

ISSN 1600-5368

Received 12 September 2014 Accepted 3 October 2014

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; bicoumarin; hydrogen bonds; $\pi - \pi$ interactions

CCDC reference: 1027466 **Supporting information:** this article has supporting information at journals.iucr.org/e

OPEN access

Crystal structure of 6,6'-dimethyl-2*H*,2'*H*-3,4'bichromene-2,2'-dione

Kiran K. Pujar,^a Manohar V. Kulkarni^a* and G. N. Anil Kumar^b

^aDepartment of Chemistry, Karnatak University, Dharwad 580 010, India, and ^bDepartment of Physics, M S Ramaiah Institute of Technology, MSRIT Post, Bangalore 560 054, India. *Correspondence e-mail: anilgn@msrit.edu

In the title compound, $C_{20}H_{14}O_4$, the dihedral angle between the two coumarin ring systems is 52.37 (19)°, showing a *gauche* arrangement across the C–C bond which links the two units. The carbonyl groups of the two coumarin units adopt an s-*trans* arrangement. In the crystal, pairs of C–H···O hydrogen bonds and π - π interactions [centroid–centroid distance = 3.631 (2) Å] connect the molecules into inversion dimers.

1. Chemical context

Bicoumarins, in which two coumarin ring systems are directly linked through a C-C bond, are a group of regio-isomers which are of synthetic interest (Ilyas & Parveen, 1996; Dubovik et al., 2004; Frasinyuk et al., 2012). Their natural occurrence and structural diversity originate from various positions of the linkage which can lead to pyran-pyran-linked bicoumarins, viz., 3-3', 3-4', 4-4', or pyran-benzene-linked bicoumarins wherein the points of linkage are C3/C4 with the C5-C8 positions in the second coumarin moiety (Hussain et al., 2012). 3-3' Bicoumarins isolated from Chinese medicinal plants and Mediterranean sponges (Panichayupakaranant et al., 1998) have been shown to exhibit insecticidal and antiproliferative properties. 8-8' Bicoumarins have shown antileukemic, nematocidal and cardiotoxic activity as well as antischistosomial, sedative and hypotensive effects (Ulubelen et al., 1986). 6-8' Bicoumarins have been evaluated for urease inhibitory activity (Ayaz et al., 2006). Atropisomerism has been observed for naturally occurring 3-6' bicoumarins (Zhan et al., 2003). 5-5' Bicoumarins competitively inhibit epoxide reductase of vitamin K, preventing the reduction of vitamin K into hydroquinone, leading to their anticoagulant activity (Zhou et al., 2009). 3-8' Bicoumarins exhibit cytotoxicity towards human solid tumour cell lines, affording ED₅₀ values of 7.5, 55, 5.8 µg/ml against non-small-cell-lung carcinoma A-549, breast adenocarcinoma MCF-7, and colon adenocarcinoma HT-29 cells respectively (Tepaske & Gloer, 1992).

research communications

The molecular structure of the title compound, showing the atomlabelling scheme and with displacement ellipsoids drawn at the 50% probability level.

In view of the above cited activities of directly linked coumarin dimers, the present work reports the synthesis under metal-free conditions of a new 4-3' bicoumarin and its structure.

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1. The packing viewed along the *b* axis (Fig. 2) shows the existence of intermolecular $C-H \cdot \cdot O$ hydrogen bonds between the carbonyl O4 of one coumarin moiety and the aromatic H8 of the second unit (Table 1), which has also been observed in a 3-5' bicoumarin (Fun *et al.*, 2009). The two coumarin rings exhibit an *s*-*trans* arrangement across the C4–C11 bond for the two double bonds *viz*. C3=C4 and C11=C12. The non-planar nature of the bi-heterocyclic system is revealed through the torsion angles C3–C4–C11–C12 $[-52.37 (19)^{\circ}]$ and C10–C4–C11–C19 $[-59.32 (17)^{\circ}]$, which almost corresponds to a *gauche* conformation.

3. Supramolecular features

In the crystal, pairs of C-H···O hydrogen bonds and π - π interactions [Cg1··· $Cg1^{i}$ = 3.631 (2); slippage = 1.491 Å; Cg1 is the centroid of the C5-C10 ring; symmetry code: (i) 1 - x, -y, -z] connect molecules into inversion dimers (Fig. 2).

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C8-H8···O4 ⁱ	0.93	2.53	3.330 (2)	145
Symmetry code: (i)	-r + 1 - v - z			

A packing diagram of the title compound, viewed along the *b* axis. Dashed lines indicate $C-H\cdots O$ hydrogen bonds and $\pi-\pi$ interactions. H atoms not involved in hydrogen bonding have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, updates Feb 2014; Groom & Allen, 2014) revealed two related structures, *viz.* 7,7',8,8'-tetramethoxy-4,4'-dimethyl-3,5'-bichromene-2,2'-dione (Fun *et al.*, 2009) and 7,7'-dihydroxy-4,4'-dimethyl-3,4-dihydro-2*H*,2'*H*-4,6'-bichromene-2,2'-dione (Pereira Silva *et al.*, 2011). In these two compounds, the dihedral angles between the coumarin ring systems are 79.93 (3) and 88.07 (2)°, respectively. The corresponding angle in the title compound is 52.37 (19)°.

5. Synthesis and Crystallization

6-Methylcoumarin 4-acetic acid (0.01 mol) and 5-methylsalicylaldehyde (0.01 mol) were taken in a round-bottomed flask containing (1.5 eq) NaH and 3 ml of acetic anhydride. The flask, fitted with a guard tube, was stirred for 1.5 h. The progress of the reaction was monitored by TLC, the solid that separated was filtered off and washed with diethyl ether and Table 2Experimental details.

Crystal data	
Chemical formula	$C_{20}H_{14}O_4$
$M_{\rm r}$	318.31
Crystal system, space group	Triclinic, P1
Temperature (K)	296
a, b, c (Å)	7.834 (1), 8.0455 (9), 12.7952 (15)
α, β, γ (°)	79.492 (5), 77.096 (4), 86.637 (5)
$V(Å^3)$	772.78 (16)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.10
Crystal size (mm)	$0.35 \times 0.31 \times 0.25$
Data collection	
Diffractometer	Bruker SMART CCD area-
	detector
Absorption correction	Multi-scan (SADABS; Sheldrick,
	1996)
T_{\min}, T_{\max}	0.954, 0.964
No. of measured, independent and	12862, 3499, 2509
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.027
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.648
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.140, 1.05
No. of reflections	3499
No. of parameters	219
H-atom treatment	H-atom parameters constrained
$\Delta ho_{ m max}, \Delta ho_{ m min} \ ({ m e} \ { m \AA}^{-3})$	0.19, -0.20

Computer programs: SMART and SAINT (Bruker, 1998), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), CAMERON (Watkin et al., 1996), PARST (Nardelli, 1996) and PLATON (Spek, 2009).

again with 5% NaHCO₃ to remove unreacted 6-methylcoumarin 4-acetic acid. Then the solid was dried and recrystallized from ethanol. Crystals suitable for diffraction studies were obtained through slow evaporation from a DMF solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms, with C-H = 0.93-0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$.

Acknowledgements

KP gratefully acknowledges a Fellowship from the SC–ST cell, Karnatak University, Dharwad.

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Ayaz, M., Riaz, M. A. M., Haq, A. U., Malik, A. & Choudhary, M. I. (2006). J. Enzyme Inhib. Med. Chem. 49, 527–529.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dubovik, I. P., Garazd, M. M. & Khilya, V. P. (2004). Chem. Nat. Compd, 40, 434–443.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Frasinyuk, M. S., Bondarenko, S. P. & Khilya, V. P. (2012). *Chem. Heterocycl. Compd.*, **48**, 422–426.
- Fun, H.-K., Jebas, S. R., Parveen, M., Khanam, Z. & Ghalib, R. M. (2009). Acta Cryst. E65, 01322–01323.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. Engl. 53, 662–671.
- Hussain, H., Hussain, J., Al-Harrasi, A. & Krohn, K. (2012). *Tetrahedron*, **68**, 2553–2578.
- Ilyas, M. & Parveen, M. (1996). Tetrahedron, 52, 3991-3996.
- Nardelli, M. (1996). J. Appl. Cryst. 29, 296-300.
- Panichayupakaranant, P., Noguchi, H. & De-Eknamkul, W. (1998). *Planta Med.* 64, 774–775.
- Pereira Silva, P. S., Parveen, M., Ali, A., Malla, A. M. & Ramos Silva, M. (2011). Acta Cryst. E67, o201.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tepaske, M. R. & Gloer, J. B. (1992). J. Nat. Prod. 55, 1080-1086.
- Ulubelen, A., Terem, B. & Tuzlaci, E. (1986). J. Nat. Prod. 49, 692-694.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). *CAMERON*. Chemical Crystallography Laboratory, University of Oxford, England.
- Zhan, Q. F., Xia, Z. H., Wang, J. I. & Lao, A. N. (2003). J. Asian Nat. Prod. Res. 5, 303–306.
- Zhou, H. Y., Hong, J. L., Shu, P., Ni, Y. J. & Qin, M. J. (2009). *Fitoterapia*, **80**, 283–285.

supporting information

Acta Cryst. (2014). E70, 319-321 [doi:10.1107/S1600536814021825]

Crystal structure of 6,6'-dimethyl-2H,2'H-3,4'-bichromene-2,2'-dione

Kiran K. Pujar, Manohar V. Kulkarni and G. N. Anil Kumar

Computing details

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT* (Bruker, 1998); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *PARST* (Nardelli, 1996) and *PLATON* (Spek, 2009).

6,6'-Dimethyl-2H,2'H-3,4'-bichromene-2,2'-dione

Crystal data	
$\begin{array}{l} C_{20}H_{14}O_4 \\ M_r = 318.31 \\ \text{Triclinic, } P\overline{1} \\ \text{Hall symbol: -P 1} \\ a = 7.834 (1) \text{ Å} \\ b = 8.0455 (9) \text{ Å} \\ c = 12.7952 (15) \text{ Å} \\ a = 79.492 (5)^{\circ} \\ \beta = 77.096 (4)^{\circ} \\ \gamma = 86.637 (5)^{\circ} \\ V = 772.78 (16) \text{ Å}^3 \end{array}$	Z = 2 F(000) = 332 $D_x = 1.368 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 560 reflections $\theta = 1.7^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K Block, white $0.35 \times 0.31 \times 0.25 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.954, T_{\max} = 0.964$	12862 measured reflections 3499 independent reflections 2509 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 27.4^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = -10 \rightarrow 10$ $k = -10 \rightarrow 9$ $l = -16 \rightarrow 16$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.140$ S = 1.05 3499 reflections 219 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0661P)^2 + 0.1433P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19$ e Å ⁻³ $\Delta\rho_{min} = -0.20$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х v Z01 0.0577 (3) 0.81516 (14) 0.16314 (15) -0.10679(8)O2 0.9332(2)0.4150(2)-0.14906(10)0.0853(4)O3 0.61479 (14) 0.15867 (15) 0.41223 (8) 0.0569(3)04 0.27995 (9) 0.0603(3)0.48324 (15) 0.13864 (15) C2 0.8773(2)0.2996(2)-0.07754(13)0.0583(4)C3 0.8662(2)0.2942(2)0.03783 (11) 0.0508 (4) H3 0.9052 0.3863 0.06 0.061* C4 0.80175 (18) 0.16160 (17) 0.11386 (11) 0.0405(3)C5 0.0478 (4) 0.6808(2)-0.13246(17)0.15031 (12) H5 -0.14180.057* 0.6783 0.2242 C6 0.6220(2)-0.26560(18)0.11392 (14) 0.0547(4)C7 0.6262(2)-0.2483(2)0.00295 (15) 0.0595(5)H7 0.071* 0.5852 -0.3356-0.0229C8 0.6891(2)-0.1057(2)-0.06922(13)0.0560(4)H8 0.067* 0.6905 -0.0967-0.1429C9 0.75025 (18) 0.0239(2)-0.03095(12)0.0460(4)C10 0.0414(3)0.74384 (18) 0.01530(17) 0.08010(11) C11 0.79180 (18) 0.16893 (16) 0.23068 (10) 0.0386(3)C12 0.93182 (19) 0.20659 (19) 0.26592 (11) 0.0450(3) H12 1.0386 0.2245 0.2165 0.054* C13 0.92131 (19) 0.21999 (17) 0.37755 (11) 0.0433(3)C14 1.0631(2)0.2583(2)0.41766 (13) 0.0540(4)H14 1.1719 0.277 0.3705 0.065* C15 1.0449(2)0.2688(2)0.52638 (13) 0.0572(4)C16 0.8808(3)0.2377(2)0.59489 (13) 0.0679(5)0.081* H16 0.8669 0.2432 0.6683 C17 0.7393(3)0.1995(2)0.55805 (13) 0.0680(5)H17 0.6312 0.1788 0.6056 0.082*C18 0.7602(2)0.19221 (18) 0.44840(11) 0.0472(4)C19 0.6205(2)0.30488 (11) 0.0440(3)0.15326 (17) C20 1.1984(3)0.3134(3)0.56865 (17) 0.0830(6) H20A 1.2798 0.2195 0.5708 0.124* H20B 1.1575 0.3386 0.6407 0.124* H20C 1.2554 0.4103 0.5214 0.124*C21 0.5504 (3) -0.4212(2)0.19269 (18) 0.0784 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H21A	0.6207	-0.4505	0.2462	0.118*
H21B	0.5529	-0.5131	0.1539	0.118*
H21C	0.4319	-0.3991	0.2282	0.118*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0565 (7)	0.0856 (8)	0.0318 (5)	-0.0030 (6)	-0.0070 (5)	-0.0147 (5)
O2	0.1050 (11)	0.1025 (10)	0.0394 (6)	-0.0284 (8)	-0.0057 (7)	0.0071 (7)
O3	0.0581 (7)	0.0744 (7)	0.0360 (5)	-0.0229 (5)	0.0050 (5)	-0.0154 (5)
O4	0.0469 (7)	0.0795 (8)	0.0575 (7)	-0.0158 (6)	-0.0036 (5)	-0.0243 (6)
C2	0.0556 (10)	0.0799 (11)	0.0365 (8)	-0.0071 (8)	-0.0048 (7)	-0.0074 (8)
C3	0.0521 (9)	0.0634 (9)	0.0358 (7)	-0.0107 (7)	-0.0039 (7)	-0.0101 (7)
C4	0.0378 (7)	0.0510 (8)	0.0335 (7)	0.0029 (6)	-0.0065 (6)	-0.0118 (6)
C5	0.0586 (9)	0.0446 (7)	0.0461 (8)	0.0105 (6)	-0.0207 (7)	-0.0154 (6)
C6	0.0581 (10)	0.0444 (8)	0.0694 (10)	0.0120 (7)	-0.0236 (8)	-0.0224 (7)
C7	0.0564 (10)	0.0631 (10)	0.0734 (11)	0.0133 (8)	-0.0241 (9)	-0.0415 (9)
C8	0.0469 (9)	0.0817 (11)	0.0496 (9)	0.0154 (8)	-0.0155 (7)	-0.0367 (8)
C9	0.0380 (8)	0.0641 (9)	0.0394 (7)	0.0111 (6)	-0.0098 (6)	-0.0204 (7)
C10	0.0409 (8)	0.0496 (8)	0.0377 (7)	0.0100 (6)	-0.0129 (6)	-0.0162 (6)
C11	0.0453 (8)	0.0393 (6)	0.0306 (6)	-0.0017 (5)	-0.0050 (6)	-0.0079 (5)
C12	0.0421 (8)	0.0590 (8)	0.0336 (7)	0.0011 (6)	-0.0030 (6)	-0.0146 (6)
C13	0.0521 (9)	0.0452 (7)	0.0338 (7)	0.0034 (6)	-0.0103 (6)	-0.0105 (6)
C14	0.0546 (10)	0.0674 (10)	0.0456 (8)	0.0091 (7)	-0.0174 (7)	-0.0195 (7)
C15	0.0792 (12)	0.0534 (9)	0.0477 (9)	0.0131 (8)	-0.0316 (9)	-0.0139 (7)
C16	0.1023 (15)	0.0711 (11)	0.0322 (8)	-0.0038 (10)	-0.0178 (9)	-0.0092 (7)
C17	0.0863 (13)	0.0816 (12)	0.0322 (8)	-0.0220 (10)	0.0009 (8)	-0.0106 (8)
C18	0.0623 (10)	0.0451 (7)	0.0328 (7)	-0.0093 (7)	-0.0048 (7)	-0.0074 (6)
C19	0.0517 (9)	0.0426 (7)	0.0367 (7)	-0.0106 (6)	-0.0025 (6)	-0.0101 (6)
C20	0.0974 (15)	0.1004 (15)	0.0710 (12)	0.0216 (12)	-0.0535 (12)	-0.0306 (11)
C21	0.1041 (16)	0.0426 (8)	0.0973 (15)	0.0001 (9)	-0.0352 (12)	-0.0189 (9)

Geometric parameters (Å, °)

01—C2	1.370 (2)	C11—C12	1.345 (2)
O1—C9	1.3805 (19)	C11—C19	1.458 (2)
O2—C2	1.204 (2)	C12—C13	1.4358 (18)
O3—C19	1.3728 (17)	C12—H12	0.93
O3—C18	1.3793 (18)	C13—C18	1.383 (2)
O4—C19	1.2055 (18)	C13—C14	1.394 (2)
C2—C3	1.452 (2)	C14—C15	1.384 (2)
C3—C4	1.344 (2)	C14—H14	0.93
С3—Н3	0.93	C15—C16	1.392 (3)
C4—C10	1.4538 (18)	C15—C20	1.509 (2)
C4—C11	1.4911 (17)	C16—C17	1.368 (3)
C5—C6	1.383 (2)	C16—H16	0.93
C5—C10	1.395 (2)	C17—C18	1.387 (2)
С5—Н5	0.93	С17—Н17	0.93

C6—C7	1.394 (2)	С20—Н20А	0.96
C6—C21	1.506 (2)	C20—H20B	0.96
C7—C8	1.374 (2)	C20—H20C	0.96
С7—Н7	0.93	C21—H21A	0.96
C8—C9	1.381 (2)	C21—H21B	0.96
С8—Н8	0.93	C21—H21C	0.96
C9—C10	1.3997 (18)		
C2—O1—C9	121.88 (12)	C13—C12—H12	119
C19—O3—C18	122.41 (11)	C18—C13—C14	118.92 (13)
O2—C2—O1	117.52 (15)	C18—C13—C12	117.22 (13)
O2—C2—C3	125.51 (17)	C14—C13—C12	123.86 (14)
O1—C2—C3	116.95 (14)	C15—C14—C13	121.18 (16)
C4—C3—C2	122.65 (14)	C15—C14—H14	119.4
С4—С3—Н3	118.7	C13—C14—H14	119.4
С2—С3—Н3	118.7	C14—C15—C16	117.86 (15)
C3—C4—C10	119.22 (12)	C14—C15—C20	120.80 (17)
C3—C4—C11	118.88 (12)	C16—C15—C20	121.34 (16)
C10—C4—C11	121.90 (12)	C17—C16—C15	122.34 (15)
C6—C5—C10	122.28 (14)	C17—C16—H16	118.8
С6—С5—Н5	118.9	C15—C16—H16	118.8
С10—С5—Н5	118.9	C16—C17—C18	118.71 (16)
C5—C6—C7	117.80 (15)	C16—C17—H17	120.6
C5—C6—C21	120.70 (15)	C18—C17—H17	120.6
C7—C6—C21	121.46 (15)	O3—C18—C13	121.18 (12)
C8—C7—C6	121.81 (14)	O3—C18—C17	117.84 (14)
С8—С7—Н7	119.1	C13—C18—C17	120.98 (15)
С6—С7—Н7	119.1	O4—C19—O3	117.19 (13)
C7—C8—C9	119.16 (14)	O4—C19—C11	125.75 (13)
С7—С8—Н8	120.4	O3—C19—C11	117.05 (13)
С9—С8—Н8	120.4	C15—C20—H20A	109.5
C8—C9—O1	117.05 (13)	C15—C20—H20B	109.5
C8—C9—C10	121.36 (15)	H20A—C20—H20B	109.5
O1—C9—C10	121.58 (13)	C15—C20—H20C	109.5
C5—C10—C9	117.54 (13)	H20A—C20—H20C	109.5
C5-C10-C4	124.84 (12)	H20B-C20-H20C	109.5
C9—C10—C4	117.62 (13)	C6—C21—H21A	109.5
C12—C11—C19	119.82 (12)	C6—C21—H21B	109.5
C12—C11—C4	121.73 (12)	H21A—C21—H21B	109.5
C19—C11—C4	118.09 (12)	C6—C21—H21C	109.5
C11—C12—C13	121.94 (13)	H21A—C21—H21C	109.5
C11—C12—H12	119	H21B—C21—H21C	109.5
C9—O1—C2—O2	179.27 (14)	C3—C4—C11—C19	120.68 (15)
C9—O1—C2—C3	-2.2 (2)	C10—C4—C11—C19	-59.32 (17)
O2—C2—C3—C4	179.75 (17)	C19—C11—C12—C13	4.7 (2)
O1—C2—C3—C4	1.3 (2)	C4—C11—C12—C13	177.64 (12)
C2—C3—C4—C10	1.3 (2)	C11—C12—C13—C18	0.1 (2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.68 (14) -0.4 (2) -178.33 (15) 1.2 (2) 179.09 (15) 0.1 (2) 178.84 (13) -2.2 (2) 179.28 (14)	C11—C12—C13—C14 C18—C13—C14—C15 C12—C13—C14—C15 C13—C14—C15—C16 C13—C14—C15—C20 C14—C15—C16—C17 C20—C15—C16—C17 C15—C16—C17—C18 C19—O3—C18—C13	179.81 (13) -0.1 (2) -179.77 (14) 0.9 (2) -178.91 (15) -0.7 (3) 179.08 (17) -0.3 (3) -0.9 (2)
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	179.28 (14) $0.3 (2)$ $-1.6 (2)$ $177.80 (13)$ $2.9 (2)$ $-178.19 (12)$ $-176.54 (13)$ $2.4 (2)$ $177.47 (13)$ $-2.5 (2)$ $-3.1 (2)$ $176.86 (12)$ $-52.37 (19)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.9 (2) 178.21 (14) 178.15 (13) -2.1 (2) -1.0 (2) 178.77 (14) -178.01 (15) 1.1 (3) -173.26 (13) 5.6 (2) 171.31 (14) -1.9 (2) -7.45 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C8—H8····O4 ⁱ	0.93	2.53	3.330 (2)	145

Symmetry code: (i) -x+1, -y, -z.