

Received 17 September 2014 Accepted 23 September 2014

Edited by A. J. Lough, University of Toronto, Canada

Keywords: 5-substituted-2-amino-1,3,4-thiadiazoles; 4-nitrobenzoic acid; 3,5-dinitrosalicylic acid; proton transfer; molecular adducts; co-crystals; hydrogen bonding; π – π interactions; crystal structure

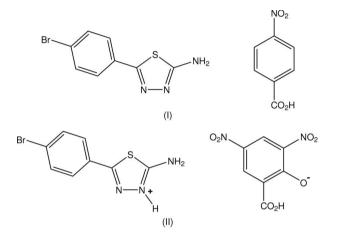
CCDC references: 1025540; 1025541 **Supporting information**: this article has supporting information at journals.iucr.org/e

Crystal structures of the co-crystalline adduct 5-(4-bromophenyl)-1,3,4-thiadiazol-2-amine– 4-nitrobenzoic acid (1/1) and the salt 2-amino-5-(4-bromophenyl)-1,3,4-thiadiazol-3-ium 2-carboxy-4,6-dinitrophenolate

Graham Smith^a* and Daniel E. Lynch^b

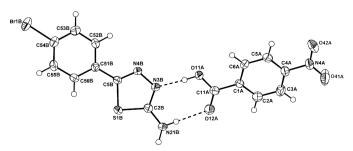
^aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and ^bExilica Limited, The Technocentre, Puma Way, Coventry, CV1 2TT, England. *Correspondence e-mail: g.smith@qut.edu.au

The structures of the 1:1 co-crystalline adduct $C_8H_6BrN_3S \cdot C_7H_5NO_4$, (I), and the salt $C_8H_7BrN_3S^+ \cdot C_7H_3N_2O_7^-$, (II), obtained from the interaction of 5-(4bromophenyl)-1,3,4-thiadiazol-2-amine with 4-nitrobenzoic acid and 3,5-dinitrosalicylic acid, respectively, have been determined. The primary inter-species association in both (I) and (II) is through duplex $R_2^2(8)$ (N-H···O/O-H···O) or $(N-H\cdots O/N-H\cdots O)$ hydrogen bonds, respectively, giving heterodimers. In (II), these are close to planar [the dihedral angles between the thiadiazole ring and the two phenyl rings are 2.1 (3) (intra) and 9.8 (2) $^{\circ}$ (inter)], while in (I) these angles are 22.11 (15) and 26.08 (18) $^{\circ}$, respectively. In the crystal of (I), the heterodimers are extended into a chain along b through an amine N-H...Nthiadiazole hydrogen bond but in (II), a centrosymmetric cyclic heterotetramer structure is generated through N-H···O hydrogen bonds to phenol and nitro O-atom acceptors and features, together with the primary $R_2^2(8)$ interaction, conjoined $R_6^4(12)$, $R_1^2(6)$ and S(6) ring motifs. Also present in (I) are $\pi - \pi$ interactions between thiadiazole rings [minimum ring-centroid separation = 3.4624 (16) Å], as well as short Br...Onitro interactions in both (I) and (II) [3.296 (3) and 3.104 (3) Å, respectively].


1. Chemical context

1,3,4-Thiadiazole (TZ) and its derivatives, particularly the 2-amino-substituted analogues (ATZ), which are commonly phenyl-substituted at the 5-site of the thiadiazole ring, exhibit a broad range of biological activities (Jain *et al.*, 2013). In the solid state, these 2-amino-1,3,4-thiadiazoles usually interact through duplex $N-H\cdots N$ hydrogen bonds, giving a centro-symmetric cyclic $R_2^2(8)$ hydrogen-bonding homodimer motif, which may be discrete *e.g.* the 5-(3-fluorophenyl)-ATZ derivative (Wang *et al.*, 2009) or more often is extended into a one-dimensional chain structure through the second 2-amino H-atom by an $N-H\cdots N4_{\text{thiadiazole}}$ hydrogen bond, *e.g.* in the 5-(4-bromophenyl)-ATZ derivative (Lynch, 2009*a*) and the 5-(4-bromo-2-nitrophenyl)-ATZ derivative (Zhang *et al.*, 2011).

With an interest in the formation of co-crystalline adducts as opposed to proton-transfer salt formation between Lewis bases and aromatic carboxylic acids, we have looked at some of these 5-phenyl-substituted ATZ analogues and have reported examples of both structure types: one-dimensional chain structures in the 1:1 adduct of 5-(4-methoxyphenyl)-2-amino-1,3,4-thiadiazol-2-amine with 4-nitrobenzoic acid (Lynch, 2009b) and 5-(4-bromophenyl)-2-amino-1,3,4-thia-


diazol-2-amine (BATZ) with 2-(naphthalen-2-yloxy)acetic acid (Smith & Lynch, 2013), as well as the salt of BATZ with 3,5-dinitrobenzoic acid (Smith & Lynch, 2013). In this salt structure, the carboxylate group gives the previously mentioned primary cyclic $R_2^2(8)$ association through carboxyl $O \cdots H-N$ and amine $N-H \cdots O$ hydrogen bonds but instead of forming the chain structure, a centrosymmetric heterotetramer is formed through a cyclic $R_4^2(8)$ hydrogen-bonding motif.

Herein we report the structures of the 1:1 co-crystalline adduct, $C_8H_6BrN_3S \cdot C_7H_5NO_4$, (I), and the salt $C_8H_7BrN_3S^+$.- $C_7H_3N_2O_7^-$, (II), obtained from the interaction of BATZ with 4-nitrobenzoic acid (PNBA) and 3,5-dinitrosalicylic acid (DNSA), respectively. The strong acid DNSA ($pK_a = 2.18$) has been employed extensively for the formation of crystalline salts with Lewis bases, forming mainly phenolates (Smith *et al.*, 2007), whereas the weaker acid PNBA ($pK_a = 3.44$) provides examples of both salts (Byriel *et al.*, 1992) and co-crystalline adducts (Aakeröy *et al.*, 2004).

2. Structural commentary

In the structure of the (1:1) PNBA adduct with BATZ, (I), the primary inter-species $R_2^2(8)$ hydrogen-bonded heterodimer is formed (Fig. 1), in which the 4-bromophenyl ring substituent is rotated slightly out of the thiadiazole plane [dihedral angles

Figure 1

Molecular conformation and atom-numbering scheme for adduct (I), with inter-species hydrogen bonds shown as dashed lines. Non-H atoms are shown as 50% probability displacement ellipsoids.

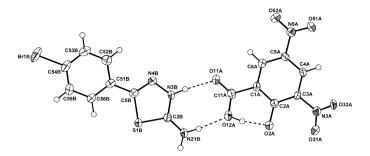
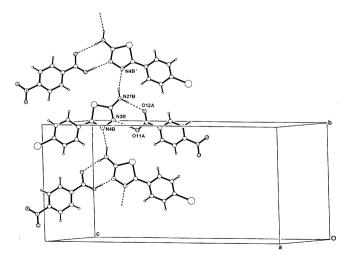



Figure 2

Molecular conformation and atom-numbering scheme for salt (II), with inter-species hydrogen bonds shown as dashed lines. Non-H atoms are shown as 50% probability displacement ellipsoids.

between the thiadiazole ring and the two benzene rings are 22.11 (15) (intra) and 26.08 (18)° (inter)]. The carboxylic acid and nitro substituent groups on the PNBA molecule are rotated slightly out of the benzene plane [torsion angles: C2A - C1A - C11A - O11A = -170.2 (3) and C3A - C4A - N4A - O42A = 172.03 (3)°]. This 'planar' conformation is found in the parent acid (Bolte, 2009) and in its adducts, *e.g.* with 3-(*N*,*N*-dimethylamino)benzoic acid (Aakeröy *et al.*, 2004).

In the DNSA salt (II) (Fig. 2), the primary association is also the expected cyclic $R_2^2(8)$ heterodimer, which is essentially planar [comparative dihedral angles 9.8 (2) (intra) and 2.1 (2) $^{\circ}$ (inter)]. The DNSA anionic moiety is a phenolate with the anti-related carboxylic acid H atom forming the common intramolecular S(6) hydrogen bond which is found in *ca*. 70% of DNSA salt structures (Smith et al., 2007). The nitro group at C3A in this anion is rotated significantly out of the benzene C2A - C3A - N3A - O32Aplane [torsion angle: $-147.8 (4)^{\circ}$ whereas the second nitro group and the carboxylate group lie essentially in the plane [torsion angles: C6A - C5A - N5A - O51A = 179.5 (4) and C2A - C1A - C1A $C11A - O11A = -178.0 (4)^{\circ}$].

Figure 3

A perspective view of the one-dimensional hydrogen-bonded extension in the structure of (I). Hydrogen bonds are shown as dashed lines.

research communications

Table 1				
Hydrogen-bond	geometry	(Å,	°) for (I).	

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O11A - H11A \cdots N3B$	0.90	1.75	2.648 (3)	175
$N21B - H21B \cdots O12A$	0.90	2.04	2.859 (4)	173
$N21B - H22B \cdots N4B^{i}$	0.92	2.16	3.052 (3)	162
$C55B-H55B\cdots O41A^{ii}$	0.95	2.47	3.302 (4)	146

Symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x + 1, -y + 2, $z + \frac{1}{2}$.

Т	a	b	le	2

Hydrogen-bond	geometry (A	A, °)	for (II).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O12A - H12A \cdots O2A$	0.87	1.57	2.418 (4)	164
$N3B-H3B\cdots O11A$	0.88	1.87	2.744 (4)	172
$N21B - H21B \cdots O12A$	0.88	1.89	2.747 (4)	166
$N21B - H22B \cdots O2A^{i}$	0.88	2.22	2.897 (4)	134
$N21B - H22B \cdots O31A^{i}$	0.88	2.19	2.986 (5)	150
$C4A - H4A \cdots O32A^{ii}$	0.95	2.44	3.284 (5)	148
$C56B - H56B \cdots O51A^{iii}$	0.95	2.44	3.364 (5)	164

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x - 1, -y + 2, -z; (iii) x + 2, y - 1, z.

3. Supramolecular features

In (I), the heterodimers are linked through amine N21B-H21B···N4 B^{i} hydrogen bonds (Table 1) forming chains which extend along b (Fig. 3). This is similar to the structure of the BATZ adduct with 2-naphthoxyacetic acid (Smith & Lynch, 2013) and the 5-(4-methoxyphenyl)thiadiazin-2-amine adduct with 4-NBA (Lynch, 2009b). A weak aromatic C55B-

Table 3Experimental details.

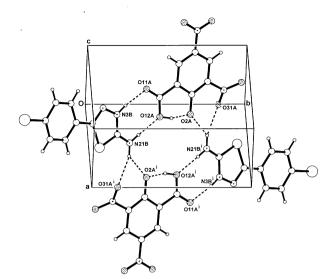


Figure 4

A perspective view of the centrosymmetric hydrogen-bonded heterotetramer units in the unit cell of (II), showing conjoined cyclic $R_6^4(12)$, $R_2^2(8)$, $R_1^2(6)$ and S(6) hydrogen-bonded structural motifs.

H55*B*····O41*A*ⁱⁱ hydrogen-bonding association links the chains across *c* [for symmetry codes, see Table 1] and together with π - π interactions between thiadiazole rings [minimum ring-centroid separation = 3.4624 (16) Å], give a two-dimensional supramolecular structure.

With (II), a secondary symmetric three-centre hydrogenbonding interaction between the second amine-H atom and

	(I)	(II)
Crystal data		
Chemical formula	C ₈ H ₆ BrN ₃ S·C ₇ H ₅ NO ₄	$C_8H_7BrN_3S^+ \cdot C_7H_3N_2O_7^-$
M _r	423.25	484.25
Crystal system, space group	Monoclinic, C2/c	Triclinic, $P\overline{1}$
Temperature (K)	200	200
a, b, c (Å)	8.5205 (6), 12.0394 (7), 31.4321 (18)	5.8017 (3), 10.1903 (5), 15.1592 (9)
α, β, γ (°)	90, 92.982 (6), 90	88.884 (4), 82.438 (5), 85.470 (4)
$V(\dot{A}^3)$	3220.0 (3)	885.62 (8)
Z	8	2
Radiation type	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	2.71	2.49
Crystal size (mm)	$0.30 \times 0.10 \times 0.05$	$0.25 \times 0.20 \times 0.18$
Data collection		
Diffractometer	Oxford Diffraction Gemini-S CCD detector	Oxford Diffraction Gemini-S CCD detector
Absorption correction	Multi-scan (CrysAlis PRO; Agilent, 2013)	Multi-scan (CrysAlis PRO; Agilent, 2013)
T_{\min}, \hat{T}_{\max}	0.936, 0.980	0.903, 0.980
No. of measured, independent and observed	6234, 3164, 2446	5742, 3458, 2479
$[I > 2\sigma(I)]$ reflections		
R _{int}	0.029	0.045
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.617	0.617
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.093, 1.05	0.058, 0.134, 1.08
No. of reflections	3164	3458
No. of parameters	226	263
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.37, -0.30	0.78, -0.82

Computer programs: CrysAlis PRO (Agilent, 2013), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

both the phenolate-O atom (O2B) and the adjacent nitro-O atom (O31A) (Table 2) gives an enlarged centrosymmetric cyclic $R_6^4(12)$ association. This generates a heterotetramer, which comprises a total of seven conjoined cyclic motifs, the central $R_6^4(12)$ plus two each of $R_2^2(8)$, $R_1^2(6)$ and S(6) motifs (Fig. 4). The heterotetramers are weakly linked peripherally through both a centrosymmetric cyclic $C-H \cdots O_{nitro}$ [C4A – H4A···O32Aⁱⁱ] hydrogen-bond pair [graph set $R_2^2(10)$] and a linear C56B-H56B···O51Aⁱⁱⁱ hydrogen bond, giving a two-dimensional supramolecular structure (for symmetry codes, see Table 2). Within the cyclic association there is a short O32A···O32Aⁱⁱ non-bonding contact [2.835 (4) Å]. However, unlike in the structure of (I), no π - π ring interactions are found in (II) [minimum ring-centroid separation = 4.078 (3) Å].

In both (I) and (II), short $Br \cdots O_{nitro}$ contacts are found: for (I) $Br1B \cdots O42A^{iii} = 3.314$ (4) Å, and for (II), $Br1B \cdots O52A^{iv}$ = 3.104 (3) Å [symmetry codes: (iii) $x + \frac{3}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (iv) -x, -y, -z + 1].

4. Synthesis and crystallization

The title compounds were prepared by the reaction of 1 mmol (260 mg) of 5-(4-bromophenyl)-1,3,4-thiadiazol-2-amine with 1 mmol of either 4-nitrobenzoic acid (167 mg) [for (I)] or 3,5dinitrosalicylic acid (228 mg) [for (II)] in 20 mL of 50% ethanol–water, with 10 min refluxing. Partial evaporation of the solvent gave colourless needles of (I) or yellow plates of (II) from which specimens were cleaved for the X-ray analyses.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms potentially involved in hydrogen-bonding interactions were located by difference methods but were subsequently included in the refinements with positional parameters fixed and their isotropic displacement parameters riding, with $U_{iso}(H) = 1.2U_{eq}(N)$ or $1.5U_{eq}(O)$. Other H atoms were included at calculated positions [C-H = 0.95 Å] and also treated as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Acknowledgements

The authors acknowledge financial support from the Science and Engineering Faculty, Queensland University of Technology.

References

- Aakeröy, C. B., Desper, J. & Hurley, B. A. (2004). *CrystEngComm*, 6, 619–624.
- Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Bolte, M. (2009). Private communication (refcode NBOAC011). CCDC, Cambridge, England.
- Byriel, K. A., Kennard, C. H. L., Lynch, D. E., Smith, G. & Thompson, J. G. (1992). *Aust. J. Chem.* pp. 969–981.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Jain, A. K., Sharma, S., Vaidya, A., Ravichandran, V. & Agrawal, R. K. (2013). Chem. Biol. Drug Des. 81, 557–576.
- Lynch, D. E. (2009*a*). Private communication (refcode: XUVTAK). CCDC, Cambridge, England.
- Lynch, D. E. (2009*b*). Private communication (refcode: XUVQAH). CCDC, Cambridge, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, G. & Lynch, D. E. (2013). Acta Cryst. C69, 1034-1038.
- Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem. 60, 264–277.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wang, Y., Wan, R., Han, F. & Wang, P. (2009). Acta Cryst. E65, o1425. Zhang, J., He, Q., Jiang, Q., Mu, H. & Wan, R. (2011). Acta Cryst. E67, 02255.

supporting information

Acta Cryst. (2014). E70, 294-297 [doi:10.1107/S1600536814021138]

Crystal structures of the co-crystalline adduct 5-(4-bromophenyl)-1,3,4-thiadiazol-2-amine-4-nitrobenzoic acid (1/1) and the salt 2-amino-5-(4-bromophenyl)-1,3,4-thiadiazol-3-ium 2-carboxy-4,6-dinitrophenolate

Graham Smith and Daniel E. Lynch

Computing details

For both compounds, data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

(I) 5-(4-Bromophenyl)-1,3,4-thiadiazol-2-amine–4-nitrobenzoic acid (1/1)

F(000) = 1696 $D_x = 1.754 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1513 reflections $\theta = 3.2-27.5^{\circ}$ $\mu = 2.71 \text{ mm}^{-1}$ T = 200 K Needle, colourless $0.30 \times 0.10 \times 0.05 \text{ mm}$
6234 measured reflections 3164 independent reflections 2446 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 3.2^{\circ}$ $h = -10 \rightarrow 10$ $k = -14 \rightarrow 13$ $l = -37 \rightarrow 38$
0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourie map Hydrogen site location: inferred from neighbouring sites

Fourier

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.0387P)^2 + 0.5808P]$	$\Delta \rho_{\rm max} = 0.37 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)	
---	--

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1B	1.32374 (4)	0.82958 (4)	0.95135 (1)	0.0477 (1)
S1B	0.88663 (10)	1.17279 (7)	0.79873 (3)	0.0338 (3)
N3B	0.7467 (3)	1.0355 (2)	0.74804 (8)	0.0298 (8)
N4B	0.8315 (3)	0.9717 (2)	0.77756 (8)	0.0298 (8)
N21B	0.6957 (3)	1.2195 (2)	0.72930 (9)	0.0422 (10)
C2B	0.7637 (4)	1.1422 (3)	0.75456 (10)	0.0306 (10)
C5B	0.9105 (3)	1.0302 (3)	0.80565 (9)	0.0252 (9)
C51B	1.0113 (3)	0.9843 (3)	0.84056 (9)	0.0267 (9)
C52B	1.0714 (4)	0.8778 (3)	0.83755 (10)	0.0333 (11)
C53B	1.1622 (4)	0.8320 (3)	0.87055 (10)	0.0363 (11)
C54B	1.1982 (4)	0.8937 (3)	0.90645 (10)	0.0313 (10)
C55B	1.1420 (4)	1.0005 (3)	0.91008 (10)	0.0398 (11)
C56B	1.0491 (4)	1.0449 (3)	0.87727 (10)	0.0356 (11)
011A	0.5473 (3)	0.94290 (18)	0.69115 (7)	0.0379 (8)
O12A	0.5398 (3)	1.1075 (2)	0.65888 (8)	0.0526 (10)
O41A	0.0669 (3)	0.8677 (3)	0.49887 (8)	0.0675 (11)
O42A	0.0741 (3)	0.7146 (3)	0.53310 (9)	0.0624 (11)
N4A	0.1096 (3)	0.8111 (3)	0.52893 (9)	0.0347 (10)
C1A	0.3998 (3)	0.9571 (3)	0.62604 (9)	0.0269 (10)
C2A	0.3653 (4)	1.0145 (3)	0.58884 (10)	0.0368 (11)
C3A	0.2695 (4)	0.9678 (3)	0.55671 (10)	0.0393 (11)
C4A	0.2118 (4)	0.8635 (3)	0.56300 (10)	0.0308 (10)
C5A	0.2428 (4)	0.8039 (3)	0.59996 (10)	0.0328 (11)
C6A	0.3384 (3)	0.8522 (3)	0.63168 (10)	0.0307 (10)
C11A	0.5027 (4)	1.0097 (3)	0.66014 (10)	0.0318 (11)
H21B	0.65870	1.18840	0.70780	0.0510*
H22B	0.69870	1.29520	0.73300	0.0510*
H52B	1.04960	0.83580	0.81230	0.0400*
H53B	1.19980	0.75800	0.86850	0.0440*
H55B	1.16720	1.04300	0.93500	0.0480*
H56B	1.01000	1.11840	0.87980	0.0430*
H2A	0.40750	1.08670	0.58520	0.0440*
H3A	0.24450	1.00710	0.53100	0.0470*

supporting information

H5A	0.19980	0.73190	0.60350	0.0390*
H6A	0.36190	0.81310	0.65750	0.0370*
H11A	0.61080	0.97690	0.71080	0.0570*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1B	0.0445 (2)	0.0621 (3)	0.0354 (2)	0.0020 (2)	-0.0081 (2)	0.0168 (2)
S1B	0.0460 (5)	0.0213 (5)	0.0329 (4)	-0.0032 (4)	-0.0095 (4)	-0.0025 (4)
N3B	0.0351 (14)	0.0206 (15)	0.0326 (14)	-0.0010 (12)	-0.0077 (12)	0.0019 (12)
N4B	0.0358 (14)	0.0205 (15)	0.0321 (14)	0.0016 (12)	-0.0083 (12)	0.0009 (12)
N21B	0.0622 (19)	0.0164 (15)	0.0455 (17)	-0.0013 (14)	-0.0199 (15)	0.0008 (13)
C2B	0.0353 (18)	0.0252 (19)	0.0309 (17)	-0.0036 (15)	-0.0034 (14)	0.0005 (14)
C5B	0.0299 (16)	0.0195 (17)	0.0261 (15)	-0.0016 (14)	0.0006 (13)	-0.0016 (13)
C51B	0.0285 (16)	0.0267 (18)	0.0248 (15)	-0.0020 (14)	0.0004 (12)	0.0021 (13)
C52B	0.0361 (18)	0.032 (2)	0.0309 (17)	0.0019 (16)	-0.0079 (14)	-0.0084 (15)
C53B	0.0367 (18)	0.033 (2)	0.0389 (19)	0.0090 (16)	-0.0015 (15)	-0.0009 (16)
C54B	0.0277 (16)	0.037 (2)	0.0290 (17)	-0.0009 (16)	-0.0006 (13)	0.0064 (15)
C55B	0.056 (2)	0.039 (2)	0.0234 (16)	-0.0020 (19)	-0.0086 (15)	-0.0037 (15)
C56B	0.052 (2)	0.0233 (19)	0.0308 (17)	0.0017 (17)	-0.0039 (15)	-0.0038 (14)
011A	0.0489 (14)	0.0252 (13)	0.0374 (13)	-0.0043 (11)	-0.0184 (11)	-0.0005 (10)
012A	0.0744 (18)	0.0289 (16)	0.0515 (16)	-0.0109 (14)	-0.0260 (14)	0.0078 (12)
O41A	0.082 (2)	0.079 (2)	0.0387 (15)	-0.0277 (18)	-0.0246 (15)	0.0108 (15)
O42A	0.078 (2)	0.0484 (19)	0.0578 (18)	-0.0169 (16)	-0.0241 (15)	-0.0068 (15)
N4A	0.0324 (15)	0.040 (2)	0.0311 (15)	-0.0036 (14)	-0.0044 (12)	-0.0060 (14)
C1A	0.0264 (16)	0.0232 (18)	0.0309 (17)	0.0006 (14)	-0.0009 (13)	-0.0030 (14)
C2A	0.0425 (19)	0.030 (2)	0.0376 (18)	-0.0069 (16)	-0.0012 (15)	0.0050 (15)
C3A	0.048 (2)	0.041 (2)	0.0282 (17)	-0.0064 (18)	-0.0053 (15)	0.0089 (16)
C4A	0.0284 (16)	0.035 (2)	0.0286 (16)	-0.0003 (15)	-0.0019 (13)	-0.0056 (14)
C5A	0.0355 (18)	0.024 (2)	0.0386 (19)	-0.0051 (15)	-0.0015 (15)	0.0003 (14)
C6A	0.0336 (17)	0.029 (2)	0.0288 (17)	0.0015 (15)	-0.0058 (14)	0.0037 (14)
C11A	0.0327 (17)	0.026 (2)	0.0363 (18)	0.0011 (15)	-0.0026(14)	-0.0012 (15)

Geometric parameters (Å, °)

Br1B—C54B	1.891 (3)	C53B—C54B	1.372 (5)
S1B—C2B	1.735 (3)	C54B—C55B	1.379 (5)
S1B—C5B	1.741 (4)	C55B—C56B	1.375 (5)
O11A-C11A	1.305 (4)	C52B—H52B	0.9500
O12A—C11A	1.220 (4)	C53B—H53B	0.9500
O41A—N4A	1.206 (4)	C55B—H55B	0.9500
O42A—N4A	1.209 (5)	C56B—H56B	0.9500
011A—H11A	0.9000	C1A—C6A	1.382 (5)
N3B—C2B	1.308 (4)	C1A—C11A	1.490 (4)
N3B—N4B	1.380 (4)	C1A—C2A	1.377 (4)
N4B—C5B	1.291 (4)	C2A—C3A	1.384 (5)
N21B—C2B	1.336 (4)	C3A—C4A	1.367 (5)
N21B—H22B	0.9200	C4A—C5A	1.379 (5)

	0.0200		1 292 (5)
N21B—H21B	0.8200	C5A—C6A	1.383 (5)
N4A—C4A	1.485 (4)	C2A—H2A	0.9500
C5B—C51B	1.466 (4)	C3A—H3A	0.9500
C51B—C56B	1.389 (4)	C5A—H5A	0.9500
C51B—C52B	1.386 (5)	С6А—Н6А	0.9500
C52B—C53B	1.377 (5)		
C2B—S1B—C5B	87.27 (15)	С52В—С53В—Н53В	120.00
C11A—O11A—H11A	112.00	C54B—C53B—H53B	120.00
N4B—N3B—C2B	113.1 (3)	C54B—C55B—H55B	120.00
N3B—N4B—C5B	113.1 (3)	C56B—C55B—H55B	120.00
H21B—N21B—H22B	124.00	C51B—C56B—H56B	119.00
C2B—N21B—H21B	108.00	C55B—C56B—H56B	119.00
C2B—N21B—H22B	127.00	C2A—C1A—C11A	119.3 (3)
O42A—N4A—C4A	118.1 (3)	C6A—C1A—C11A	120.6 (3)
O41A—N4A—O42A	124.1 (3)	C2A—C1A—C6A	120.1 (3)
O41A—N4A—C4A	117.8 (3)	C1A—C2A—C3A	120.5 (3)
S1B—C2B—N3B	113.0 (2)	C2A—C3A—C4A	118.1 (3)
S1B—C2B—N21B	123.6 (3)	N4A—C4A—C3A	119.2 (3)
N3B—C2B—N21B	123.4 (3)	C3A—C4A—C5A	123.0 (3)
S1B—C5B—N4B	113.5 (2)	N4A—C4A—C5A	117.8 (3)
N4B—C5B—C51B	124.8 (3)	C4A—C5A—C6A	117.9 (3)
S1B-C5B-C51B	121.7 (2)	C1A—C6A—C5A	120.3 (3)
C52B—C51B—C56B	118.2 (3)	O11A—C11A—C1A	114.4 (3)
C5B—C51B—C56B	121.7 (3)	O12A—C11A—C1A	122.0 (3)
C5B—C51B—C52B	120.1 (3)	O11A—C11A—O12A	123.6 (3)
C51B—C52B—C53B	121.0 (3)	C1A—C2A—H2A	120.00
C52B—C53B—C54B	119.7 (3)	C3A—C2A—H2A	120.00
Br1B—C54B—C55B	120.3 (2)	С2А—С3А—НЗА	121.00
Br1B—C54B—C53B	119.1 (3)	С4А—С3А—НЗА	121.00
C53B—C54B—C55B	120.6 (3)	С4А—С5А—Н5А	121.00
C54B—C55B—C56B	119.3 (3)	C6A—C5A—H5A	121.00
C51B—C56B—C55B	121.2 (3)	С1А—С6А—Н6А	120.00
C51B—C52B—H52B	119.00	С5А—С6А—Н6А	120.00
С53В—С52В—Н52В	120.00		
			2 1 (5)
C5B—S1B—C2B—N3B	0.7 (3)	C51B—C52B—C53B—C54B	-2.1 (5)
C5B—S1B—C2B—N21B	-178.1 (3)	C52B—C53B—C54B—Br1B	-179.8 (3)
C2B—S1B—C5B—N4B	-0.7(2)	C52B—C53B—C54B—C55B	1.1 (5)
C2B—S1B—C5B—C51B	179.5 (2)	C53B—C54B—C55B—C56B	0.0 (5)
C2B—N3B—N4B—C5B	0.0 (4)	Br1B—C54B—C55B—C56B	-179.1 (3)
N4B—N3B—C2B—S1B	-0.5(3)	C54B—C55B—C56B—C51B	-0.2(5)
N4B—N3B—C2B—N21B	178.3 (3)	C6A—C1A—C2A—C3A	-0.2(5)
N3B—N4B—C5B—S1B	0.5 (3)	C11A—C1A—C2A—C3A	-179.7 (3)
N3B—N4B—C5B—C51B	-179.7(2)	C2A—C1A—C6A—C5A	0.4 (4)
O41A—N4A—C4A—C5A	171.2 (3)	C11A—C1A—C6A—C5A	179.9 (3)
O42A—N4A—C4A—C3A	172.0 (3)	C2A—C1A—C11A—O11A	-170.2(3)
O42A—N4A—C4A—C5A	-8.6 (4)	C2A—C1A—C11A—O12A	10.5 (5)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
0.90	1.75	2.648 (3)	175
0.82	2.04	2.859 (4)	172
0.92	2.16	3.052 (3)	162
0.95	2.47	3.302 (4)	146
0.95	2.78	3.166 (3)	105
	0.90 0.82 0.92 0.95	0.90 1.75 0.82 2.04 0.92 2.16 0.95 2.47	0.90 1.75 2.648 (3) 0.82 2.04 2.859 (4) 0.92 2.16 3.052 (3) 0.95 2.47 3.302 (4)

Symmetry codes: (i) -x+3/2, y+1/2, -z+3/2; (ii) x+1, -y+2, z+1/2.

(II) 2-Amino-5-(4-bromophenyl)-1,3,4-thiadiazol-3-ium 2-carboxy-4,6-dinitrophenolate

Crystal data

 $C_{8}H_{7}BrN_{3}S^{+}C_{7}H_{3}N_{2}O_{7}^{-}M_{r} = 484.25$ Triclinic, *P*1 Hall symbol: -P 1 a = 5.8017 (3) Å b = 10.1903 (5) Å c = 15.1592 (9) Å a = 88.884 (4)° $\beta = 82.438$ (5)° $\gamma = 85.470$ (4)° V = 885.62 (8) Å³

Data collection

Oxford Diffraction Gemini-S CCD detector diffractometer Radiation source: Enhance (Mo) X-ray source Graphite monochromator Detector resolution: 16.077 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2013) $T_{\min} = 0.903, T_{\max} = 0.980$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.134$ S = 1.083458 reflections Z = 2 F(000) = 484 $D_x = 1.816 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1277 reflections $\theta = 3.6-24.8^{\circ}$ $\mu = 2.49 \text{ mm}^{-1}$ T = 200 K Block, yellow $0.25 \times 0.20 \times 0.18 \text{ mm}$

5742 measured reflections 3458 independent reflections 2479 reflections with $I > 2\sigma(I)$ $R_{int} = 0.045$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 3.4^{\circ}$ $h = -7 \rightarrow 7$ $k = -11 \rightarrow 12$ $l = -18 \rightarrow 9$

263 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0545P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$

Special details

$$\begin{split} &\Delta \rho_{\text{max}} = 0.78 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{\text{min}} = -0.82 \text{ e } \text{\AA}^{-3} \\ &\text{Extinction correction: } SHELXL97, \\ &\text{FC}^* = \text{KFC}[1 + 0.001 \text{XFC}^2 \text{\AA}^3/\text{SIN}(2\Theta)]^{-1/4} \\ &\text{Extinction coefficient: } 0.042 (3) \end{split}$$

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
O2A	0.1351 (5)	0.6524 (3)	0.0207 (2)	0.0330 (9)	
011A	-0.0271 (5)	0.3833 (3)	0.2158 (2)	0.0373 (10)	
O12A	0.2276 (5)	0.4583 (3)	0.1075 (2)	0.0374 (10)	
O31A	-0.0556 (5)	0.8407 (3)	-0.0818 (2)	0.0360 (10)	
O32A	-0.2559 (5)	0.9897 (3)	0.0027 (2)	0.0367 (10)	
O51A	-0.8459 (5)	0.8277 (3)	0.2177 (2)	0.0434 (11)	
O52A	-0.7757 (5)	0.6493 (3)	0.2912 (2)	0.0447 (11)	
N3A	-0.1754 (6)	0.8761 (4)	-0.0119 (2)	0.0298 (11)	
N5A	-0.7202 (6)	0.7301 (4)	0.2328 (2)	0.0314 (12)	
C1A	-0.1349 (7)	0.5803 (4)	0.1393 (3)	0.0245 (12)	
C2A	-0.0684 (7)	0.6698 (4)	0.0697 (3)	0.0255 (12)	
C3A	-0.2287 (7)	0.7776 (4)	0.0571 (3)	0.0256 (12)	
C4A	-0.4397 (7)	0.7983 (4)	0.1105 (3)	0.0248 (12)	
C5A	-0.4948 (7)	0.7078 (4)	0.1777 (3)	0.0251 (12)	
C6A	-0.3473 (7)	0.5999 (4)	0.1929 (3)	0.0274 (12)	
C11A	0.0285 (7)	0.4637 (4)	0.1578 (3)	0.0294 (14)	
Br1B	0.60639 (11)	-0.41426 (5)	0.59418 (3)	0.0574 (2)	
S1B	0.68942 (18)	0.05777 (11)	0.23777 (7)	0.0314 (3)	
N3B	0.2976 (6)	0.1838 (3)	0.2484 (2)	0.0288 (11)	
N4B	0.2693 (6)	0.0962 (3)	0.3171 (2)	0.0303 (11)	
N21B	0.5551 (6)	0.2544 (3)	0.1290 (2)	0.0346 (11)	
C2B	0.5050 (7)	0.1784 (4)	0.1978 (3)	0.0267 (12)	
C5B	0.4588 (7)	0.0224 (4)	0.3197 (3)	0.0289 (12)	
C51B	0.4894 (7)	-0.0828 (4)	0.3850 (3)	0.0289 (12)	
C52B	0.3110 (8)	-0.1094 (5)	0.4517 (3)	0.0383 (17)	
C53B	0.3431 (9)	-0.2075 (5)	0.5136 (3)	0.0433 (17)	
C54B	0.5553 (9)	-0.2817 (4)	0.5088 (3)	0.0368 (14)	
C55B	0.7313 (9)	-0.2594 (5)	0.4423 (3)	0.0420 (17)	
C56B	0.6997 (8)	-0.1610 (5)	0.3807 (3)	0.0386 (17)	
H4A	-0.54410	0.87240	0.10140	0.0300*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H6A	-0.39030	0.53950	0.23950	0.0330*	
H12A	0.22100	0.52990	0.07550	0.0560*	
H3B	0.18380	0.24180	0.23770	0.0350*	
H21B	0.44930	0.31390	0.11350	0.0410*	
H22B	0.69490	0.24630	0.09820	0.0410*	
H52B	0.16500	-0.05930	0.45460	0.0460*	
H53B	0.22040	-0.22440	0.55940	0.0520*	
H55B	0.87510	-0.31180	0.43860	0.0500*	
H56B	0.82260	-0.14590	0.33460	0.0460*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
O2A	0.0266 (15)	0.0346 (17)	0.0350 (17)	0.0035 (14)	0.0012 (13)	0.0106 (13)
011A	0.0373 (17)	0.0299 (17)	0.0412 (19)	0.0067 (15)	-0.0001 (15)	0.0131 (14)
012A	0.0308 (17)	0.0316 (17)	0.047 (2)	0.0054 (14)	-0.0018 (15)	0.0162 (14)
O31A	0.0378 (17)	0.0395 (18)	0.0287 (17)	0.0007 (15)	-0.0014 (14)	0.0122 (14)
O32A	0.0308 (16)	0.0224 (16)	0.054 (2)	0.0070 (14)	-0.0025 (15)	0.0143 (14)
O51A	0.0361 (18)	0.0377 (19)	0.050 (2)	0.0159 (16)	0.0058 (15)	0.0097 (16)
O52A	0.0409 (18)	0.043 (2)	0.044 (2)	0.0024 (16)	0.0115 (15)	0.0174 (16)
N3A	0.0237 (19)	0.033 (2)	0.033 (2)	-0.0017 (17)	-0.0063 (17)	0.0097 (17)
N5A	0.030 (2)	0.029 (2)	0.033 (2)	0.0013 (18)	0.0012 (17)	0.0010 (17)
C1A	0.027 (2)	0.019 (2)	0.028 (2)	-0.0007 (18)	-0.0072 (18)	0.0040 (17)
C2A	0.025 (2)	0.025 (2)	0.026 (2)	0.0018 (19)	-0.0040 (18)	0.0008 (18)
C3A	0.027 (2)	0.023 (2)	0.027 (2)	-0.0026 (19)	-0.0055 (18)	0.0093 (17)
C4A	0.024 (2)	0.022 (2)	0.028 (2)	0.0045 (18)	-0.0065 (18)	0.0022 (17)
C5A	0.023 (2)	0.026 (2)	0.025 (2)	0.0037 (18)	-0.0018 (17)	-0.0022 (17)
C6A	0.029 (2)	0.025 (2)	0.028 (2)	-0.0007 (19)	-0.0041 (18)	0.0049 (18)
C11A	0.028 (2)	0.026 (2)	0.034 (3)	0.002 (2)	-0.006 (2)	0.001 (2)
Br1B	0.0977 (5)	0.0413 (3)	0.0352 (3)	-0.0111 (3)	-0.0151 (3)	0.0174 (2)
S1B	0.0254 (6)	0.0321 (6)	0.0341 (6)	0.0043 (5)	0.0000 (5)	0.0122 (5)
N3B	0.0258 (19)	0.0265 (19)	0.032 (2)	0.0067 (16)	-0.0026 (16)	0.0086 (15)
N4B	0.0283 (19)	0.033 (2)	0.028 (2)	0.0002 (17)	0.0002 (16)	0.0068 (16)
N21B	0.0259 (19)	0.034 (2)	0.041 (2)	0.0075 (17)	-0.0015 (17)	0.0154 (17)
C2B	0.026 (2)	0.023 (2)	0.031 (2)	-0.0013 (19)	-0.0047 (19)	0.0041 (18)
C5B	0.031 (2)	0.028 (2)	0.027 (2)	-0.002 (2)	-0.0016 (18)	0.0031 (18)
C51B	0.032 (2)	0.031 (2)	0.024 (2)	-0.007 (2)	-0.0022 (18)	0.0031 (18)
C52B	0.038 (3)	0.039 (3)	0.036 (3)	0.002 (2)	-0.001 (2)	0.000 (2)
C53B	0.048 (3)	0.048 (3)	0.032 (3)	-0.011 (3)	0.005 (2)	0.007 (2)
C54B	0.059 (3)	0.028 (2)	0.025 (2)	-0.009 (2)	-0.009 (2)	0.0066 (19)
C55B	0.047 (3)	0.035 (3)	0.042 (3)	0.006 (2)	-0.006 (2)	0.013 (2)
C56B	0.038 (3)	0.041 (3)	0.033 (3)	0.003 (2)	0.004 (2)	0.015 (2)

Geometric parameters (Å, °)

Br1B—C54B	1.886 (4)	C1A—C6A	1.387 (6)
S1B—C5B	1.756 (4)	C1A—C11A	1.506 (6)
S1B—C2B	1.720 (4)	C1A—C2A	1.416 (6)

	1 211 (5)		1 400 (6)
O2A—C2A	1.311 (5)	C2A—C3A	1.409 (6)
O11A—C11A	1.220 (5)	C3A—C4A	1.380 (6)
O12A—C11A	1.296 (5)	C4A—C5A	1.384 (6)
O31A—N3A	1.232 (4)	C5A—C6A	1.374 (6)
O32A—N3A	1.227 (5)	C4A—H4A	0.9500
O51A—N5A	1.222 (5)	C6A—H6A	0.9500
O52A—N5A	1.226 (5)	C5B—C51B	1.461 (6)
O12A—H12A	0.8700	C51B—C56B	1.398 (6)
N3A—C3A	1.456 (6)	C51B—C52B	1.388 (6)
N5A—C5A	1.460 (5)	C52B—C53B	1.376 (7)
N3B—C2B	1.337 (5)	C53B—C54B	1.387 (7)
N3B—N4B	1.360 (4)	C54B—C55B	1.367 (7)
N4B—C5B	1.287 (5)	C55B—C56B	1.375 (7)
N21B—C2B	1.302 (5)	C52B—H52B	0.9500
N3B—H3B	0.8800	С53В—Н53В	0.9500
N21B—H22B	0.8800	C55B—H55B	0.9500
N21B—H21B	0.8800	C56B—H56B	0.9500
C2B—S1B—C5B	88.1 (2)	O11A—C11A—O12A	124.5 (4)
C11A—O12A—H12A	104.00	011A—C11A—C1A	124.5 (4)
O32A—N3A—C3A	117.7 (3)	C3A—C4A—H4A	121.4 (4)
031A—N3A—032A	123.8 (4)	C5A—C4A—H4A	121.00
031A—N3A—C3A	118.5 (4)	C5A—C6A—H6A	121.00
051A—N5A—C5A	118.3 (3)	C1A—C6A—H6A	120.00
051A—N5A—052A	123.1 (3)	S1B—C2B—N3B	109.7 (3)
052A—N5A—C5A	118.5 (4)	S1B—C2B—N3B S1B—C2B—N21B	126.3 (3)
N4B—N3B—C2B	117.4 (3)	N3B—C2B—N21B	120.3 (3) 124.0 (4)
N4B—N4B—C5B	117.4 (3)	S1B—C5B—N4B	124.0 (4)
C2B—N3B—H3B	121.00	N4B—C5B—C51B	
N4B—N3B—H3B	121.00	S1B-C5B-C51B	124.5 (4) 120.7 (3)
	120.00		120.7 (3) 120.4 (4)
C2B—N21B—H21B	120.00	C5B—C51B—C56B	120.4 (4) 118.2 (4)
H21B—N21B—H22B		C52B—C51B—C56B C5B—C51B—C52B	. ,
C2B—N21B—H22B	120.00		121.3 (4)
C2A—C1A—C11A	120.1 (4)	C51B—C52B—C53B	120.8 (4)
C6A—C1A—C11A	118.9 (4)	C52B—C53B—C54B	119.7 (4)
C2A—C1A—C6A	121.0 (4)	Br1B—C54B—C53B	120.6 (4)
C1A—C2A—C3A	117.0 (4)	C53B—C54B—C55B	120.5 (4)
O2A—C2A—C3A	122.4 (4)	Br1B—C54B—C55B	118.9 (4)
O2A— $C2A$ — $C1A$	120.6 (4)	C54B—C55B—C56B	119.8 (5)
N3A—C3A—C2A	121.2 (4)	C51B—C56B—C55B	121.0 (4)
N3A—C3A—C4A	116.4 (4)	C51B—C52B—H52B	120.00
C2A—C3A—C4A	122.4 (4)	C53B—C52B—H52B	120.00
C3A—C4A—C5A	118.0 (4)	C52B—C53B—H53B	120.00
N5A—C5A—C4A	117.3 (4)	C54B—C53B—H53B	120.00
N5A—C5A—C6A	120.2 (4)	C54B—C55B—H55B	120.00
C4A—C5A—C6A	122.4 (4)	C56B—C55B—H55B	120.00
C1A—C6A—C5A	119.2 (4)	C51B—C56B—H56B	120.00
O12A—C11A—C1A	114.2 (4)	C55B—C56B—H56B	119.00

C2B—S1B—C5B—C51B C2B—S1B—C5B—N4B C5B—S1B—C2B—N3B C5B—S1B—C2B—N21B O32A—N3A—C3A—C2A O31A—N3A—C3A—C4A O32A—N3A—C3A—C4A O31A—N3A—C3A—C4A O51A—N5A—C5A—C4A O51A—N5A—C5A—C4A O52A—N5A—C5A—C6A O52A—N5A—C5A—C6A N4B—N3B—C2B—N21B C2B—N3B—N4B—C5B N4B—N3B—C2B—S1B N3B—N4B—C5B—S1B C6A—C1A—C2A—C3A C6A—C1A—C2A—O2A	$179.2 (4) \\ -1.5 (3) \\ -1.78.6 (4) \\ -147.8 (4) \\ -148.7 (4) \\ 30.3 (5) \\ 33.3 (6) \\ -1.1 (6) \\ 179.5 (4) \\ 178.0 (4) \\ -1.5 (6) \\ 178.7 (4) \\ 0.3 (5) \\ -1.4 (4) \\ -179.8 (4) \\ 0.9 (4) \\ -0.8 (6) \\ 178.3 (4) $	C11A—C1A—C6A—C5A O2A—C2A—C3A—N3A O2A—C2A—C3A—C4A C1A—C2A—C3A—C4A C1A—C2A—C3A—C4A C1A—C2A—C3A—N3A C2A—C3A—C4A—C5A N3A—C3A—C4A—C5A C3A—C4A—C5A—N5A C3A—C4A—C5A—C6A C4A—C5A—C6A—C1A N5A—C5A—C6A—C1A S1B—C5B—C51B—C52B S1B—C5B—C51B—C52B N4B—C5B—C51B—C56B C5B—C51B—C52B—C53B C56B—C51B—C52B—C53B C56B—C51B—C56B—C55B	178.5 (4) $0.1 (6)$ $-177.8 (4)$ $1.3 (6)$ $179.2 (4)$ $-1.1 (6)$ $-179.0 (4)$ $-179.1 (4)$ $0.3 (6)$ $0.1 (7)$ $179.5 (4)$ $178.1 (4)$ $-3.0 (6)$ $-1.1 (7)$ $177.8 (4)$ $-179.1 (4)$ $2.0 (7)$ $179.3 (4)$ $-1.7 (7)$
C2B—N3B—N4B—C5B N4B—N3B—C2B—S1B	0.3 (5) -1.4 (4)	N4B—C5B—C51B—C52B N4B—C5B—C51B—C56B	-1.1 (7) 177.8 (4)
N4B—N3B—C2B—S1B N3B—N4B—C5B—C51B	-1.4 (4) -179.8 (4)	N4B—C5B—C51B—C56B C5B—C51B—C52B—C53B	177.8 (4) -179.1 (4)
C11A—C1A—C2A—O2A C11A—C1A—C2A—C3A C2A—C1A—C11A—O11A	0.2 (6) 0.0 (6) -179.1 (4) -178.0 (4)	C52B—C53B—C54B—Br1B C52B—C53B—C54B—C55B Br1B—C54B—C55B—C56B	178.7 (4) -1.0 (7) -178.4 (4)
C2A—C1A—C11A—O11A C6A—C1A—C11A—O11A C6A—C1A—C11A—O11A	2.2 (6) 3.7 (6) -176.2 (4)	C53B—C54B—C55B—C56B C54B—C55B—C56B—C51B	1.3 (7) 0.1 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H···A
$\frac{D}{\Omega 124} - H124 \cdots \Omega 24$	0.87	1.57	2.418 (4)	164
N3B—H3B…O11A	0.88	1.87	2.744 (4)	172
N21B— $H21B$ ····O12A	0.88	1.89	2.747 (4)	166
$N21B$ — $H22B$ ···· $O2A^{i}$	0.88	2.22	2.897 (4)	134
N21 <i>B</i> —H22 <i>B</i> ····O31 <i>A</i> ⁱ	0.88	2.19	2.986 (5)	150
C4 <i>A</i> —H4 <i>A</i> ···O32 <i>A</i> ⁱⁱ	0.95	2.44	3.284 (5)	148
C56B—H56B…O51A ⁱⁱⁱ	0.95	2.44	3.364 (5)	164
C56B—H56B…S1B	0.95	2.64	3.081 (5)	109

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*-1, -*y*+2, -*z*; (iii) *x*+2, *y*-1, *z*.