401(15)$	$-0.0010(12)$	$0.0036(12)$	$0.0034(12)$
C7	$0.0203(14)$	$0.0348(16)$	$0.0433(15)$	$0.0017(12)$	$-0.0013(11)$	$-0.0123(12)$
C8	$0.0226(16)$	$0.057(2)$	$0.0510(18)$	$-0.0017(15)$	$0.0043(13)$	$-0.0060(15)$
C9	$0.031(2)$	$0.096(3)$	$0.062(2)$	$-0.008(2)$	$0.0132(17)$	$-0.025(2)$
C10	$0.0222(19)$	$0.102(4)$	$0.084(3)$	$0.008(2)$	$-0.0050(18)$	$-0.050(3)$
C11	$0.041(2)$	$0.067(3)$	$0.120(4)$	$0.024(2)$	$-0.026(2)$	$-0.027(3)$
C12	$0.036(2)$	$0.045(2)$	$0.082(3)$	$0.0090(16)$	$-0.0091(17)$	$-0.0038(18)$
C11	$0.0232(4)$	$0.0334(4)$	$0.0381(4)$	$0.0010(3)$	$0.0044(3)$	$0.0008(3)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

N1-N2	1.445 (3)	C5-C6	1.376 (4)
N1-C1	1.435 (3)	C5-H5	0.9500
N1-C7	1.447 (4)	C6-H6	0.9500
N2-H1N	0.92 (3)	C7-C8	1.380 (5)
N2-H2N	0.96 (3)	C7-C12	1.383 (4)
N2-H3N	0.86 (4)	C8-C9	1.390 (5)
$\mathrm{C} 1-\mathrm{C} 2$	1.388 (4)	C8-H8	0.9500
C1-C6	1.397 (4)	C9-C10	1.384 (7)
C2-C3	1.392 (4)	C9—H9	0.9500
C2-H2	0.9500	C10-C11	1.365 (7)
C3-C4	1.384 (4)	C10-H10	0.9500
C3-H3	0.9500	C11-C12	1.392 (6)
C4-C5	1.390 (4)	C11-H11	0.9500
C4-H4	0.9500	C12-H12	0.9500
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	113.4 (2)	C4-C5-H5	119.5
C1-N1-C7	116.0 (2)	C5-C6-C1	119.9 (3)
N2-N1-C7	111.5 (2)	C5-C6-H6	120.1
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N}$	115.5 (19)	C1-C6-H6	120.1
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	111.5 (18)	C8-C7-C12	121.5 (3)
$\mathrm{H} 1 \mathrm{~N}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	106 (3)	C8-C7-N1	121.8 (3)
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{H} 3 \mathrm{~N}$	112 (2)	C12-C7-N1	116.8 (3)
$\mathrm{H} 1 \mathrm{~N}-\mathrm{N} 2-\mathrm{H} 3 \mathrm{~N}$	110 (3)	C7-C8-C9	119.2 (4)
$\mathrm{H} 2 \mathrm{~N}-\mathrm{N} 2-\mathrm{H} 3 \mathrm{~N}$	101 (3)	C7-C8-H8	120.4
C2-C1-C6	119.5 (3)	C9-C8- 88	120.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	123.6 (2)	C10-C9-C8	119.9 (4)
C6- $\mathrm{C} 1-\mathrm{N} 1$	116.9 (2)	C10-C9-H9	120.1
C1-C2-C3	120.2 (3)	C8-C9-H9	120.1
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.9	C11-C10-C9	120.1 (4)
C3-C2-H2	119.9	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10$	119.9
C4-C3-C2	120.2 (3)	C9-C10-H10	119.9
C4-C3-H3	119.9	C10-C11-C12	121.2 (4)
C2-C3-H3	119.9	C10-C11-H11	119.4
C3-C4-C5	119.3 (3)	C12-C11-H11	119.4
C3-C4-H4	120.4	C7-C12-C11	118.2 (4)
C5-C4-H4	120.4	C7-C12-H12	120.9
C6-C5-C4	120.9 (3)	C11-C12-H12	120.9

$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	119.5
$\mathrm{~N} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$5.2(4)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-125.8(3)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$-172.7(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$56.3(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.4(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-178.2(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.7(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.6(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.3(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.0(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.1(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$178.1(2)$

$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$72.9(3)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$-59.0(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 12$	$-105.9(3)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 12$	$122.2(3)$
$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$0.1(5)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-178.7(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$0.1(5)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$0.5(6)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$-1.3(6)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 11$	$-0.8(5)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 11$	$178.0(3)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 7$	$1.4(6)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 1 N \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.92(3)$	$2.31(3)$	$3.208(3)$	$165(3)$
$\mathrm{N} 2 — \mathrm{H} 2 N \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	$0.96(3)$	$2.23(3)$	$3.167(3)$	$167(3)$
$\mathrm{N} 2 — \mathrm{H} 3 N \cdots \mathrm{Cl1} 1^{\mathrm{iii}}$	$0.86(4)$	$2.30(4)$	$3.154(3)$	$175(3)$
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{Cl}^{\mathrm{i}}$	0.95	2.96	$3.696(3)$	135

Symmetry codes: (i) $x,-y+1, z+1 / 2$; (ii) $x,-y+2, z+1 / 2$; (iii) $-x+1 / 2, y+1 / 2,-z+1 / 2$.

