## research communications



Received 5 September 2014 Accepted 14 September 2014

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

**Keywords**: crystal structure; seratrodast; trometamol; salt; solubility; hydrogen bonding

CCDC reference: 975488 Supporting information: this article has supporting information at journals.iucr.org/e

# Crystal structure of 7-phenyl-7-(2,4,5-trimethyl-3,6dioxocyclohexa-1,4-dien-1-yl)heptanoate 1,3-dihydroxy-2-(hydroxymethyl)propan-2aminium monohydrate: a new solid form of seratrodast

CrossMark

#### **Benyong Lou**

Department of Chemistry and Chemical Engineering, Minjiang University, Fuzhou, 350108, People's Republic of China, Corresponding E-mail: lby@mju.edu.cn. \*Correspondence e-mail: lby@mju.edu.cn

In the title hydrated salt,  $C_4H_{12}NO_3^+ \cdot C_{22}H_{25}O_4^- \cdot H_2O$ , seratrodast [systematic name: 7-phenyl-7-(2,4,5-trimethyl-3,6-dioxocyclohexa-1,4-dien-1-yl)heptanoic acid] crystallized with trometamol [systematic name: 2-amino-2-(hydroxyméthyl)propane-1,3-diol] to form a monohydrated salt form of seratrodast. The carboxylic acid group of seratrodast has transferred its proton to the amino N atom of trometamol. In the crystal, the trometamol cations are linked to the water molecules and to each other by  $N-H\cdots O$  and  $O-H\cdots O$  hydrogen bonds forming sheets parallel to (100). The seratrodast anions are linked to both sides of these sheets by  $O-H\cdots O$  and  $C-H\cdots O$  hydrogen bonds, forming a three-layer two-dimensional structure. After forming the title salt, the solubility of seratrodast was found to be greatly improved.

#### 1. Chemical context

Seratrodast is the first thromboxane A2 receptor antagonist to have been developed as an anti-asthmatic drug (Samara, 1996). This drug molecule with a carboxylic group is practically insoluble in water. Its new solid forms have been scarcely exploited and only a polymorphic transition was ever investigated (Urakami & Beezer, 2003). Tris(hydroxymethyl)amino methane, commonly called trometamol, is often used as a buffer in biochemical studies. It has been successfully exploited for improving properties of APIs such as ketoprofen (Zippel & Wagenitz, 2006). In this study, trometamol was employed to co-crystallize with seratrodast to give rise to a hydrated salt. To the best of our knowledge, the title salt is the first multi-component crystalline form of seratrodast to be reported.



OPEN d ACCESS



2. Structural commentary

The molecular structure of the title salt is illustrated in Fig. 1. It was clear from a difference Fourier map that the carboxylic group of seratrodast had transferred its proton to the amino N atom of trometamol. The bond distances C1-O1 and C1-O2



Figure 1

A view of the molecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

of the carboxylate group of the seratrodast anion are 1.258 (4) and 1.232 (4) Å, respectively. The phenyl ring is normal to the dioxocyclohexadiene ring, with a dihedral angle of 89.95 (19)°, and the alkyl chain has an extended conformation.

#### 3. Supramolecular features

In the crystal, the trometamol cations are linked to the water molecules and to each other by  $N-H\cdots O$  and  $O-H\cdots O$ hydrogen bonds, forming sheets parallel to (100); see Table 1 and Fig. 2. The seratrodast anions are linked to both sides of these sheets by  $O-H\cdots O$  and  $C-H\cdots O$  hydrogen bonds, forming a three-layer two-dimensional structure (Fig. 3 and Table 1). Further details of the hydrogen bonding are given below and in Table 1. The carboxylate anion interacts with one hydroxyl group of trometamol through strong hydrogen

Table 1Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - H \cdot \cdot \cdot A$ |
|-----------------------------|------|-------------------------|-------------------------|-----------------------------|
| $N1 - H1C \cdots O8^{i}$    | 0.99 | 1.85                    | 2.800 (4)               | 160                         |
| $N1-H1B\cdots O5^{ii}$      | 0.91 | 2.04                    | 2.935 (3)               | 166                         |
| $N1-H1A\cdots O6^{iii}$     | 0.97 | 1.88                    | 2.779 (3)               | 153                         |
| $O5-H5\cdots O7^{iii}$      | 0.97 | 1.76                    | 2.714 (3)               | 170                         |
| $O6-H6\cdots O1$            | 0.91 | 1.81                    | 2.662 (3)               | 154                         |
| $O7-H7A\cdots O8^{iii}$     | 0.92 | 1.77                    | 2.686 (3)               | 173                         |
| $O8-H8B\cdots O2$           | 0.92 | 1.76                    | 2.617 (3)               | 1523                        |
| $O8-H8A\cdots O1^{iv}$      | 0.91 | 1.76                    | 2.667 (3)               | 173                         |
| $C24 - H24A \cdots O1$      | 0.99 | 2.55                    | 3.410 (4)               | 146                         |
| $C25-H25A\cdots O2^{iii}$   | 0.99 | 2.44                    | 3.326 (4)               | 149                         |

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii)  $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$ ; (iii)  $x, -y + \frac{3}{2}, z - \frac{1}{2}$ ; (iv)  $x, -y + \frac{1}{2}, z + \frac{1}{2}$ .

bonding  $[O6 \cdot \cdot O1 = 2.662 (3) \text{ Å}]$ . There also exist hydrogenbonding interactions between carboxylate anion and water molecule  $[O8 \cdots O2 = 2.617 (3) \text{ Å}, O8 \cdots O1^{i} = 2.667 (3) \text{ Å}].$ The protonated trometamol cation interacts with each other through three kinds of hydrogen-bonding interactions. An  $R_2^2(11)$  heterosynthon is formed through hydrogen-bonding interactions between the hydroxyl groups  $[O5 \cdots O7^{iii}]$  = 2.714 (3) Å] and between the hydroxyl group and the amino group  $[N1 \cdots O6^{iii} = 2.779 (3) \text{ Å}]$ . Along the *c* axis, the  $R_2^2(11)$ heterosynthon gives rise to a hydrogen-bonded chain of trometamol cations, which is further linked into a twodimensional structure by hydrogen-bonding interactions between the amino and the hydroxyl groups  $[N1 \cdots O5^{ii}]$  = 2.935 (3) Å]. There also exist hydrogen-bonding interactions between water and trometamol  $[N1 \cdots O8^{i} = 2.800 (4) \text{ Å};$  $O7 \cdots O8^{iii} = 2.686$  (3) Å]. The various hydrogen-bonding interactions result in a two-dimensional layer structure in which the seratrodast anions are spread around two sides of the layer in an orderly manner (Table 1 and Fig. 3).



#### Figure 2

A view along the a axis of the two-dimensional hydrogen-bonded structure of the trometamol cations and the water molecules (hydrogen bonds are shown as dashed lines; see Table 1 for details).

#### 4. Database survey

To the best of our knowledge, the title salt is the first multicomponent crystalline form of seratrodast to be reported.



#### Figure 3

A view along the c axis of the crystal packing of the title compound (hydrogen bonds are shown as dashed lines; see Table 1 for details). H atoms not involved in hydrogen bonding have been omitted for clarity

## research communications

Table 2Experimental details.

| Crystal data                                         |                                                      |
|------------------------------------------------------|------------------------------------------------------|
| Chemical formula                                     | $C_4H_{12}NO_3^+ \cdot C_{22}H_{25}O_4^- \cdot H_2O$ |
| $M_{\rm r}$                                          | 493.58                                               |
| Crystal system, space group                          | Monoclinic, $P2_1/c$                                 |
| Temperature (K)                                      | 293                                                  |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                   | 23.506 (9), 9.665 (4), 11.344 (5)                    |
| $\beta$ (°)                                          | 94.223 (7)                                           |
| $V(Å^3)$                                             | 2570.0 (17)                                          |
| Ζ                                                    | 4                                                    |
| Radiation type                                       | Μο Κα                                                |
| $\mu (\text{mm}^{-1})$                               | 0.09                                                 |
| Crystal size (mm)                                    | $0.20 \times 0.20 \times 0.20$                       |
|                                                      |                                                      |
| Data collection                                      |                                                      |
| Diffractometer                                       | Rigaku Mercury CCD                                   |
| Absorption correction                                | Multi-scan ( <i>CrystalClear</i> ; Rigaku, 2000)     |
| $T_{\min}, T_{\max}$                                 | 0.549, 1.000                                         |
| No. of measured, independent and                     | 20028, 5762, 3564                                    |
| observed $[I > 2\sigma(I)]$ reflections              |                                                      |
| R <sub>int</sub>                                     | 0.062                                                |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$ | 0.649                                                |
|                                                      |                                                      |
| Refinement                                           |                                                      |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                  | 0.074, 0.288, 1.10                                   |
| No. of reflections                                   | 5762                                                 |
| No. of parameters                                    | 319                                                  |
| H-atom treatment                                     | H-atom parameters constrained                        |
| $\Delta \rho = \Delta \rho + (e \check{A}^{-3})$     | 0.55 - 0.42                                          |

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 and SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

#### 5. Synthesis and crystallization

Seratrodast (354 mg, 1 mmol) and trometamol (121 mg, 1 mmol) were dissolved in methanol (15 ml). The resulting solution was kept in air and after several days yellow block-like crystals of the title salt were obtained.

#### 6. Solubility Studies

Excess amounts of seratrodast and the title salt were suspended in 10 ml of water in screw-capped glass vials, respectively. These vials were kept at 310 K and were stirred at 100 r.p.m. using a magnetic stirrer. After 72 h, the suspensions were filtered through a 0.2  $\mu$ m syringe filter. The filtered aliquots were sufficiently diluted, and the absorbances were measured at 268 nm in triplicate. Finally, the concentration of seratrodast after 72 h in each sample was determined from the previously made standard graph. A standard graph was made by measuring the absorbance of varied concentrations of seratrodast (2–16 mg/L) in water/methanol (9:1) solution using a UV-2500 spectrophotometer at 268 nm. The calibrated plot showed a good correlation coefficient (y = 0.04997x + 0.00459,  $R^2 = 0.9991$ ). After forming the title salt, the solubility of seratrodast was found to be greatly improved.

#### 7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were positioned geometrically and refined as riding atoms: C-H =0.95–1.00 Å with  $U_{iso}(H) = 1.2U_{eq}(C)$ . The OH and  $NH_3^+$  H atoms were located in difference Fourier maps and refined as riding atoms with  $U_{iso}(H) = 1.2U_{eq}(O,N)$ .

#### Acknowledgements

The author is grateful to the Natural Science Foundation of Fujian Province (2012D107) and Research Project for Young and Middle-aged Faculty of Fujian Province (JA14250) for financial support. The experimental contributions of collaborators S. Cai and Z. Feng are greatly appreciated.

#### References

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

- Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Samara, E. E. (1996). Cardiovasc. Drug. Rev. 14, 272-285.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Urakami, K. & Beezer, A. E. (2003). Int. J. Pharm. 257, 265-271.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Zippel, H. & Wagenitz, A. (2006). Clin. Drug Investig. 26, 517-528.

# supporting information

Acta Cryst. (2014). E70, 228-230 [doi:10.1107/S1600536814020625]

# Crystal structure of 7-phenyl-7-(2,4,5-trimethyl-3,6-dioxocyclohexa-1,4-dien-1yl)heptanoate 1,3-dihydroxy-2-(hydroxymethyl)propan-2-aminium monohydrate: a new solid form of seratrodast

## **Benyong Lou**

### **Computing details**

Data collection: *CrystalClear* (Rigaku, 2000); cell refinement: *CrystalClear* (Rigaku, 2000); data reduction: *CrystalClear* (Rigaku, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

## 7-Phenyl-7-(2,4,5-trimethyl-3,6-dioxocyclohexa-1,4-dien-1-yl)heptanoate 1,3dihydroxy-2-(hydroxymethyl)propan-2-aminium monohydrate

Crystal data  $C_4H_{12}NO_3^+ C_{22}H_{25}O_4^- H_2O_4^ M_r = 493.58$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 23.506 (9) Åb = 9.665 (4) Åc = 11.344 (5) ÅT = 293 K $\beta = 94.223 \ (7)^{\circ}$  $V = 2570.0 (17) \text{ Å}^3$ Z = 4Data collection Rigaku Mercury CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 28.5714 pixels mm<sup>-1</sup> CCD Profile fitting scans Absorption correction: multi-scan (CrystalClear; Rigaku, 2000)  $T_{\rm min} = 0.549, T_{\rm max} = 1.000$ Refinement Refinement on  $F^2$ 

Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.074$   $wR(F^2) = 0.288$ S = 1.10 F(000) = 1064  $D_x = 1.276 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6295 reflections  $\theta = 2.1-27.5^{\circ}$   $\mu = 0.09 \text{ mm}^{-1}$  T = 293 KPrism, yellow  $0.20 \times 0.20 \times 0.20 \text{ mm}$ 

20028 measured reflections 5762 independent reflections 3564 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.062$  $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.6^{\circ}$  $h = -30 \rightarrow 30$  $k = -12 \rightarrow 12$  $l = -12 \rightarrow 14$ 

5762 reflections319 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

| Secondary atom site location: difference Fourier map | $w = 1/[\sigma^2(F_o^2) + (0.1567P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
|------------------------------------------------------|---------------------------------------------------------------------------|
| Hydrogen site location: inferred from                | $(\Delta/\sigma)_{\rm max} < 0.001$                                       |
| neighbouring sites                                   | $\Delta \rho_{\rm max} = 0.55 \text{ e} \text{ Å}^{-3}$                   |
| H-atom parameters constrained                        | $\Delta \rho_{\rm min} = -0.42  \mathrm{e}  \mathrm{\AA}^{-3}$            |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ ,

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x            | У           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|-------------|--------------|-----------------------------|
| 01  | 0.38025 (10) | 0.4145 (2)  | 0.4397 (2)   | 0.0447 (6)                  |
| O2  | 0.38047 (12) | 0.4204 (3)  | 0.6328 (2)   | 0.0537 (7)                  |
| O3  | 0.09684 (12) | 0.0531 (3)  | 0.8988 (3)   | 0.0749 (9)                  |
| O4  | 0.25430 (13) | -0.0713 (4) | 1.2339 (3)   | 0.0789 (10)                 |
| 05  | 0.44774 (10) | 0.5677 (2)  | 0.17616 (18) | 0.0408 (6)                  |
| O6  | 0.44283 (9)  | 0.6368 (2)  | 0.49902 (17) | 0.0389 (6)                  |
| 07  | 0.42596 (11) | 0.9565 (2)  | 0.43874 (19) | 0.0482 (6)                  |
| O8  | 0.42283 (9)  | 0.2989 (2)  | 0.8260 (2)   | 0.0440 (6)                  |
| H8B | 0.4079       | 0.3136      | 0.7498       | 0.053*                      |
| H1C | 0.5077       | 0.7821      | 0.1992       | 0.053*                      |
| H7A | 0.4222       | 1.0380      | 0.3969       | 0.053*                      |
| H1B | 0.4962       | 0.9171      | 0.2650       | 0.053*                      |
| H1A | 0.4590       | 0.8684      | 0.1637       | 0.053*                      |
| H8A | 0.4059       | 0.2252      | 0.8599       | 0.053*                      |
| Н5  | 0.4389       | 0.5703      | 0.0917       | 0.053*                      |
| H6  | 0.4274       | 0.5623      | 0.4592       | 0.053*                      |
| N1  | 0.47892 (10) | 0.8382 (3)  | 0.2369 (2)   | 0.0333 (6)                  |
| C1  | 0.36324 (13) | 0.3727 (3)  | 0.5360 (3)   | 0.0339 (7)                  |
| C2  | 0.31629 (15) | 0.2633 (4)  | 0.5285 (3)   | 0.0469 (8)                  |
| H2A | 0.2801       | 0.3087      | 0.5001       | 0.056*                      |
| H2B | 0.3254       | 0.1944      | 0.4681       | 0.056*                      |
| C3  | 0.30659 (14) | 0.1871 (4)  | 0.6411 (3)   | 0.0470 (8)                  |
| H3A | 0.3018       | 0.2554      | 0.7047       | 0.056*                      |
| H3B | 0.3408       | 0.1309      | 0.6644       | 0.056*                      |
| C4  | 0.25457 (15) | 0.0926 (4)  | 0.6304 (3)   | 0.0465 (8)                  |
| H4A | 0.2204       | 0.1495      | 0.6080       | 0.056*                      |
| H4B | 0.2592       | 0.0259      | 0.5656       | 0.056*                      |
| C5  | 0.24405 (15) | 0.0123 (4)  | 0.7421 (3)   | 0.0502 (9)                  |
| H5A | 0.2750       | -0.0560     | 0.7580       | 0.060*                      |
| H5B | 0.2448       | 0.0769      | 0.8099       | 0.060*                      |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C6         | 0 18728 (15)               | -0.0623(4)  | 0.7312(3)              | 0.0475(9)          |
|------------|----------------------------|-------------|------------------------|--------------------|
| Нба        | 0.1567                     | 0.0023 (4)  | 0.7184                 | 0.057*             |
| H6B        | 0.1861                     | -0.1212     | 0.6597                 | 0.057*             |
| C7         | 0.17374(14)                | -0.1507(4)  | 0.8334(3)              | 0.037<br>0.0452(8) |
| С7<br>Н7   | 0.2046                     | -0.2222     | 0.8397                 | 0.054*             |
| C8         | 0.11810 (13)               | -0.2336(4)  | 0.8148 (3)             | 0.034              |
|            | 0.11810(15)<br>0.08118(15) | -0.2237(4)  | 0.3148(3)<br>0.7166(4) | 0.0412(8)          |
| С9<br>Н0   | 0.0876                     | -0.1562     | 0.6581                 | 0.0500 (10)        |
| C10        | 0.0870<br>0.02207(16)      | -0.2118(5)  | 0.0381                 | $0.008^{\circ}$    |
| U10        | 0.0002                     | -0.3051     | 0.7012 (3)             | 0.0723 (13)        |
| C12        | 0.0092<br>0.10716 (18)     | -0.3031     | 0.0314<br>0.0007 (4)   | $0.087^{\circ}$    |
| U12        | 0.10710(10)                | -0.3320(3)  | 0.0987 (4)             | 0.0070(12)         |
| П13<br>С12 | 0.1527                     | -0.3420     | 0.9070                 | $0.080^{\circ}$    |
| U12        | 0.0590 (2)                 | -0.415/(5)  | 0.8830 (5)             | 0.0800 (10)        |
| H12        | 0.0512                     | -0.4800     | 0.9437                 | $0.105^{\circ}$    |
|            | 0.02316 (17)               | -0.40/5 (5) | 0.7856 (5)             | 0.0689 (12)        |
| HII        | -0.0090                    | -0.46/1     | 0.7752                 | 0.083*             |
| CI4        | 0.17815 (13)               | -0.07/8(3)  | 0.9519 (3)             | 0.0397 (8)         |
| C15        | 0.13375 (14)               | 0.0248 (4)  | 0.9/71 (3)             | 0.0463 (9)         |
| C16        | 0.13441 (16)               | 0.0942 (4)  | 1.0924 (4)             | 0.0531 (9)         |
| C19        | 0.22057 (13)               | -0.1042 (4) | 1.0361 (3)             | 0.0426 (8)         |
| C18        | 0.21906 (15)               | -0.0386 (4) | 1.1559 (3)             | 0.0494 (9)         |
| C17        | 0.17570 (17)               | 0.0652 (4)  | 1.1788 (4)             | 0.0555 (10)        |
| C20        | 0.27017 (17)               | -0.1961 (4) | 1.0232 (4)             | 0.0655 (11)        |
| H20A       | 0.2645                     | -0.2481     | 0.9491                 | 0.098*             |
| H20B       | 0.2740                     | -0.2607     | 1.0898                 | 0.098*             |
| H20C       | 0.3049                     | -0.1401     | 1.0220                 | 0.098*             |
| C21        | 0.0871 (2)                 | 0.1955 (6)  | 1.1065 (5)             | 0.0896 (16)        |
| H21A       | 0.0928                     | 0.2408      | 1.1838                 | 0.134*             |
| H21B       | 0.0505                     | 0.1466      | 1.1011                 | 0.134*             |
| H21C       | 0.0871                     | 0.2653      | 1.0439                 | 0.134*             |
| C22        | 0.1798 (2)                 | 0.1297 (6)  | 1.2988 (4)             | 0.0891 (17)        |
| H22A       | 0.2194                     | 0.1556      | 1.3207                 | 0.134*             |
| H22B       | 0.1669                     | 0.0634      | 1.3565                 | 0.134*             |
| H22C       | 0.1556                     | 0.2125      | 1.2979                 | 0.134*             |
| C23        | 0.47623 (12)               | 0.6918 (3)  | 0.4125 (2)             | 0.0319 (6)         |
| H23A       | 0.4992                     | 0.6168      | 0.3801                 | 0.038*             |
| H23B       | 0.5029                     | 0.7612      | 0.4494                 | 0.038*             |
| C24        | 0.40803 (12)               | 0.6541 (3)  | 0.2309 (3)             | 0.0346 (7)         |
| H24A       | 0.3833                     | 0.5965      | 0.2781                 | 0.042*             |
| H24B       | 0.3834                     | 0.7023      | 0.1693                 | 0.042*             |
| C25        | 0.39738 (13)               | 0.8612 (3)  | 0.3592 (3)             | 0.0392 (7)         |
| H25A       | 0.3773                     | 0.9124      | 0.2930                 | 0.047*             |
| H25B       | 0.3686                     | 0.8093      | 0.4008                 | 0.047*             |
| C26        | 0.43939 (11)               | 0.7603 (3)  | 0.3108 (2)             | 0.0296 (6)         |
|            | × /                        |             |                        |                    |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | U <sup>23</sup> |
|-----|-------------|-------------|-------------|--------------|--------------|-----------------|
| 01  | 0.0627 (15) | 0.0412 (12) | 0.0308 (13) | -0.0161 (10) | 0.0075 (10)  | 0.0027 (10)     |
| O2  | 0.0810 (18) | 0.0487 (14) | 0.0311 (13) | -0.0191 (12) | 0.0032 (12)  | -0.0005 (11)    |
| O3  | 0.0648 (18) | 0.090 (2)   | 0.067 (2)   | 0.0198 (16)  | -0.0195 (15) | 0.0060 (17)     |
| 04  | 0.0712 (19) | 0.099 (3)   | 0.062 (2)   | -0.0058 (17) | -0.0235 (15) | 0.0159 (18)     |
| 05  | 0.0564 (13) | 0.0365 (11) | 0.0280 (12) | 0.0050 (10)  | -0.0064 (10) | -0.0036 (9)     |
| O6  | 0.0626 (14) | 0.0380 (12) | 0.0156 (10) | -0.0120 (10) | -0.0012 (9)  | 0.0025 (9)      |
| 07  | 0.0854 (18) | 0.0351 (12) | 0.0226 (12) | 0.0038 (11)  | -0.0057 (11) | 0.0000 (9)      |
| 08  | 0.0505 (13) | 0.0447 (13) | 0.0368 (13) | -0.0080 (10) | 0.0037 (10)  | -0.0006 (10)    |
| N1  | 0.0433 (14) | 0.0333 (12) | 0.0227 (13) | -0.0094 (10) | -0.0014 (10) | 0.0024 (10)     |
| C1  | 0.0450 (17) | 0.0294 (14) | 0.0279 (17) | 0.0010 (12)  | 0.0072 (13)  | 0.0024 (12)     |
| C2  | 0.052 (2)   | 0.053 (2)   | 0.0360 (19) | -0.0131 (16) | 0.0066 (15)  | 0.0017 (16)     |
| C3  | 0.0459 (18) | 0.052 (2)   | 0.044 (2)   | -0.0116 (15) | 0.0043 (15)  | 0.0099 (16)     |
| C4  | 0.0498 (19) | 0.052 (2)   | 0.038 (2)   | -0.0124 (15) | 0.0065 (15)  | 0.0046 (16)     |
| C5  | 0.053 (2)   | 0.057 (2)   | 0.040 (2)   | -0.0163 (16) | 0.0010 (16)  | 0.0065 (17)     |
| C6  | 0.052 (2)   | 0.056 (2)   | 0.0357 (19) | -0.0158 (16) | 0.0109 (15)  | -0.0008 (16)    |
| C7  | 0.0446 (18) | 0.053 (2)   | 0.0377 (19) | -0.0103 (15) | 0.0033 (14)  | -0.0009 (16)    |
| C8  | 0.0364 (16) | 0.0511 (19) | 0.0372 (18) | -0.0077 (14) | 0.0110 (13)  | -0.0085 (15)    |
| C9  | 0.045 (2)   | 0.066 (2)   | 0.059 (2)   | -0.0098 (17) | 0.0019 (17)  | -0.006 (2)      |
| C10 | 0.043 (2)   | 0.083 (3)   | 0.089 (3)   | -0.010 (2)   | -0.015 (2)   | -0.017 (3)      |
| C13 | 0.061 (2)   | 0.081 (3)   | 0.059 (3)   | -0.031 (2)   | 0.0041 (19)  | 0.004 (2)       |
| C12 | 0.067 (3)   | 0.073 (3)   | 0.119 (5)   | -0.032 (2)   | 0.011 (3)    | 0.008 (3)       |
| C11 | 0.044 (2)   | 0.064 (3)   | 0.099 (4)   | -0.0171 (19) | 0.003 (2)    | -0.012 (3)      |
| C14 | 0.0358 (16) | 0.0472 (18) | 0.0365 (18) | -0.0106 (13) | 0.0043 (13)  | 0.0026 (15)     |
| C15 | 0.0420 (18) | 0.053 (2)   | 0.043 (2)   | -0.0035 (15) | -0.0028 (15) | 0.0080 (16)     |
| C16 | 0.056 (2)   | 0.048 (2)   | 0.057 (2)   | -0.0016 (16) | 0.0137 (18)  | -0.0014 (18)    |
| C19 | 0.0399 (17) | 0.0440 (17) | 0.044 (2)   | -0.0069 (13) | 0.0005 (14)  | 0.0041 (15)     |
| C18 | 0.0477 (19) | 0.055 (2)   | 0.044 (2)   | -0.0183 (16) | -0.0044 (16) | 0.0112 (17)     |
| C17 | 0.064 (2)   | 0.054 (2)   | 0.049 (2)   | -0.0185 (18) | 0.0087 (18)  | -0.0054 (18)    |
| C20 | 0.053 (2)   | 0.060 (2)   | 0.082 (3)   | 0.0060 (18)  | -0.003 (2)   | 0.009 (2)       |
| C21 | 0.087 (3)   | 0.082 (4)   | 0.101 (4)   | 0.029 (3)    | 0.021 (3)    | -0.009 (3)      |
| C22 | 0.120 (4)   | 0.092 (4)   | 0.058 (3)   | -0.029 (3)   | 0.025 (3)    | -0.026 (3)      |
| C23 | 0.0401 (15) | 0.0323 (14) | 0.0224 (15) | -0.0022 (12) | -0.0033 (12) | 0.0006 (12)     |
| C24 | 0.0361 (15) | 0.0371 (15) | 0.0297 (16) | -0.0072 (12) | -0.0043 (12) | 0.0038 (13)     |
| C25 | 0.0427 (17) | 0.0362 (16) | 0.0385 (18) | 0.0011 (13)  | 0.0009 (13)  | 0.0006 (14)     |
| C26 | 0.0362 (15) | 0.0316 (14) | 0.0210 (14) | -0.0061 (11) | 0.0009 (11)  | 0.0043 (12)     |

Geometric parameters (Å, °)

| 01—C1  | 1.258 (4) | C9—C10  | 1.400 (5) |  |
|--------|-----------|---------|-----------|--|
| O2—C1  | 1.232 (4) | С9—Н9   | 0.9500    |  |
| O3—C15 | 1.226 (4) | C10—C11 | 1.369 (7) |  |
| O4—C18 | 1.209 (4) | C10—H10 | 0.9500    |  |
| O5—C24 | 1.428 (4) | C13—C12 | 1.392 (5) |  |
| O5—H5  | 0.9657    | C13—H13 | 0.9500    |  |
| O6—C23 | 1.406 (4) | C12—C11 | 1.347 (7) |  |
|        |           |         |           |  |

| O6—H6                            | 0.9109               | C12—H12                    | 0.9500               |
|----------------------------------|----------------------|----------------------------|----------------------|
| O7—C25                           | 1.423 (4)            | C11—H11                    | 0.9500               |
| O7—H7A                           | 0.9202               | C14—C19                    | 1.353 (4)            |
| O8—H8B                           | 0.9191               | C14—C15                    | 1.483 (5)            |
| O8—H8A                           | 0.9142               | C15—C16                    | 1.469 (5)            |
| N1—C26                           | 1 499 (4)            | C16—C17                    | 1 357 (6)            |
| N1_H1C                           | 0.9892               | $C_{16}$ $C_{21}$          | 1 499 (6)            |
| N1 U1P                           | 0.0100               | $C_{10}$ $C_{20}$          | 1.499(0)<br>1.482(5) |
|                                  | 0.9100               | $C_{10} = C_{20}$          | 1.402(5)             |
|                                  | 0.9082               | C19 - C18                  | 1.302(3)             |
|                                  | 1.526 (4)            |                            | 1.407 (6)            |
| C2—C3                            | 1.507 (5)            | C17—C22                    | 1.493 (6)            |
| C2—H2A                           | 0.9900               | C20—H20A                   | 0.9800               |
| C2—H2B                           | 0.9900               | C20—H20B                   | 0.9800               |
| C3—C4                            | 1.523 (4)            | C20—H20C                   | 0.9800               |
| С3—НЗА                           | 0.9900               | C21—H21A                   | 0.9800               |
| С3—Н3В                           | 0.9900               | C21—H21B                   | 0.9800               |
| C4—C5                            | 1.522 (5)            | C21—H21C                   | 0.9800               |
| C4—H4A                           | 0.9900               | С22—Н22А                   | 0.9800               |
| C4—H4B                           | 0.9900               | С22—Н22В                   | 0.9800               |
| C5 C6                            | 1.514(5)             | $C_{22}$ $H_{22}C$         | 0.9800               |
| C5_H5A                           | 1.314(3)             | $C_{22} = 1122C$           | 1.540(4)             |
| C5 USD                           | 0.9900               | C23—C20                    | 1.340 (4)            |
|                                  | 0.9900               | C23—H23A                   | 0.9900               |
|                                  | 1.493 (5)            | С23—Н23В                   | 0.9900               |
| С6—Н6А                           | 0.9900               | C24—C26                    | 1.524 (4)            |
| С6—Н6В                           | 0.9900               | C24—H24A                   | 0.9900               |
| C7—C14                           | 1.515 (5)            | C24—H24B                   | 0.9900               |
| С7—С8                            | 1.535 (4)            | C25—C26                    | 1.519 (4)            |
| С7—Н7                            | 1.0000               | C25—H25A                   | 0.9900               |
| C8—C9                            | 1.364 (5)            | C25—H25B                   | 0.9900               |
| C8—C13                           | 1.383 (5)            |                            |                      |
|                                  |                      |                            |                      |
| C24—O5—H5                        | 108.4                | C12—C11—C10                | 118.7 (4)            |
| С23—О6—Н6                        | 100.0                | C12—C11—H11                | 120.6                |
| С25—О7—Н7А                       | 101.8                | C10-C11-H11                | 120.6                |
| H8B—O8—H8A                       | 111.6                | C19—C14—C15                | 118.8 (3)            |
| C26—N1—H1C                       | 116.1                | C19—C14—C7                 | 122.5 (3)            |
| C26—N1—H1B                       | 120.2                | C15—C14—C7                 | 118.7 (3)            |
| H1C—N1—H1B                       | 108.0                | O3—C15—C16                 | 120.2 (4)            |
| C26—N1—H1A                       | 110.6                | 03—C15—C14                 | 1187(3)              |
| H1C—N1—H1A                       | 95.6                 | C16-C15-C14                | 1211(3)              |
| HIR NI HIA                       | 102.8                | $C_{17}$ $C_{16}$ $C_{15}$ | 121.1(3)             |
| $\Omega^2 = \Omega^1 = \Omega^1$ | 102.0                | $C_{17}$ $C_{16}$ $C_{21}$ | 123.7(4)             |
| 02 - 01 - 01                     | 123.3(3)<br>1100(2)  | $C_{17} = C_{10} = C_{21}$ | 123.7(4)             |
| $0_2 - 0_1 - 0_2$                | 117.7 (J)<br>11(7(2) | C13 - C10 - C21            | 113.7(4)             |
| $U_1 - U_1 - U_2$                | 110.7 (3)            | C14 - C19 - C20            | 120.0 (3)            |
| C3—C2—C1                         | 116.4 (3)            | C14—C19—C18                | 119.6 (3)            |
| С3—С2—Н2А                        | 108.2                | C20—C19—C18                | 114.4 (3)            |
| C1—C2—H2A                        | 108.2                | O4—C18—C17                 | 119.8 (4)            |
| C3—C2—H2B                        | 108.2                | O4—C18—C19                 | 119.4 (4)            |

| C1—C2—H2B   | 108.2     | C17—C18—C19   | 120.8 (3) |
|-------------|-----------|---------------|-----------|
| H2A—C2—H2B  | 107.3     | C16—C17—C18   | 118.8 (4) |
| C2—C3—C4    | 113.3 (3) | C16—C17—C22   | 124.5 (4) |
| С2—С3—НЗА   | 108.9     | C18—C17—C22   | 116.7 (4) |
| С4—С3—НЗА   | 108.9     | C19—C20—H20A  | 109.5     |
| С2—С3—Н3В   | 108.9     | C19—C20—H20B  | 109.5     |
| C4—C3—H3B   | 108.9     | H20A-C20-H20B | 109.5     |
| НЗА—СЗ—НЗВ  | 107.7     | C19—C20—H20C  | 109.5     |
| C5—C4—C3    | 114.7 (3) | H20A—C20—H20C | 109.5     |
| C5—C4—H4A   | 108.6     | H20B-C20-H20C | 109.5     |
| C3—C4—H4A   | 108.6     | C16—C21—H21A  | 109.5     |
| C5—C4—H4B   | 108.6     | C16—C21—H21B  | 109.5     |
| C3—C4—H4B   | 108.6     | H21A—C21—H21B | 109.5     |
| H4A—C4—H4B  | 107.6     | C16—C21—H21C  | 109.5     |
| C6—C5—C4    | 111.8 (3) | H21A—C21—H21C | 109.5     |
| С6—С5—Н5А   | 109.3     | H21B—C21—H21C | 109.5     |
| C4—C5—H5A   | 109.3     | C17—C22—H22A  | 109.5     |
| С6—С5—Н5В   | 109.3     | C17—C22—H22B  | 109.5     |
| C4—C5—H5B   | 109.3     | H22A—C22—H22B | 109.5     |
| H5A—C5—H5B  | 107.9     | C17—C22—H22C  | 109.5     |
| C7—C6—C5    | 116.5 (3) | H22A—C22—H22C | 109.5     |
| С7—С6—Н6А   | 108.2     | H22B—C22—H22C | 109.5     |
| С5—С6—Н6А   | 108.2     | O6—C23—C26    | 111.9 (2) |
| С7—С6—Н6В   | 108.2     | O6—C23—H23A   | 109.2     |
| С5—С6—Н6В   | 108.2     | С26—С23—Н23А  | 109.2     |
| H6A—C6—H6B  | 107.3     | O6—C23—H23B   | 109.2     |
| C6—C7—C14   | 114.7 (3) | C26—C23—H23B  | 109.2     |
| C6—C7—C8    | 114.9 (3) | H23A—C23—H23B | 107.9     |
| C14—C7—C8   | 111.5 (3) | O5—C24—C26    | 110.5 (2) |
| С6—С7—Н7    | 104.8     | O5—C24—H24A   | 109.6     |
| С14—С7—Н7   | 104.8     | C26—C24—H24A  | 109.6     |
| С8—С7—Н7    | 104.8     | O5—C24—H24B   | 109.6     |
| C9—C8—C13   | 118.1 (3) | C26—C24—H24B  | 109.6     |
| C9—C8—C7    | 124.0 (3) | H24A—C24—H24B | 108.1     |
| C13—C8—C7   | 117.7 (3) | O7—C25—C26    | 110.8 (2) |
| C8—C9—C10   | 120.7 (4) | O7—C25—H25A   | 109.5     |
| С8—С9—Н9    | 119.7     | С26—С25—Н25А  | 109.5     |
| С10—С9—Н9   | 119.7     | O7—C25—H25B   | 109.5     |
| C11—C10—C9  | 120.7 (4) | С26—С25—Н25В  | 109.5     |
| C13—C10—H10 | 119.7     | H25A—C25—H25B | 108.1     |
| С9—С10—Н10  | 119.7     | N1—C26—C25    | 109.1 (2) |
| C8—C13—C12  | 120.4 (4) | N1-C26-C24    | 107.3 (2) |
| С8—С13—Н13  | 119.8     | C25—C26—C24   | 110.4 (2) |
| C12—C13—H13 | 119.8     | N1—C26—C23    | 107.3 (2) |
| C11—C12—C13 | 121.4 (5) | C25—C26—C23   | 110.5 (2) |
| C11—C12—H12 | 119.3     | C24—C26—C23   | 112.1 (2) |
| C13—C12—H12 | 119.3     |               |           |

|                                       | D—H  | H···A | $D \cdots A$ | D—H···A |
|---------------------------------------|------|-------|--------------|---------|
| N1—H1C···O8 <sup>i</sup>              | 0.99 | 1.85  | 2.800 (4)    | 160     |
| N1—H1 <i>B</i> ····O5 <sup>ii</sup>   | 0.91 | 2.04  | 2.935 (3)    | 166     |
| N1—H1A···O6 <sup>iii</sup>            | 0.97 | 1.88  | 2.779 (3)    | 153     |
| O5—H5…O7 <sup>iii</sup>               | 0.97 | 1.76  | 2.714 (3)    | 170     |
| O6—H6…O1                              | 0.91 | 1.81  | 2.662 (3)    | 154     |
| O7—H7 <i>A</i> …O8 <sup>iii</sup>     | 0.92 | 1.77  | 2.686 (3)    | 173     |
| O8—H8 <i>B</i> ⋯O2                    | 0.92 | 1.76  | 2.617 (3)    | 1523    |
| O8—H8A…O1 <sup>iv</sup>               | 0.91 | 1.76  | 2.667 (3)    | 173     |
| C24—H24A…O1                           | 0.99 | 2.55  | 3.410 (4)    | 146     |
| C25—H25 <i>A</i> ···O2 <sup>iii</sup> | 0.99 | 2.44  | 3.326 (4)    | 149     |

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, y+1/2, -z+1/2; (iii) x, -y+3/2, z-1/2; (iv) x, -y+1/2, z+1/2.