STRUCTURE REPORTS

ISSN 1600-5368

Received 23 September 2014
Accepted 8 October 2014

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: hydrogen-bond geometry; amino group; refinement model; β-DL-methionine; crystal structure

CCDC reference: 1028065
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\odot A C C E S S$

Redetermined structure of β-dL-methionine at 105 K : an example of the importance of freely refining the positions of the amino-group H atoms

Carl Henrik Görbitz

Department of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway. *Correspondence e-mail: c.h.gorbitz@kjemi.uio.no

Diffraction data were taken from the contribution named ' β-dL-Methionine at $105 \mathrm{~K}^{\prime}$ by Alagar et al. [Acta Cryst. (2005). E61, o1165-o1167]. Refinement of the coordinates of the three amino H atoms, previously constrained to an idealized geometry, shows that the amino group is in fact rotated 13.5° from the perfectly staggered orientation. This apparently modest change has a profound impact on the calculated hydrogen-bond geometries.

1. Chemical context

Upon comparing the hydrogen-bond geometries of the hightemperature α-phase of the amino acid racemate DL-methionine (Görbitz et al., 2014) with the best published structure of the β-phase [Alagar et al., 2005; refcode DLMETA05 in the Cambridge Structural Database (CSD), Version 5.35; Allen, 2002], we noted that $\mathrm{H} \cdots \mathrm{O}$ distances surprisingly appeared to get shorter at 340 K than at 105 K . This was judged to be an artefact resulting from different ways of handling the amino H atoms. Alagar et al. (2005) used an idealized geometry and a perfectly staggered orientation for this group in their refinement; while we found a 14° counterclockwise rotation (for the l-enantiomer) that served to give three shorter and more linear interactions. The experimental and structural data of Alagar et al. (2005), with coordinates for the D-enantiomer as the asymmetric unit, were subsequently downloaded and refined again with free amino H atoms, thus increasing the number of parameters from 82 (nine parameters for nine atoms + scale factor) to 91 . In the improved structural model displayed in Fig. $1\left[R(F)=0.0377\right.$ versus 0.411 and $w R\left(F^{2}\right)=$ 0.0918 versus 0.1001], the amino group is shifted slightly away from the staggered orientation through a 13.5° clockwise rotation (for the D-enantiomer), Table 1.

2. Supramolecular features

The hydrogen-bond geometries listed in Table 2 show that the free refinement of amino-group H atoms gives close to linear

Figure 1
(a) The structure of DL-methionine, (I), viewed approximately along the $\mathrm{N} 1-\mathrm{C} 2$ bond vector, with 50% probability thermal displacement ellipsoids. The racemate contains molecules of both hands; the one depicted here is the D-enantiomer. Carboxylate groups of three neighboring amino acids accepting hydrogen bonds are shown in a lighter tone. $\mathrm{O} 2^{\mathrm{i}}$ is at $\left(-x, y+\frac{1}{2},-z+\frac{1}{2}\right), \mathrm{O} 2^{\mathrm{ii}}$ at $\left(x+\frac{1}{2},-y, z\right)$ and $\mathrm{O}^{\mathrm{iii}}$ at $\left(x+\frac{1}{2},-y+1, z\right)$, see Table 2. Compared to the previously published structure shown in capped sticks representation in (b) (Alagar et al., 2005), the amino group has been rotated clockwise by about 13.5° to give shorter and more linear hydrogen bonds.
$\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions with substantially shorter $\mathrm{H} \cdots \mathrm{O}$ distances. There are no significant changes for geometric parameters involving only C, N and O atoms. This example demonstrates that in order not to unduly bias the statistics of hydrogen-bond geometries in the CSD, it is imperative that H atoms of amino groups and other hydrogen-bond donating

Table 1
Selected torsion angles (${ }^{\circ}$).

$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$54.4(2)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1$	$46.5(17)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$173.53(15)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 2$	$-75.3(15)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{S} 1$	$179.23(12)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 3$	$167.4(15)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{S} 1-\mathrm{C} 5$	$175.03(14)$		

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	Parameter	DLMETA05 a	(I)-rigid	
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	$\mathrm{N}-\mathrm{H}$	0.89	(I)	
	$\mathrm{H} \cdots \mathrm{O}$	1.93	0.91	$0.88(3)$
	$\mathrm{N} \cdots \mathrm{O}$	$2.788(2)$	1.88	$1.91(3)$
	$\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$	162	$2.787(2)$	$2.788(2)$
$\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{ii}}$	$\mathrm{N}-\mathrm{H}$	0.89	173	$174(2)$
	$\mathrm{H} \cdots \mathrm{O}$	2.02	0.91	$0.94(3)$
	$\mathrm{N} \cdots \mathrm{O}$	$2.814(2)$	1.92	$1.89(3)$
	$\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$	148	$1615(2)$	$2.815(2)$
$\mathrm{N} 1-\mathrm{H} 3 \cdots \mathrm{O} 1^{\mathrm{iii}}$	$\mathrm{N}-\mathrm{H}$	0.89	167	$169(2)$
	$\mathrm{H} \cdots \mathrm{O}$	2.02	0.91	$0.92(3)$
	$\mathrm{N} \cdots \mathrm{O}$	$2.794(2)$	1.91	$1.91(3)$
	$\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$	144	$2.795(2)$	$2.795(2)$
		163	$161(2)$	

[^0]Table 3
Experimental details.
Crystal data Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}{ }^{\circ}{ }^{3}\right)$
V
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
0.023
$0.038,0.092,1.26$
$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}$
149.21

Monoclinic, $I 2 / a$
105
9.877 (2), 4.6915 (10), 32.603 (6)
106.25 (1)
1450.4 (5)

8
Mo $K \alpha$
0.38
$0.32 \times 0.24 \times 0.22$

Bruker SMART CCD area detector
Multi-scan (SADABS; Bruker, 1998)
0.85, 0.92

6469, 1436, 1373
0.623

1436
91
H atoms treated by a mixture of independent and constrained refinement
$0.35,-0.23$

Computer programs: SMART-NT and SAINT-NT (Bruker, 1999), SHELXS97, SHELXL2013 (Sheldrick, 2008) and SHELXTL (Sheldrick, 2008).
functional groups whenever possible are refined in a normal manner and not constrained to theoretical positions. The data set used here (Alagar et al., 2005) is of good, but not excellent quality. Nevertheless, H atoms can be refined with decent accuracy [standard uncertainties (s.u.'s) $=0.03 \AA$ for $\mathrm{N}-\mathrm{H}$ distances], allowing experimental determination of hydrogenbond geometries. In the event that s.u.'s get much higher and/ or $\mathrm{N}-\mathrm{H}$ distances are clearly unreasonably short or long, a rigid rotation refinement of the group (e.g. by an AFIX 37 command in SHELXL; Sheldrick, 2008) should be performed. The results of such a refinement for (I), which adds just a single refinement parameter compared to DLMETA05, but reaches the same R factor as for (I), are included in Table 2. The listed values are very close to those of the unconstrained refinement, but are obviously devoid of s.u.'s for geometric parameters involving H atoms.

Under other circumstances restraints on covalent geometry may be employed. Accordingly, we have found that it is often useful to restrain $\mathrm{O}-\mathrm{H}$ bond distances and $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angles (through the 1-3 distances) during refinement of water molecules in crystal hydrates. For a single molecule with atom labels $\mathrm{H} 1 \mathrm{~W}-\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 2 \mathrm{~W}$, the appropriate SHELXL commands would be DFIX 0.850 .02 O1W H1W O1W H2W and DFIX 1.350 .03 H1W H2W (the s.u.'s of 0.02 and $0.03 \AA$ being subject to discussion). Similar approaches may be used for groups like -OH and $-\mathrm{NH}_{2}$ for which AFIX 37 commands (or equivalent) are not applicable.

3. Experimental

For crystallization details, see Alagar et al. (2005). Crystal data, data collection and structure refinement details are summarized in Table 3.

Coordinates were refined for amino H atoms; other H atoms were positioned with idealized geometry, with fixed $\mathrm{C}-$ $\mathrm{H}=0.98$ (methyl), 0.99 (methylene) or $1.00 \AA$ (methine). $U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {eq }}$ of the carrier atom or at $1.5 U_{\text {eq }}$ for methyl and amino groups.

References

Alagar, M., Krishnakumar, R. V., Mostad, A. \& Natarajan, S. (2005). Acta Cryst. E61, o1165-o1167.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SMART-NT and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Görbitz, C. H., Qi, L., Mai, N. T. K. \& Kristiansen, H. (2014). Acta Cryst. E70, 337-340.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Redetermined structure of β-dl-methionine at 105 K : an example of the importance of freely refining the positions of the amino-group H atoms

Carl Henrik Görbitz

Computing details

Data collection: SMART-NT (Bruker, 1999); cell refinement: SAINT-NT (Bruker, 1999); data reduction: SAINT-NT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

2-Amino-4-(methylsulfanyl)butanoic acid

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}$
$M_{r}=149.21$
Monoclinic, $I 2 / a$
$a=9.877$ (2) \AA
$b=4.6915(10) \AA$
$c=32.603(6) \AA$
$\beta=106.25(1)^{\circ}$
$V=1450.4(5) \AA^{3}$
$Z=8$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.3 pixels mm^{-1}
Sets of exposures each taken over $0.5^{\circ} \omega$ rotation scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.092$
$S=1.26$
1436 reflections
91 parameters
0 restraints

$$
F(000)=640
$$

$D_{\mathrm{x}}=1.367 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1012 reflections
$\theta=2.6-26.1^{\circ}$
$\mu=0.38 \mathrm{~mm}^{-1}$
$T=105 \mathrm{~K}$
Block, colourless
$0.32 \times 0.24 \times 0.22 \mathrm{~mm}$
$T_{\text {min }}=0.85, T_{\text {max }}=0.92$
6469 measured reflections
1436 independent reflections
1373 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=26.3^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-12 \rightarrow 11$
$k=0 \rightarrow 5$
$l=0 \rightarrow 40$

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0233 P)^{2}+2.4782 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.35 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}

Special details

Experimental. Diffraction data and experimental conditions are taken from Alagar et al. (2005), CSD refcode DLMETA05.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of amino H atom coordinates.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
S1	$0.39652(6)$	$0.15681(12)$	$0.44292(2)$	$0.03291(18)$
O1	$-0.14523(13)$	$0.2025(3)$	$0.31403(4)$	$0.0240(3)$
O2	$-0.01841(13)$	$-0.0810(3)$	$0.28411(4)$	$0.0216(3)$
N1	$0.19296(17)$	$0.3000(3)$	$0.29733(5)$	$0.0193(3)$
H1	$0.142(3)$	$0.332(5)$	$0.2710(8)$	0.029^{*}
H2	$0.238(2)$	$0.122(6)$	$0.2999(7)$	0.029^{*}
H3	$0.263(2)$	$0.436(5)$	$0.3054(7)$	0.029^{*}
C1	$-0.03289(18)$	$0.1301(4)$	$0.30562(5)$	$0.0185(4)$
C2	$0.09967(18)$	$0.3087(4)$	$0.32589(5)$	$0.0183(4)$
H4	0.0719	0.5103	0.3294	0.022^{*}
C3	$0.17639(19)$	$0.1831(4)$	$0.36982(5)$	$0.0214(4)$
H5	0.1148	0.2038	0.3889	0.026^{*}
H6	0.1911	-0.0232	0.3664	0.026^{*}
C4	$0.3196(2)$	$0.3214(4)$	$0.39143(6)$	$0.0246(4)$
H7	0.3068	0.5281	0.3952	0.030^{*}
H8	0.3837	0.2973	0.3731	0.030^{*}
C5	$0.5659(2)$	$0.3326(5)$	$0.45830(7)$	$0.0350(5)$
H9	0.6208	0.2627	0.4864	0.053^{*}
H10	0.6169	0.2916	0.4371	0.053^{*}
H11	0.5521	0.5388	0.4597	0.053^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0351(3)$	$0.0337(3)$	$0.0231(3)$	$-0.0067(2)$	$-0.0031(2)$	$0.0074(2)$
O1	$0.0225(7)$	$0.0168(6)$	$0.0333(7)$	$0.0012(5)$	$0.0089(5)$	$-0.0003(5)$
O2	$0.0253(7)$	$0.0156(6)$	$0.0222(6)$	$-0.0010(5)$	$0.0037(5)$	$-0.0028(5)$
N1	$0.0207(7)$	$0.0169(8)$	$0.0190(7)$	$-0.0010(6)$	$0.0035(6)$	$0.0008(6)$
C1	$0.0213(8)$	$0.0138(8)$	$0.0181(8)$	$0.0006(7)$	$0.0019(7)$	$0.0034(6)$
C2	$0.0212(8)$	$0.0128(8)$	$0.0208(8)$	$0.0005(7)$	$0.0059(7)$	$-0.0008(7)$
C3	$0.0248(9)$	$0.0186(9)$	$0.0197(8)$	$-0.0008(7)$	$0.0043(7)$	$-0.0002(7)$
C4	$0.0273(10)$	$0.0216(9)$	$0.0213(9)$	$-0.0016(8)$	$0.0007(7)$	$0.0017(7)$
C5	$0.0309(11)$	$0.0416(13)$	$0.0272(10)$	$-0.0024(9)$	$-0.0008(8)$	$0.0012(9)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

S1-C5	1.806 (2)	C2-H4	1.0000
S1-C4	1.8104 (19)	C3-C4	1.536 (2)
O1-C1	1.262 (2)	C3-H5	0.9900
O2-C1	1.245 (2)	C3-H6	0.9900
N1-C2	1.483 (2)	C4-H7	0.9900
N1-H1	0.88 (3)	C4-H8	0.9900
N1-H2	0.94 (3)	C5-H9	0.9800
N1-H3	0.92 (3)	C5-H10	0.9800
C1-C2	1.539 (2)	C5-H11	0.9800
C2-C3	1.538 (2)		
C5-S1-C4	100.27 (10)	C4-C3-H5	108.6
C2-N1-H1	108.9 (15)	C2-C3-H5	108.6
C2-N1-H2	109.2 (14)	C4-C3-H6	108.6
$\mathrm{H} 1-\mathrm{N} 1-\mathrm{H} 2$	111 (2)	C2-C3-H6	108.6
C2-N1-H3	110.5 (14)	H5-C3-H6	107.6
H1-N1-H3	110 (2)	C3-C4-S1	109.80 (13)
$\mathrm{H} 2-\mathrm{N} 1-\mathrm{H} 3$	107 (2)	C3-C4-H7	109.7
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	125.67 (17)	S1-C4-H7	109.7
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	117.19 (15)	C3-C4-H8	109.7
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	117.03 (15)	S1-C4-H8	109.7
N1-C2-C3	110.09 (14)	H7-C4-H8	108.2
N1-C2-C1	108.59 (14)	S1-C5-H9	109.5
C3-C2-C1	109.25 (14)	S1-C5-H10	109.5
N1-C2-H4	109.6	H9-C5-H10	109.5
C3-C2-H4	109.6	S1-C5-H11	109.5
C1-C2-H4	109.6	H9-C5-H11	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	114.57 (15)	H10-C5-H11	109.5
N1-C2-C3-C4	54.4 (2)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-87.60 (18)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	173.53 (15)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	88.98 (18)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{S} 1$	179.23 (12)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1$	46.5 (17)
C3-C4-S1-C5	175.03 (14)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 2$	-75.3 (15)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	32.5 (2)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 3$	167.4 (15)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	-150.93 (15)		

Hydrogen-bond geometry ($\stackrel{A}{ },{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.88(3)$	$1.91(3)$	$2.788(2)$	$175(3)$
$\mathrm{N} 1 — \mathrm{H} 2 \cdots 1^{\mathrm{ii}}$	$0.94(3)$	$1.89(3)$	$2.815(2)$	$169(2)$
$\mathrm{N} 1 — \mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{iii}}$	$0.92(2)$	$1.91(2)$	$2.795(2)$	$161(2)$
$\mathrm{C} 2 — \mathrm{H} 4 \cdots 2^{\mathrm{iv}}$	1.00	2.43	$3.244(2)$	138

[^1]
[^0]: Symmetry codes: (i) $-x, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x+\frac{1}{2},-y, z$; (iii) $x+\frac{1}{2},-y+1, z$. Notes: (a) Alagar et al. (2005), 82 parameters; atoms H1, H2 and H3 were called H1A, H1B and H1C, respectively, by the original authors; the labels used in the CSD entry DLMETA05 have been retained here. (b) Rigid rotation refinement of (I), 83 parameters. 0.91 A is the standard $\mathrm{N}-\mathrm{H}$ bond length in SHELXL (Sheldrick, 2008) at 105 K.

[^1]: Symmetry codes: (i) $-x, y+1 / 2,-z+1 / 2$; (ii) $x+1 / 2,-y, z$; (iii) $x+1 / 2,-y+1, z$; (iv) $x, y+1, z$.

