

ISSN 1600-5368

Received 5 August 2014 Accepted 26 August 2014

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; magnesium complex; phenoxy herbicide; (2,4-dichlorophenoxy)acetic acid; hydrogen bonding

CCDC reference: 1021287 **Supporting information**: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structure of the magnesium salt of the herbicide 2,4-D: pentaaqua[(2,4-dichlorophenoxy)-acetato- κ O]magnesium (2,4-dichlorophenoxy)-acetate hemihydrate

Graham Smith

Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia. *Correspondence e-mail: g.smith@qut.edu.au

In the crystal structure of the title magnesium salt of the phenoxy herbicide (2,4-dichlorophenoxy)acetic acid (2,4-D), $[Mg(C_8H_5Cl_2O_3)(H_2O)_5](C_8H_5.Cl_2O_3)\cdot 0.5H_2O$, the discrete cationic MgO₆ complex unit comprises a carboxylate O-donor from a monodentate 2,4-D anionic ligand and five water molecules, resulting in a slightly distorted octahedral coordination sphere. The free 2,4-D anions are linked to the complex units through duplex water–carboxylate O– $H \cdot \cdot \cdot O$ hydrogen bonds through the coordinating water molecules. In the crystal, inter-unit O– $H \cdot \cdot \cdot O$ hydrogen-bonding interactions involving coordinating water molecules as well as the solvent water molecule (occupancy 0.5) with carboxylate O-atom acceptors, give a layered structure lying parallel to (001), in which π - π ligand–cation interactions [minimum ring centroid separation = 3.6405 (17) Å] and a short O– $H \cdot \cdot Cl$ interaction are also found.

1. Chemical context

The phenoxyacetic acids comprise an important group of chemicals which has among its members those ring-substituted representatives having selective herbicidal activity, e.g. the commercial but in some cases, now prohibited (2,4-dichlorophenoxy)acetic acid (2,4-D), (2,4,5-trichlorophenoxy)acetic acid (2,4,5-T) and (4-chloro-2-methylphenoxy)acetic acid (MCPA) (O'Neil, 2002; Zumdahl, 2010; Cobb & Reade, 2011). Of interest have also been the structures of the metal complexes with these acids, including those with magnesium in which the monoanionic phenoxyacetate ligands (L) display a variety of coordination modes, all based on an octahedral MgO₆ metal stereochemistry. These include discrete monomeric { $[MgL_2(H_2O)_4]$ [L = 2-(2-fluorophenoxy)acetate (Kennard *et al.*, 1986) and $L = MCPA^{-}$ (Smith *et al.*, 1981)] and $[MgL(H_2O)_5] \cdot L [L = 2,4,5-T^- (Smith et al., 1982)]$ or polymeric $\{[MgL_2(H_2O)_2]\}_n [L = phenoxyacetate, (4-chloro$ phenoxy)acetate or (4-fluorophenoxy)acetate] (Smith et al., 1980; Smith, 2012)}. The title complex, $[Mg(C_8H_5Cl_2O_3) (H_2O)_5](C_8H_5Cl_2O_3)\cdot 0.5H_2O$, was obtained from the reaction of 2,4-D with MgCO₃ in aqueous ethanol and its crystal structure is reported herein.

research communications

Figure 1

Molecular configuration and atom-naming scheme for the title compound, with displacement ellipsoids drawn at the 40% probability level. Inter-species hydrogen bonds are shown as dashed lines.

2. Structural commentary

In the title complex (Fig. 1), the discrete MgO₆ complex units have, as expected, essentially octahedral stereochemistry [Mg-O bond length range = 2.031 (2)-2.094 (2)Å], comprising a carboxylate O-donor from a monodentate 2,4-D⁻ ligand and five water molecules. The free 2,4-D⁻ counteranion is linked to the complex unit through an unusual duplex water-carboxylate O-H···O hydrogen-bonding association involving the coordinating water molecules O1W and O2W (Table 1), giving a cyclic ring motif incorporating the Mg²⁺ cation [graph set $R_2^2(8)$]. Except for the presence of the hemihydrate molecule of solvation, the title complex is very similar to that of the Mg complex with the analogous phenoxy herbicide, (2,4,5-trichlorophenoxy)acetic acid (Smith *et al.*, 1982).

In the present complex, both 2,4-D species are essentially planar [defining torsion angles for the oxoacetic acid side chain (C1*A*/*B*-O11*A*/*B*-C12*A*/*B*-C13*A*/*B* and O11*A*/*B*-C12*A*/*B*-C13*A*/*B* and O11*A*/*B*-C12*A*/*B*-C13*A*/*B* and 175.7 (2) and 178.7 (2)° (anion *B*), respectively]. This contrasts with the parent acid 2,4-D (Smith *et al.*, 1976), in which the oxoacetic acid side chain adopts a synclinal conformation (benzene ring to carboxyl group dihedral angle = 75.2°).

Figure 2

The two-dimensional hydrogen-bonded structure of the title compound in the unit cell, viewed down the a axis. Non-associative H atoms have been omitted. For symmetry codes, see Table 1.

Table 1			
Hydrogen-bond	geometry	(Å,	°).

	• • • •			
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W - H11W \cdot \cdot \cdot O13B$	0.86 (3)	1.92 (3)	2.772 (3)	171 (3)
$O1W-H12W\cdots O4W^{i}$	0.87 (3)	2.09 (3)	2.939 (3)	165 (3)
$O2W - H21W \cdots O14B$	0.88(2)	1.75 (2)	2.623 (3)	176 (3)
$O2W - H22W \cdots O14B^{ii}$	0.87 (3)	1.88 (3)	2.754 (3)	173 (3)
$O3W-H31W\cdots O13A^{iii}$	0.87(2)	1.80 (2)	2.656 (3)	167 (3)
O3W−H32W···Cl2A ⁱⁱⁱ	0.87 (3)	2.50 (3)	3.345 (2)	165 (3)
$O4W-H41W\cdots O13A^{i}$	0.89 (2)	1.77 (2)	2.652 (3)	172 (4)
$O4W-H42W\cdots O2W^{iv}$	0.88 (2)	2.19 (3)	2.980 (3)	151 (3)
$O5W - H51W \cdot \cdot \cdot O6W^{v}$	0.90 (5)	1.90 (6)	2.543 (5)	127 (4)
$O5W-H52W\cdots O13B^{vi}$	0.88 (4)	1.86 (4)	2.708 (4)	162 (4)
$O6W - H61W \cdots O14B^{iv}$	0.91 (6)	1.77 (6)	2.654 (5)	162 (7)
O6W-H62WO14A	0.90 (6)	2.12 (5)	3.006 (5)	168 (5)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 2, -y, -z + 1; (iii) x, y - 1, z; (iv) -x + 1, -y, -z + 1; (v) x + 1, y, z; (vi) -x + 2, -y + 1, -z + 1.

3. Supramolecular features

In the crystal of the title compound, inter-unit O–H···O hydrogen-bonding interactions (Table 1) involving all coordinating water molecules, as well as the hemihydrate solvent molecule, with carboxylate O-atom acceptors, give a layered structure lying parallel (001) (Fig. 2). Within these layers, weak π - π interactions between centrosymmetrically related 2,4-D ligand–anion species $A \cdots B^{i}$ are also found. The 2,4-D⁻ molecules lie parallel to (101) and have a minimum ring centroid

Table 2	
---------	--

Experimental details.	
Crystal data	
Chemical formula	$[Mg(C_8H_5Cl_2O_3)(H_2O)_5]$ -
	$(C_8H_5Cl_2O_3)\cdot 0.5H_2O$
Mr	563.44
Crystal system, space group	Triclinic, P1
Temperature (K)	200
a, b, c (Å)	7.3551 (6), 7.6579 (5), 20.7878 (14)
α, β, γ (°)	91.266 (6), 94.341 (6), 94.250 (6)
(A^3)	1163.84 (14)
Z	2
adiation type	- Μο Κα
$\mu (\text{mm}^{-1})$	0.59
Crystal size (mm)	$0.40 \times 0.12 \times 0.10$
Data collection	
	O-feed Differentian Convint & CCT
Jinractometer	detector
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2013)
T_{\min}, T_{\max}	0.970, 0.980
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	7636, 4575, 3458
	0.029
$\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)] w R(F^2) S$	0.050 0.107 1.04
No of reflections	4575
Jo of parameters	334
Jo of restraints	12
I-atom treatment	H atoms treated by a mixture of independent and constrained
• • • • • • -3	reinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e \ A}^{-})$	0.69, -0.51

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 and SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012), and PLATON (Spek, 2009).

separation of 3.6405 (17) Å. A short $O3W-H\cdots Cl2A^{iii}$ interaction [3.345 (2) Å] is also observed [for symmetry codes (i) and (iii), see: Table 1].

4. Synthesis and crystallization

The title compound was synthesized by the addition of excess MgCO₃ to 15 ml of a hot aqueous solution of (2,4-dichlorophenoxy)acetic acid (0.1 mmol) in ethanol–water (1:10 v/v). After completion of the reaction, excess MgCO₃ was removed by filtration and the solution was allowed to evaporate at room temperature, providing colourless prisms of the title compound from which a specimen was cleaved for the X-ray analysis.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms on all water molecules were located in difference Fourier maps. Their positional parameters were refined with restraints [O-H = 0.90 (2) Å], with $U_{iso}(H) = 1.5U_{eq}(O)$. Other H atoms were included in the refinement at calculated positions (aromatic C-H = 0.95 Å or methylene 0.99 Å), with $U_{iso}(H) = 1.2U_{eq}(C)$, using a ridingmodel approximation. The site-occupancy factor for the water molecule of solvation was determined as 0.502 (4) and was subsequently fixed at 0.50.

Acknowledgements

The author acknowledges support from the Science and Engineering Faculty and the University Library, Queensland University of Technology.

References

- Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
- Cobb, A. H. & Reade, J. P. H. (2011). In *Herbicides and Plant Physiology*, 2nd ed. Bognor Regis, UK: Wiley-Blackwell.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Kennard, C. H. L., O'Reilly, E. J., Schiller, S., Smith, G. & White, A. H. (1986). Aust. J. Chem. **39**, 1823–1832.
- O'Neil, M. J. (2002). Editor. *The Merck Index*, 13th ed., pp. 491, 1028, 1610. Whitehouse Station, NJ: Merck & Co. Inc.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, G. (2012). Acta Cryst. E68, m1178.
- Smith, G., Kennard, C. H. L. & White, A. H. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 791-792.
- Smith, G., O'Reilly, E. J. & Kennard, C. H. L. (1980). J. Chem. Soc. Dalton Trans., pp. 2462–2466.
- Smith, G., O'Reilly, E. J. & Kennard, C. H. L. (1981). Cryst. Struct. Commun. 10, 1397–1402.
- Smith, G., O'Reilly, E. J. & Kennard, C. H. L. (1982). Inorg. Chim. Acta, 62, 241–246.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zumdahl, R. L. (2010). In A History of Weed Science in the United States. New York: Elsevier.

supporting information

Acta Cryst. (2014). E70, 161-163 [doi:10.1107/S1600536814019357]

Crystal structure of the magnesium salt of the herbicide 2,4-D: pentaaqua[(2,4-dichlorophenoxy)acetato- κO]magnesium (2,4-dichlorophenoxy)acetate hemihydrate

Graham Smith

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2013); cell refinement: *CrysAlis PRO* (Agilent, 2013); data reduction: *CrysAlis PRO* (Agilent, 2013); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) within *WinGX* (Farrugia, 2012); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON* (Spek, 2009).

Pentaaqua[(2,4-dichlorophenoxy)acetato-*kO*]magnesium (2,4-dichlorophenoxy)acetate hemihydrate

Crystal	data
---------	------

$[Mg(C_8H_5Cl_2O_3)(H_2O)_5](C_8H_5Cl_2O_3)\cdot 0.5H_2O$ $M_r = 563.44$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.3551 (6) Å b = 7.6579 (5) Å c = 20.7878 (14) Å a = 91.266 (6)° $\beta = 94.341$ (6)° $\gamma = 94.250$ (6)° V = 1163.84 (14) Å ³ Data collection	Z = 2 F(000) = 578 $D_x = 1.608 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1889 reflections $\theta = 3.5-27.2^{\circ}$ $\mu = 0.59 \text{ mm}^{-1}$ T = 200 K Lath, colourless $0.40 \times 0.12 \times 0.10 \text{ mm}$
Data conection Oxford Diffraction Gemini-S CCD-detector diffractometer Radiation source: Enhance (Mo) X-ray source Graphite monochromator Detector resolution: 16.077 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2013) $T_{min} = 0.970, T_{max} = 0.980$	7636 measured reflections 4575 independent reflections 3458 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 3.3^{\circ}$ $h = -8 \rightarrow 9$ $k = -9 \rightarrow 8$ $l = -16 \rightarrow 25$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$	4575 reflections 334 parameters 12 restraints

45/5 reflections
334 parameters
12 restraints
Primary atom site location: structure-invariant direct methods

 $wR(F^2) = 0.107$

S = 1.04

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0344P)^2 + 0.6822P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.69 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$
and constrained refinement	

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cl2A	0.32241 (15)	1.10346 (11)	0.21550 (4)	0.0581 (3)	
Cl4A	0.09192 (10)	0.77979 (11)	-0.01112 (4)	0.0416 (3)	
Mg1	0.64072 (13)	0.28185 (12)	0.42864 (4)	0.0272 (3)	
O1W	0.7607 (3)	0.4533 (3)	0.50028 (11)	0.0392 (8)	
O2W	0.7909 (3)	0.0906 (3)	0.47054 (11)	0.0428 (8)	
O3W	0.5253 (3)	0.0856 (3)	0.36448 (10)	0.0384 (7)	
O4W	0.4292 (3)	0.2243 (3)	0.48859 (10)	0.0354 (7)	
O5W	0.8325 (4)	0.3474 (5)	0.36472 (14)	0.0803 (14)	
O11A	0.3737 (3)	0.7518 (2)	0.26146 (9)	0.0311 (6)	
O13A	0.5235 (3)	0.7438 (3)	0.38384 (10)	0.0394 (8)	
O14A	0.4784 (3)	0.4541 (3)	0.38457 (11)	0.0523 (9)	
C1A	0.3065 (4)	0.7496 (4)	0.19790 (13)	0.0269 (9)	
C2A	0.2754 (4)	0.9101 (4)	0.17018 (13)	0.0291 (9)	
C3A	0.2087 (4)	0.9207 (4)	0.10640 (14)	0.0314 (9)	
C4A	0.1726 (4)	0.7682 (4)	0.06967 (13)	0.0299 (9)	
C5A	0.2025 (4)	0.6081 (4)	0.09524 (14)	0.0339 (10)	
C6A	0.2687 (4)	0.5993 (4)	0.15926 (14)	0.0322 (10)	
C12A	0.3942 (4)	0.5832 (4)	0.28841 (13)	0.0308 (9)	
C13A	0.4716 (4)	0.5993 (4)	0.35773 (14)	0.0322 (10)	
Cl2B	1.16172 (14)	0.63544 (11)	0.80594 (4)	0.0560 (3)	
Cl4B	1.41057 (11)	0.24035 (12)	0.99966 (4)	0.0459 (3)	
O11B	1.1112 (3)	0.3112 (3)	0.73144 (10)	0.0377 (7)	
O13B	0.9449 (3)	0.3560 (3)	0.61359 (11)	0.0479 (8)	
O14B	0.9418 (3)	0.0723 (4)	0.58839 (11)	0.0584 (10)	
C1B	1.1820 (4)	0.2850 (4)	0.79283 (14)	0.0304 (10)	
C2B	1.2150 (4)	0.4327 (4)	0.83429 (15)	0.0324 (10)	
C3B	1.2847 (4)	0.4191 (4)	0.89740 (14)	0.0341 (10)	
C4B	1.3236 (4)	0.2574 (4)	0.91982 (14)	0.0324 (10)	
C5B	1.2948 (4)	0.1096 (4)	0.88026 (15)	0.0354 (10)	
C6B	1.2253 (4)	0.1242 (4)	0.81655 (15)	0.0356 (10)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C12B	1.0691 (4)	0.1584 (4)	0.69131 (14)	0.0375 (11)	
C13B	0.9786 (4)	0.2045 (5)	0.62639 (15)	0.0412 (11)	
O6W	0.1369 (6)	0.2203 (6)	0.3500 (2)	0.0411 (17)	0.500
H3A	0.18810	1.03100	0.08830	0.0380*	
H5A	0.17800	0.50420	0.06930	0.0410*	
H6A	0.28850	0.48840	0.17700	0.0390*	
H11W	0.828 (4)	0.423 (5)	0.5331 (13)	0.0590*	
H12A	0.47650	0.51830	0.26280	0.0370*	
H12W	0.713 (5)	0.549 (3)	0.5108 (17)	0.0590*	
H13A	0.27360	0.51580	0.28600	0.0370*	
H21W	0.838 (5)	0.089 (5)	0.5105 (10)	0.0640*	
H22W	0.869 (4)	0.035 (5)	0.4497 (16)	0.0640*	
H31W	0.511 (5)	-0.028 (2)	0.3660 (17)	0.0580*	
H32W	0.464 (4)	0.108 (5)	0.3286 (12)	0.0580*	
H41W	0.451 (4)	0.245 (5)	0.5307 (9)	0.0530*	
H42W	0.371 (4)	0.120 (3)	0.4861 (17)	0.0530*	
H51W	0.912 (6)	0.275 (6)	0.382 (3)	0.1210*	
H52W	0.900 (6)	0.447 (4)	0.363 (2)	0.1210*	
H3B	1.30550	0.52030	0.92500	0.0410*	
H5B	1.32220	-0.00140	0.89630	0.0430*	
H6B	1.20730	0.02270	0.78900	0.0430*	
H12B	0.98600	0.07460	0.71280	0.0450*	
H13B	1.18280	0.10110	0.68470	0.0450*	
H61W	0.126 (10)	0.131 (7)	0.378 (3)	0.0620*	0.500
H62W	0.230 (7)	0.296 (7)	0.365 (3)	0.0620*	0.500

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	<i>U</i> ³³	U^{12}	U^{13}	U^{23}
Cl2A	0.1102 (8)	0.0252 (4)	0.0356 (5)	0.0087 (5)	-0.0197 (5)	0.0018 (3)
Cl4A	0.0416 (5)	0.0557 (5)	0.0268 (4)	0.0087 (4)	-0.0071 (3)	0.0001 (4)
Mg1	0.0359 (5)	0.0197 (5)	0.0251 (5)	-0.0003 (4)	-0.0017 (4)	0.0002 (4)
OIW	0.0516 (14)	0.0262 (12)	0.0373 (13)	0.0055 (10)	-0.0121 (10)	-0.0075 (10)
O2W	0.0436 (13)	0.0400 (14)	0.0434 (14)	0.0202 (11)	-0.0164 (10)	-0.0166 (11)
O3W	0.0561 (14)	0.0208 (11)	0.0348 (13)	0.0009 (10)	-0.0169 (10)	-0.0010 (10)
O4W	0.0464 (13)	0.0290 (12)	0.0309 (12)	0.0021 (10)	0.0042 (10)	0.0036 (10)
O5W	0.082 (2)	0.095 (3)	0.0573 (19)	-0.0509 (18)	0.0218 (16)	-0.0094 (17)
011A	0.0489 (12)	0.0209 (10)	0.0232 (10)	0.0040 (9)	-0.0023 (8)	0.0071 (8)
013A	0.0628 (15)	0.0246 (12)	0.0295 (12)	-0.0012 (10)	-0.0020 (10)	0.0065 (9)
014A	0.0907 (19)	0.0218 (12)	0.0419 (14)	0.0064 (12)	-0.0159 (12)	0.0106 (10)
C1A	0.0289 (15)	0.0283 (16)	0.0234 (15)	0.0018 (12)	0.0010 (11)	0.0055 (12)
C2A	0.0371 (17)	0.0261 (16)	0.0238 (15)	0.0014 (13)	0.0007 (12)	0.0020 (12)
C3A	0.0342 (16)	0.0314 (17)	0.0296 (16)	0.0079 (13)	0.0013 (12)	0.0088 (13)
C4A	0.0266 (15)	0.0413 (18)	0.0216 (15)	0.0028 (13)	-0.0005 (11)	0.0024 (13)
C5A	0.0363 (17)	0.0318 (17)	0.0324 (17)	-0.0004 (13)	-0.0006 (13)	-0.0040 (13)
C6A	0.0386 (17)	0.0265 (16)	0.0312 (17)	0.0007 (13)	0.0016 (13)	0.0066 (13)
C12A	0.0438 (18)	0.0188 (15)	0.0302 (16)	0.0040 (13)	0.0015 (13)	0.0070 (12)
C13A	0.0425 (18)	0.0249 (16)	0.0299 (17)	0.0063 (13)	0.0025 (13)	0.0065 (13)

supporting information

Cl2B	0.0899 (7)	0.0302 (5)	0.0493 (5)	0.0140 (4)	0.0029 (5)	0.0068 (4)
Cl4B	0.0388 (5)	0.0653 (6)	0.0332 (4)	0.0054 (4)	-0.0018 (3)	0.0070 (4)
O11B	0.0491 (13)	0.0354 (13)	0.0278 (12)	0.0029 (10)	-0.0017 (9)	0.0037 (9)
O13B	0.0471 (14)	0.0538 (16)	0.0409 (14)	-0.0040 (12)	-0.0052 (10)	0.0117 (12)
O14B	0.0687 (17)	0.0742 (19)	0.0330 (14)	0.0209 (14)	-0.0021 (11)	-0.0153 (13)
C1B	0.0288 (16)	0.0316 (17)	0.0314 (17)	0.0016 (13)	0.0049 (12)	0.0051 (13)
C2B	0.0362 (17)	0.0245 (16)	0.0380 (18)	0.0055 (13)	0.0075 (13)	0.0051 (13)
C3B	0.0339 (17)	0.0333 (18)	0.0351 (18)	0.0024 (13)	0.0040 (13)	-0.0014 (13)
C4B	0.0259 (16)	0.0419 (19)	0.0298 (17)	0.0047 (13)	0.0018 (12)	0.0058 (14)
C5B	0.0335 (17)	0.0345 (18)	0.0389 (18)	0.0049 (14)	0.0021 (13)	0.0091 (14)
C6B	0.0411 (18)	0.0278 (17)	0.0380 (18)	0.0039 (14)	0.0017 (13)	0.0024 (14)
C12B	0.0383 (18)	0.0406 (19)	0.0339 (18)	0.0043 (14)	0.0042 (13)	0.0005 (14)
C13B	0.0361 (18)	0.060 (2)	0.0287 (18)	0.0055 (17)	0.0094 (13)	-0.0006 (17)
O6W	0.044 (3)	0.032 (3)	0.047 (3)	0.000 (2)	0.003 (2)	0.004 (2)

Geometric parameters (Å, °)

Mg1—O1W	2.065 (2)	O14B—C13B	1.270 (5)	
Mg1—O4W	2.094 (2)	O6W—H61W	0.91 (6)	
Mg1—O5W	2.053 (3)	O6W—H62W	0.90 (6)	
Mg1—O14A	2.031 (2)	C1A—C6A	1.388 (4)	
Mg1—O2W	2.067 (2)	C1A—C2A	1.396 (4)	
Mg1—O3W	2.076 (2)	C2A—C3A	1.385 (4)	
Cl2A—C2A	1.736 (3)	C3A—C4A	1.379 (4)	
Cl4A—C4A	1.745 (3)	C4A—C5A	1.373 (4)	
Cl2B—C2B	1.734 (3)	C5A—C6A	1.387 (4)	
Cl4B—C4B	1.744 (3)	C12A—C13A	1.508 (4)	
O11A—C1A	1.375 (3)	СЗА—НЗА	0.9500	
O11A—C12A	1.432 (3)	C5A—H5A	0.9500	
O13A—C13A	1.243 (4)	С6А—Н6А	0.9500	
O14A—C13A	1.258 (4)	C12A—H12A	0.9900	
O1W—H12W	0.87 (3)	C12A—H13A	0.9900	
O1W—H11W	0.86 (3)	C1B—C6B	1.386 (4)	
O2W—H22W	0.87 (3)	C1B—C2B	1.402 (4)	
O2W—H21W	0.88 (2)	C2B—C3B	1.381 (4)	
O3W—H31W	0.870 (16)	C3B—C4B	1.375 (4)	
O3W—H32W	0.87 (3)	C4B—C5B	1.378 (4)	
O4W—H42W	0.88 (2)	C5B—C6B	1.393 (4)	
O4W—H41W	0.89 (2)	C12B—C13B	1.520 (4)	
O5W—H51W	0.90 (5)	СЗВ—НЗВ	0.9500	
O5W—H52W	0.88 (4)	C5B—H5B	0.9500	
O11B—C1B	1.366 (4)	C6B—H6B	0.9500	
O11B—C12B	1.423 (4)	C12B—H13B	0.9900	
O13B—C13B	1.235 (4)	C12B—H12B	0.9900	
O1W—Mg1—O2W	87.62 (10)	C4A—C5A—C6A	119.5 (3)	
O1W—Mg1—O3W	173.07 (10)	C1A—C6A—C5A	121.2 (3)	
O1W—Mg1—O4W	87.94 (9)	O11A—C12A—C13A	111.3 (2)	

O1W—Mg1—O5W	93.97 (12)	O14A—C13A—C12A	113.2 (3)
O1W—Mg1—O14A	96.53 (10)	O13A—C13A—C12A	121.7 (3)
O2W—Mg1—O3W	86.18 (9)	O13A—C13A—O14A	125.1 (3)
O2W—Mg1—O4W	90.97 (9)	С2А—С3А—НЗА	121.00
O2W—Mg1—O5W	93.47 (12)	С4А—С3А—Н3А	121.00
O2W—Mg1—O14A	175.40 (10)	С6А—С5А—Н5А	120.00
O3W—Mg1—O4W	89.06 (9)	С4А—С5А—Н5А	120.00
O3W—Mg1—O5W	89.51 (12)	С5А—С6А—Н6А	119.00
O3W—Mg1—O14A	89.56 (10)	С1А—С6А—Н6А	119.00
O4W - Mg1 - O5W	175.23 (12)	011A—C12A—H12A	109.00
04W—Mg1—014A	87.21 (10)	O11A—C12A—H13A	109.00
05W-Mg1-014A	88.23 (12)	C13A—C12A—H13A	109.00
C1A = O11A = C12A	115 3 (2)	H12A— $C12A$ — $H13A$	108.00
Mg1—O14A—C13A	146.3 (2)	C13A - C12A - H12A	109.00
$H11W \rightarrow O1W \rightarrow H12W$	108(3)	011B-C1B-C2B	107.00
Mg1_01W_H11W	124 (3)	011B $-C1B$ $-C6B$	124.8(3)
Mg1 = O1W = H12W	121(3) 122(2)	C^{2B} C^{1B} C^{6B}	121.0(3) 1180(3)
$H_{21}W = O_{2}W = H_{22}W$	102(2)	$C_{12}B - C_{2}B - C_{1}B$	110.0(3) 1190(2)
Mg1 = O2W = H21W	102(3) 127(2)	C12B = C2B = C1B C12B = C2B = C3B	119.0(2) 119.6(2)
Mg1 = O2W = H21W Mg1 = O2W = H22W	127(2) 123(2)	C1B - C2B - C3B	117.0(2) 1214(3)
Mg1 = O2W = H22W $Mg1 = O3W = H31W$	123(2) 134(2)	C^{2B} C^{3B} C^{4B}	121.7(3) 110.2(3)
Mg1O3WH32W	137(2) 122(2)	$C_{14B} - C_{4B} - C_{3B}$	119.2(3) 119.2(2)
$H_{31}W = O_{3}W = H_{32}W$	122(2) 103(3)	$C_{14B} = C_{4B} = C_{5B}$	119.2(2) 119.8(2)
$M_{g1} = 0.04W + H_{11}W$	105(5) 110(2)	$C_{1+D} = C_{1+D} = C_{2+D} = C_{2$	117.0(2) 1210(3)
Mg1 = O4W = H41W Mg1 = O4W = H42W	119(2) 120(2)	C_{3B} C_{4B} C_{5B} C_{6B}	121.0(3) 1105(3)
$H_{41W} = 0.4 \text{ W} = 1142 \text{ W}$	120(2) 104(3)	$C_{+B} = C_{5B} = C_{6B}$	119.5(3) 120.8(3)
1141 W = 04 W = 1142 W 151 W = 05 W = 152 W	104(3) 102(4)	C1D = C0D = C3D	120.0(3) 110.8(3)
$M_{a1} = 05W = H51W$	103(4)	$\begin{array}{c} 011B - 012B - 012B \\ 012B - 012B \\ 012B \end{array}$	110.0(3)
Mg1 = 05W = H51W	95 (5) 128 (3)	O13B— $C13B$ — $C12BO14P$ — $C12P$ — $C12P$	122.0(3) 112.0(3)
$MgI = O_3 W = H_3 Z W$	126(3) 1162(2)	O14B - C13B - C12B	115.0(5) 125.0(2)
	110.2(2)	O13D - O13D - O14D	123.0 (5)
H01W = U0W = H02W	109(0)	C4P C3P H3P	120.00
C_{2A} C_{1A} C_{0A}	117.7(3)	C4B—C5B—H5B	120.00
OIIA - CIA - COA	124.6(3)	C4B—C5B—H5B	120.00
OIIA - CIA - C2A	117.6 (2)	C6B—C5B—H5B	120.00
CI2A - C2A - CIA	120.1(2)		120.00
CIA - C2A - C3A	121.7 (3)		120.00
CI2A—C2A—C3A	118.2 (2)	OIIB—CI2B—HI2B	110.00
C2A—C3A—C4A	118.8 (3)	OIIB—CI2B—HI3B	109.00
C3A—C4A—C5A	121.1 (3)	C13B—C12B—H13B	110.00
Cl4A—C4A—C3A	119.3 (2)	H12B—C12B—H13B	108.00
Cl4A—C4A—C5A	119.6 (2)	C13B—C12B—H12B	109.00
O1W—Mg1—O14A—C13A	56.7 (4)	C2A—C3A—C4A—C5A	-0.3 (4)
O3W—Mg1—O14A—C13A	-126.6 (4)	C3A—C4A—C5A—C6A	0.6 (5)
O4W-Mg1-O14A-C13A	144.3 (4)	Cl4A—C4A—C5A—C6A	179.2 (2)
O5W—Mg1—O14A—C13A	-37.1 (4)	C4A—C5A—C6A—C1A	-0.4 (4)
C12A—O11A—C1A—C2A	176.9 (3)	O11A—C12A—C13A—O13A	-5.8 (4)
C12A—O11A—C1A—C6A	-3.6 (4)	O11A—C12A—C13A—O14A	174.8 (2)

C1A—O11A—C12A—C13A	179.0 (2)	O11B—C1B—C2B—Cl2B	0.9 (4)
Mg1-014A-C13A-013A	-60.7 (5)	O11B—C1B—C2B—C3B	179.4 (3)
Mg1-014A-C13A-C12A	118.7 (3)	C6B—C1B—C2B—Cl2B	-179.9 (2)
C12B—O11B—C1B—C2B	-176.6 (3)	C6B—C1B—C2B—C3B	-1.4 (4)
C12B—O11B—C1B—C6B	4.3 (4)	O11B—C1B—C6B—C5B	-179.1 (3)
C1B—O11B—C12B—C13B	175.7 (2)	C2B—C1B—C6B—C5B	1.7 (4)
C6A—C1A—C2A—C3A	0.2 (4)	Cl2B—C2B—C3B—C4B	178.9 (2)
O11A—C1A—C6A—C5A	-179.4 (3)	C1B—C2B—C3B—C4B	0.4 (5)
C2A—C1A—C6A—C5A	0.1 (4)	C2B—C3B—C4B—C14B	-179.7 (2)
O11A—C1A—C2A—C3A	179.7 (3)	C2B—C3B—C4B—C5B	0.3 (4)
C6A—C1A—C2A—Cl2A	-179.2 (2)	Cl4B—C4B—C5B—C6B	180.0 (2)
O11A—C1A—C2A—Cl2A	0.3 (4)	C3B—C4B—C5B—C6B	0.0 (5)
Cl2A—C2A—C3A—C4A	179.3 (2)	C4B—C5B—C6B—C1B	-1.1 (5)
C1A—C2A—C3A—C4A	-0.1 (5)	O11B—C12B—C13B—O13B	-1.9 (4)
C2A—C3A—C4A—Cl4A	-179.0 (2)	O11B—C12B—C13B—O14B	178.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
01 <i>W</i> —H11 <i>W</i> ····O13 <i>B</i>	0.86 (3)	1.92 (3)	2.772 (3)	171 (3)
$O1W - H12W \cdots O4W^{i}$	0.87 (3)	2.09 (3)	2.939 (3)	165 (3)
O2 <i>W</i> —H21 <i>W</i> ···O14 <i>B</i>	0.88 (2)	1.75 (2)	2.623 (3)	176 (3)
O2 <i>W</i> —H22 <i>W</i> ···O14 <i>B</i> ⁱⁱ	0.87 (3)	1.88 (3)	2.754 (3)	173 (3)
O3 <i>W</i> —H31 <i>W</i> ···O13 <i>A</i> ⁱⁱⁱ	0.87 (2)	1.80 (2)	2.656 (3)	167 (3)
O3 <i>W</i> —H32 <i>W</i> ····Cl2 <i>A</i> ⁱⁱⁱ	0.87 (3)	2.50 (3)	3.345 (2)	165 (3)
O4 <i>W</i> —H41 <i>W</i> ···O13 <i>A</i> ⁱ	0.89 (2)	1.77 (2)	2.652 (3)	172 (4)
$O4W - H42W \cdots O2W^{iv}$	0.88 (2)	2.19 (3)	2.980 (3)	151 (3)
O5 <i>W</i> —H51 <i>W</i> ···O6 <i>W</i> ^v	0.90 (5)	1.90 (6)	2.543 (5)	127 (4)
O5 <i>W</i> —H52 <i>W</i> ····O13 <i>B</i> ^{vi}	0.88 (4)	1.86 (4)	2.708 (4)	162 (4)
O6 <i>W</i> —H61 <i>W</i> ····O14 <i>B</i> ^{iv}	0.91 (6)	1.77 (6)	2.654 (5)	162 (7)
O6₩—H62₩…O14A	0.90 (6)	2.12 (5)	3.006 (5)	168 (5)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+2, -*y*, -*z*+1; (iii) *x*, *y*-1, *z*; (iv) -*x*+1, -*y*, -*z*+1; (v) *x*+1, *y*, *z*; (vi) -*x*+2, -*y*+1, -*z*+1.