

STRUCTURE REPORTS

Received 30 August 2014
Accepted 4 September 2014

Edited by M. Zeller, Youngstown State University, USA

Keywords: crystal structure; one-dimensional coordination polymer; symmetry; dimethylacetamide; potassium salt

CCDC reference: 1022963
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of catena-poly[[potassium-tri- μ dimethylacetamide $-\kappa^{6} O: O$] iodide]

Cezar-Catalin Comanescu* and Allen G. Oliver

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA.
*Correspondence e-mail: ccomanes@nd.edu

The structure of catena-poly[[potassium-tri- μ-dimethylacetamide- $\kappa^{6} O: O$] iodide $],\left\{\left[\mathrm{K}\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}\right)_{3}\right] \mathrm{I}\right\}_{n}$, at 120 K has trigonal $(P \overline{3})$ symmetry. The structure adopts a linear chain motif parallel to the crystallographic c axis. Two crystallographically independent K^{+}cations are present in the asymmetric unit located on threefold rotoinversion axes at $[0,0,0]$ and $\left[0,0, \frac{1}{2}\right]$ and are bridged by the O atoms of the acetamide moiety. This is an example of a rare μ_{2}-bridging mode for dimethylacetamide O atoms. The iodide counter-ion resides on a threefold rotation axis in the channel formed by the $\left[\mathrm{K}\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}\right)\right]^{+}$chains.

1. Chemical context

Coordination of dimethylacetamide (DMA) to metal centers has been observed previously in a number of metal complexes, but μ_{2}-coordination of the O atom has only been reported in two crystallographically confirmed structures. Tikhonova et al. (2001) crystallized a $\operatorname{bis}\left(\mu_{3}-N, N\right.$-dimethylacetamide $) \operatorname{tris}\left(\mu_{2^{-}}\right.$ perfluoro-o-phenylene)trimercury(II) complex and found $\mathrm{Hg}-\mathrm{O}(\mathrm{DMA})$ bond lengths in the range $2.776(2)-$ 2.989 (2) A. Dias et al. (1995) synthesized bis $\left\{\left(\mu_{2}\right.\right.$-dimethyl-acetamido- $O, O)\left\{\mu_{2}\right.$-hydrogen tris[3,5-bis(trifluoromethyl)pyrazolyl]borate\}potassium\}, in which the O atom is μ_{2}-bridging between two K^{+}cations and the $\mathrm{K}-\mathrm{O}$ bond length is 2.703 (2) \AA. In the KI-3DMA structure reported here, the KO bond lengths are in the range 2.763 (2) -2.774 (3) \AA, slightly longer than in the closely related potassium complex synthesized by Dias et al. (1995).

2. Structural commentary

The cation of title compound consists of two crystallographically independent potassium cations. Each K^{+}cation is octahedrally coordinated by six O atoms from the DMA moieties, with each oxygen adopting a μ_{2}-bridging mode (Fig. 1 and Table 1). The $\mathrm{C}=\mathrm{O}$ distance is comparable with that in free dimethylacetamide (see Database survey). The iodide

Figure 1
The atom-labeling scheme for KI•3DMA, with displacement ellipsoids depicted at the 50% probability level. [Symmetry codes: (i) $-x,-y,-z$; (ii) $y,-x+y,-z$; (iii) $-y, x-y, z$; (iv) $x-y, x,-z$; (v) $-x+y,-x, z$; (vi)
$x, y, z-1$.]
anion is independent of the one-dimensional chain and does not form any covalent contacts to the cation.
The extended structure forms a chain of K^{+}cations, bridged by $\mu_{2}-O$-dimethylacetamide moieties. The two independent K^{+}cations are located at $[0,0,0]$ and $\left[0,0, \frac{1}{2}\right]$ (Wyckoff positions a and b, respectively) and the iodine is located at $\left[\frac{2}{3}, \frac{1}{3}, \mathrm{z}\right]$ (Wyckoff position d). In the primary structure, each K^{+}cation adopts a slightly distorted octahedral coordination sphere (key bond lengths and angles are given in Table 1).

3. Supramolecular features

The $\mu_{2}-O$-dimethylacetamide bridging the two K^{+}cations forms a linear $\left[\mathrm{K}(\mathrm{DMA})_{3}\right]^{+}$chain parallel to the c axis. The application of the $\overline{3}$ symmetry results in an aesthetically pleasing 'snowflake' configuration when viewed along the c axis (Fig. 2). The iodide counter-ion resides in the channels formed by the $\left[\mathrm{K}(\mathrm{DMA})_{3}\right]^{+}$chains. With regards to the extended structure, there are very weak $\mathrm{C}-\mathrm{H} \cdots$ I interactions within the lattice (Table 2). These serve to locate the iodine in a pocket within the structure.

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

K1-O1	$2.7438(16)$	O1-C2	$1.254(3)$
K1-K2	$3.6728(4)$	O1-K2	$2.7627(16)$
O1 $^{\text {i }}-\mathrm{K} 1-\mathrm{O} 1$	180.0		
O1 $^{1 i}-\mathrm{K} 1-\mathrm{O} 1$	$99.30(5)$		$80.70(5)$

Symmetry codes: (i) $-x,-y,-z$; (ii) $y,-x+y,-z$; (iii) $-y, x-y, z$.

Figure 2
(A) Packing diagram viewed along the b axis. (B) View along the c axis. Legend: black $=$ carbon, dark blue $=$ nitrogen, light blue $=$ potassium, magenta $=$ iodine, and red $=$ oxygen. H atoms have been omitted for clarity.

4. Database survey

A search in the Cambridge Structure Database (CSD, Version 5.35, November 2013 plus three updates; Allen, 2002) for structures in which K^{+}is triple bridged in a μ_{2}-fashion by three O atoms returns 17 results, but only 3 of them are relevant to the structure reported herein. Gonzalez-Rodriguez et al. (2009) have shown a complex guanosine-derived nucleoside to crystallize as an acetone solvate monohydrate in which the six bridging K^{+}cations are each coordinated to eight O atoms from eight guanosine ligands, and the two terminal K^{+}cations

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{I} 1^{\text {iv }}$	0.98	3.20	$4.178(3)$	177
$\mathrm{C} 3-\mathrm{H} 3 A \cdots 1^{\text {iv }}$	0.98	3.20	$4.178(3)$	174
$\mathrm{C} 4-\mathrm{H} 4 C \cdots \mathrm{I} 1$	0.98	3.00	$3.967(3)$	170

Symmetry code: (iv) $x, y, z-1$.

Table 3
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\left[\mathrm{K}\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}\right)_{3}\right] \mathrm{I}$
427.37

Trigonal, $P \overline{3}$
120
11.9776 (8), 7.3455 (7)
912.62 (15)

2
Mo $K \alpha$
1.99
$0.20 \times 0.09 \times 0.06$

Bruker APEX
Multi-scan (SADABS; Bruker, 2012)
$0.615,0.745$
11940, 1248, 1194
0.026
0.623

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97, SHELXL2013 and XP in SHELXTL (Sheldrick, 2013) and publCIF (Westrip, 2010).
are coordinated to eight O atoms from four guanosine ligands and either four acetone molecules or four water molecules. Cunningham et al. (2000) crystallized catena-[tetrakis[N, N^{\prime} -bis(3-methoxysalicylidene)propane-1,3-diaminoato]iodidonickel(II)potassium], where K^{+}is bridged by four $\mu_{2}-O$, one $\mu_{2}-N$, and one $\mu_{2}-I$. In fact, both of these structures contain four $\mu_{2}-O$ atoms bridging K^{+}cations. No close $\mathrm{K} \cdots \mathrm{K}$ contacts were observed: the K…K distances are in the range 3.451 (2)3.567 (2) A. Most closely related is the structure of catena[tris (μ_{2}-dimethylformamide- O, O) potassium iodide], reported by Batsanov \& Struchkov (1994), with a K…K distance of 3.4170 (10) \AA and a $\mathrm{K}-\mathrm{O}$ distance of 2.6570 (13) \AA. In the $\mathrm{KI} \cdot 3 \mathrm{DMA}$ structure reported herein, the K1 $\cdots \mathrm{K} 2$ distance is 3.6728 (4) \AA, which is longer by approximately $0.106 \AA$. In the Gonzalez-Rodriguez and Cunningham structures, iodine is found to form bonds to the K^{+}cations, while it is located in a channel within the Batsanov structure and not covalently bound. In the title compound, the iodine is not covalently bonded to the cation chain.

A search in the Cambridge Structure Database for free acetamide returned 180 results, featuring $\mathrm{C}=\mathrm{O}$ bond lengths between $1.123 \AA$ (Patra \& Goldberg, 2013) and $1.67 \AA$ (Gole et al., 2011), with a mean of $1.259 \AA$ (std. dev. 0.059), which is
very close to the $\mathrm{C}=\mathrm{O}$ bond length reported herein [1.254 (3) Å]

5. Synthesis and crystallization

A carbon-carbon Heck coupling reaction catalyzed by a $\mathrm{Pd}^{\mathrm{II}}$ diphosphane precatalyst was performed using conditions established previously by Brase \& de Meijere (1998). In a typical synthesis, 1-iodo-4-nitrobenzene $\left(\mathrm{IC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2} ; 102.1 \mathrm{mg}\right.$, 0.41 mmol) was mixed with 2 equivalents of n-butyl acrylate $\left[\mathrm{CH}_{2}=\mathrm{CHCOO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3} ; 105.6 \mathrm{mg}, 0.82 \mathrm{mmol}\right]$ in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}(63.6 \mathrm{mg}, 0.46 \mathrm{mmol})$ and $n-\mathrm{Bu}_{4} \mathrm{NBr}$ ($13 \mathrm{mg}, 0.041 \mathrm{mmol}$) in dimethylacetamide (DMA) over a period of 4 h at 413 K . The title compound formed and was recrystallized from the filtered reaction mixture at room temperature. The target $\mathrm{Pd}^{\mathrm{II}}$ complex of the reaction has been reported (Comanescu \& Iluc, 2014).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were included in a riding model and allowed to rotate to minimize electron-density contribution. C-H distances were set at $0.98 \AA$, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$.

Acknowledgements

CCC thanks Professor Vlad Iluc for insightful discussions.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Batsanov, A. S. \& Struchkov, Y. T. (1994). Koord. Khim. 20, 354-356.
Brase, S. \& de Meijere, A. (1998). Metal-catalyzed Cross-coupling Reactions, pp. 99-166. New York: Wiley-VCH.
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Comanescu, C.-C. \& Iluc, V. (2014). Inorg. Chem. 53, 8517-8528.
Cunningham, D., McArdle, P., Mitchell, M., Chonchubhair, N. N., O'Gara, M., Franceschi, F. \& Floriani, C. (2000). Inorg. Chem. 39, 1639-1649.
Dias, R. H. V., Huai, L., Jin, W. \& Bott, S. G. (1995). Inorg. Chem. 34, 1973-1974.
Gole, B., Bar, A. K. \& Mukherjee, P. S. (2011). Chem. Commun. 47, 12137-12139.
Gonzalez-Rodriguez, D., van Dongen, J. L. J., Lutz, M., Spek, A. L., Schenning, A. P. H. J. \& Meijer, E. W. (2009). Nat. Chem. 1, 151155.

Patra, R. \& Goldberg, I. (2013). Acta Cryst. C69, 344-347.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tikhonova, I. A., Dolgushin, F. M., Tugashov, K. I., Furin, G. G., Petrovskii, P. V. \& Shur, V. B. (2001). Russ. Chem. Bull. Int. Ed. 50, 1673-1678.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2014). E70, 196-198 [doi:10.1107/S1600536814020005]

Crystal structure of catena-poly[[potassium-tri- μ-dimethylacetamide- $\kappa^{6} \mathrm{O}: O$] iodide]

Cezar-Catalin Comanescu and Allen G. Oliver

Computing details

Data collection: APEXII (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[[potassium-tri- μ-dimethylacetamide- $\left.\kappa^{6} O: O\right]$ iodide]

Crystal data

$\left[\mathrm{K}\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}\right)_{3}\right] \mathrm{I}$
$M_{r}=427.37$
Trigonal, $P \overline{3}$
$a=11.9776$ (8) \AA
$c=7.3455$ (7) \AA
$V=912.62(15) \AA^{3}$
$Z=2$
$F(000)=432$

Data collection

Bruker APEX diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.33 pixels mm^{-1}
combination of ω and φ-scans
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
$T_{\text {min }}=0.615, T_{\text {max }}=0.745$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.059$
$S=1.07$
1248 reflections
65 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$D_{\mathrm{x}}=1.555 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7529 reflections
$\theta=2.7-26.3^{\circ}$
$\mu=1.99 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Block, colorless
$0.20 \times 0.09 \times 0.06 \mathrm{~mm}$

11940 measured reflections
1248 independent reflections
1194 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=26.3^{\circ}, \theta_{\text {min }}=2.0^{\circ}$
$h=-14 \rightarrow 14$
$k=-14 \rightarrow 14$
$l=-9 \rightarrow 9$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0227 P)^{2}+1.7319 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=1.14 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.43 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
I1	0.6667	0.3333	$0.83886(4)$	$0.02490(11)$
K1	0.0000	0.0000	0.0000	$0.0172(2)$
O1	$0.18933(16)$	$0.14411(16)$	$0.2481(2)$	$0.0229(4)$
N1	$0.3896(2)$	$0.2882(2)$	$0.3421(3)$	$0.0262(5)$
C1	$0.3288(3)$	$0.3114(3)$	$0.0349(3)$	$0.0281(5)$
H1A	0.4093	0.3202	-0.0125	0.042^{*}
H1B	0.3388	0.3971	0.0517	0.042^{*}
H1C	0.2588	0.2620	-0.0516	0.042^{*}
K2	0.0000	0.0000	0.5000	$0.0227(3)$
C2	$0.2970(2)$	$0.2414(2)$	$0.2163(3)$	$0.0249(5)$
C3	$0.5155(3)$	$0.4036(3)$	$0.3094(4)$	$0.0320(6)$
H3A	0.5574	0.3884	0.2054	0.048^{*}
H3B	0.5697	0.4223	0.4178	0.048^{*}
H3C	0.5033	0.4770	0.2830	0.048^{*}
C4	$0.3621(3)$	$0.2247(3)$	$0.5200(4)$	$0.0315(6)$
H4A	0.3164	0.1310	0.5031	0.047^{*}
H4B	0.3083	0.2488	0.5913	0.047^{*}
H4C	0.4432	0.2516	0.5848	0.047^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.02578(13)$	$0.02578(13)$	$0.02315(16)$	$0.01289(6)$	0.000	0.000
K1	$0.0195(4)$	$0.0195(4)$	$0.0126(5)$	$0.00975(18)$	0.000	0.000
O1	$0.0183(8)$	$0.0237(9)$	$0.0202(8)$	$0.0057(7)$	$-0.0003(6)$	$-0.0034(7)$
N1	$0.0242(11)$	$0.0271(11)$	$0.0237(10)$	$0.0100(9)$	$0.0003(8)$	$-0.0003(8)$
C1	$0.0284(13)$	$0.0352(14)$	$0.0196(12)$	$0.0152(11)$	$0.0012(10)$	$0.0047(10)$
K2	$0.0278(4)$	$0.0278(4)$	$0.0123(5)$	$0.0139(2)$	0.000	0.000
C2	$0.0291(13)$	$0.0286(13)$	$0.0223(12)$	$0.0185(11)$	$0.0013(10)$	$-0.0037(10)$
C3	$0.0212(12)$	$0.0280(13)$	$0.0336(14)$	$0.0025(11)$	$0.0023(10)$	$-0.0045(11)$
C4	$0.0325(14)$	$0.0321(14)$	$0.0218(12)$	$0.0100(12)$	$-0.0043(11)$	$0.0038(10)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{K} 1-\mathrm{O} 1^{\mathrm{i}}$	2.7437 (16)	C1-H1B	0.9800
$\mathrm{K} 1-\mathrm{Ol}^{\text {ii }}$	2.7437 (16)	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9800
$\mathrm{K} 1-\mathrm{O} 1^{\text {iii }}$	2.7437 (16)	$\mathrm{K} 2-\mathrm{O} 1^{\text {vii }}$	2.7627 (16)
$\mathrm{K} 1-\mathrm{O} 1^{\text {iv }}$	2.7437 (16)	$\mathrm{K} 2-\mathrm{O} 1^{\text {v }}$	2.7627 (16)
$\mathrm{K} 1-\mathrm{O} 1^{v}$	2.7437 (16)	$\mathrm{K} 2-\mathrm{O} 1^{\text {viii }}$	2.7627 (16)

$\mathrm{K} 1-\mathrm{O} 1$	2.7438 (16)
$\mathrm{K} 1-\mathrm{K} 2^{\text {vi }}$	3.6728 (4)
K1-K2	3.6728 (4)
O1-C2	1.254 (3)
O1-K2	2.7627 (16)
N1-C2	1.333 (3)
N1-C4	1.465 (3)
N1-C3	1.468 (3)
$\mathrm{C} 1-\mathrm{C} 2$	1.517 (3)
C1-H1A	0.9800
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 1^{\mathrm{ii}}$	80.70 (5)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 1^{\text {iii }}$	99.30 (5)
$\mathrm{O} 1^{\text {ii }}-\mathrm{K} 1-\mathrm{O} 1^{\text {iii }}$	180.00 (7)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 1^{\text {iv }}$	80.70 (5)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{O} 1^{\mathrm{iv}}$	80.70 (5)
$\mathrm{O} 1^{\text {iii] }}-\mathrm{K} 1-\mathrm{O} 1^{\text {iv }}$	99.30 (5)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 1^{\mathrm{v}}$	99.30 (5)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{O}^{\mathrm{v}}$	99.30 (5)
$\mathrm{O} 1^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 1^{v}$	80.70 (5)
$\mathrm{O} 1^{\text {iv }}-\mathrm{K} 1-\mathrm{O}^{\text {v }}$	180.00 (7)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 1$	180.0
$\mathrm{O} 1 \mathrm{ii}-\mathrm{K} 1-\mathrm{O} 1$	99.30 (5)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 1$	80.70 (5)
$\mathrm{O} 1^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 1$	99.30 (5)
O1v-K1-O1	80.70 (5)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K} 1-\mathrm{K} 2^{\text {vi }}$	48.39 (3)
$\mathrm{O} 1^{1 i}-\mathrm{K} 1-\mathrm{K} 2^{\mathrm{vi}}$	48.39 (3)
$\mathrm{O} 1^{\text {iiii }}$-K1-K2 ${ }^{\text {vi }}$	131.61 (3)
$\mathrm{O} 1^{\text {iv }}-\mathrm{K} 1-\mathrm{K} 2^{\text {vi }}$	48.39 (3)
$\mathrm{O} 1^{\mathrm{v}}-\mathrm{K} 1-\mathrm{K} 2^{\text {vi }}$	131.61 (3)
O1-K1-K2 ${ }^{\text {vi }}$	131.61 (3)
O1-K1-K2	131.61 (3)
$\mathrm{O} 1 \mathrm{ii}-\mathrm{K} 1-\mathrm{K} 2$	131.61 (3)
$\mathrm{O} 1{ }^{\text {iiii }} \mathrm{K} 1-\mathrm{K} 2$	48.39 (3)
$\mathrm{O} 1^{\mathrm{iv}}-\mathrm{K} 1-\mathrm{K} 2$	131.61 (3)
O1v-K1-K2	48.39 (3)
O1-K1-K2	48.39 (3)
$\mathrm{K} 2{ }^{\text {vi}}-\mathrm{K} 1-\mathrm{K} 2$	180.0
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{K} 1$	127.11 (15)
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{K} 2$	147.87 (15)
$\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 2$	83.67 (5)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4$	118.5 (2)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$	121.9 (2)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3$	119.6 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5

$\mathrm{K} 2-\mathrm{O} 1^{\text {iii }}$	2.7627 (16)
$\mathrm{K} 2-\mathrm{O} 1^{\text {ix }}$	2.7627 (17)
K2-K1 ${ }^{\text {x }}$	3.6728 (4)
C3-H3A	0.9800
C3-H3B	0.9800
C3-H3C	0.9800
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9800
C4-H4B	0.9800
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9800

$\mathrm{O}^{\mathrm{v}}-\mathrm{K} 2 — \mathrm{O} 1^{\text {viii }} \quad 99.97$ (5)
99.97 (5)
80.03 (5)
180.0
80.03 (5)
99.97 (5)
80.03 (5)
99.97 (5)
99.97 (5)
80.03 (5)
99.96 (5)
80.04 (5)
180.0
132.06 (3)
47.94 (3)
132.06 (3)
47.94 (3)
132.06 (3)
47.94 (3)
47.94 (3)
132.06 (3)
47.94 (3)
132.06 (3)
47.94 (3)
132.06 (3)
180.0
121.0 (2)
122.3 (2)
116.8 (2)
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5

supporting information

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{O}^{\text {vii }}-\mathrm{K} 2-\mathrm{O} 1^{\text {v }}$	180.0	$\mathrm{H} 4 \mathrm{~B}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{O} 1^{\text {vii- }} \mathrm{K} 2-\mathrm{O}^{\text {viii }}$	$80.03(5)$		
$\mathrm{K} 1-\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 1$	$-167.19(17)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 2-\mathrm{O} 1$	$-1.0(4)$
$\mathrm{K} 2-\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 1$	$32.0(4)$	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{O} 1$	$-178.7(2)$
$\mathrm{K} 1-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$12.8(3)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$179.0(2)$
$\mathrm{K} 2-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$-148.1(2)$	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$1.4(4)$

Symmetry codes: (i) $-x,-y,-z$; (ii) $y,-x+y,-z$; (iii) $-y, x-y, z$; (iv) $x-y, x,-z$; (v) $-x+y,-x, z$; (vi) $x, y, z-1$; (vii) $x-y, x,-z+1$; (viii) $y,-x+y,-z+1$; (ix) $-x,-y,-z+1$; (x) $x, y, z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 A \cdots \mathrm{I} 1^{\text {vi }}$	0.98	3.20	$4.178(3)$	177
$\mathrm{C} 3 — \mathrm{H} 3 A \cdots \mathrm{I}^{\text {vi }}$	0.98	3.20	$4.178(3)$	174
$\mathrm{C} 4 — \mathrm{H} 4 C \cdots \mathrm{I} 1$	0.98	3.00	$3.967(3)$	170

Symmetry code: (vi) $x, y, z-1$.

