

Received 30 August 2014 Accepted 3 September 2014

Edited by J. Simpson, University of Otago, New Zealand

Keywords: co-crystal structures; carboxylic acid molecular adducts; 3,5-dinitrobenzoic acid; 4aminosalicylic acid; 2-hydroxy-3-(1*H*-indol-3yl)propenoic acid; hydrogen bonding; homodimers; heterodimers; π - π interactions.

CCDC references: 1022646; 1022647 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures and hydrogen bonding in the co-crystalline adducts of 3,5-dinitrobenzoic acid with 4-aminosalicylic acid and 2-hydroxy-3-(1*H*-indol-3-yl)propenoic acid

Graham Smith^a* and Daniel E. Lynch^b

^aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and ^bExilica Ltd, The Technocentre, Puma Way, Coventry CV1 2TT, England. *Correspondence e-mail: g.smith@qut.edu.au

The structures of the co-crystalline adducts of 3,5-dinitrobenzoic acid (3,5-DNBA) with 4-aminosalicylic acid (PASA), the 1:1 partial hydrate, $C_7H_4N_2O_6\cdot C_7H_7NO_3\cdot 0.2H_2O_7$ (I), and with 2-hydroxy-3-(1*H*-indol-3-yl)propenoic acid (HIPA), the 1:1:1 d^6 -dimethyl sulfoxide solvate, C₇H₄N₂O₆·C₁₁H₉- $NO_3 \cdot C_2 D_6 OS_1$ (II), are reported. The crystal substructure of (I) comprises two centrosymmetric hydrogen-bonded $R_2^2(8)$ homodimers, one with 3,5-DNBA, the other with PASA, and an $R_2^2(8)$ 3,5-DNBA–PASA heterodimer. In the crystal, inter-unit amine N-H···O and water O-H···O hydrogen bonds generate a three-dimensional supramolecular structure. In (II), the asymmetric unit consists of the three constituent molecules, which form an essentially planar cyclic hydrogen-bonded heterotrimer unit [graph set $R_3^2(17)$] through carboxyl, hydroxy and amino groups. These units associate across a crystallographic inversion centre through the HIPA carboxylic acid group in an $R_2^2(8)$ hydrogenbonding association, giving a zero-dimensional structure lying parallel to (100). In both structures, $\pi - \pi$ interactions are present [minimum ring-centroid separations = 3.6471 (18) Å in (I) and 3.5819 (10) Å in (II)].

1. Chemical context

3,5-Dinitrobenzoic acid (3,5-DNBA) has been an important acid for the formation of crystalline materials, which have allowed structural characterization using single crystal X-ray methods. Most commonly proton-transfer salts are formed with organic Lewis bases, e.g. with 1-H-pyrazole (Aakeröy et al., 2012) but salt-adducts are also known, e.g. 2-pyridyl-4'pyridinium⁺-3,5-DNBA⁻-3,5-DNBA (1/1/1) (Chantrapromma et al., 2002). Although co-crystalline non-transfer molecular adducts with 3,5-DNBA are now relatively common, interest was stimulated with the original reporting of nontransfer adduct formation with 4-aminobenzoic acid to form a chiral 1:1 co-crystalline material (Etter & Frankenbach, 1989), which represented one of the earliest examples of designed crystal engineering, in that case with a view to producing nonlinear optical materials. In the crystalline state, carboxylic acids usually form cyclic hydrogen-bonded dimers through head-to-head carboxyl O-H···O hydrogen bonds (Leiserowitz, 1976) [graph set $R_2^2(8)$]. This is the case with 3,5-DNBA (A), which when co-crystallized with certain aromatic acids, e.g. 4-(N,N-dimethylamino)benzoic acid (B), gives separate mixed AA and BB homodimer pairs (Sharma et al., 1993). Although uncommon with 3,5-DNBA, with other aromatic acid analogues, AB heterodimer formation appears more prevalent, e.g. the 1:1 adducts of 3,5-dinitrocinnamic acid with

research communications

4-(N,N-dimethylamino)benzoic acid and 2,4-dinitrocinnamic acid with 2.5-dimethoxycinnamic acid (Sharma et al., 1993). In both AA and BB structure types, $\pi - \pi$ interactions are commonly involved in stabilization, usually accompanied by enhanced colour generation. Absence of dimer pairs in 3,5-DNBA adducts is usually the result of preferential hydrogen bonding with solvent molecules, such as is found in the structure of 3,5-DNBA-phenoxyacetic acid-water (2/1/1) (Lynch *et al.*, 1991), in which a cyclic $R_3^3(10)$ interaction is found, involving two 3,5-DNBA molecules and the water molecule. The title adducts $C_7H_4N_2O_6\cdot C_7H_7NO_3\cdot 0.2H_2O$ (I) and C₇H₄N₂O₆·C₁₁H₉NO₃·C₂D₆OS (II) were prepared from the interaction of 3,5-DNBA with 4-aminosalicylic acid (PASA) and 2-hydroxy-3-(1*H*-indol-3-yl)propenoic acid (HIPA), respectively, and the structures are reported herein. With (II), the incorporation of C₂D₆OS resulted from recrystallization from d^6 -dimethylsulfoxide.

2. Structural commentary

In the co-crystal of 3,5-DNBA with 4-aminosalicylic acid, (I) (Fig. 1), the asymmetric unit consists of two PASA molecules (A and B), two 3,5-DNBA molecules (C and D) and a partially occupied water molecule of solvation (O1W), with site occupancy = 0.4. However, what is most unusual in this structure is

Table 1	
Hydrogen-bond geometry (Å, °) for (I).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$D-H\cdots A$ $O11A-H11A\cdots O12A^{i}$ $O11B-H11B\cdots O11D$ $O11C-H11C\cdots O12C^{ii}$ $O12D-H12D\cdots O12B$ $N4B-H41B\cdots O31C$ $N4B-H42B\cdots O52D^{iii}$ $O2A-H2A\cdots O12A$ $O2B-H2B\cdots O12B$ $O2W-W11W-O2B$	<i>D</i> -H 0.91 (3) 0.94 (3) 0.91 (3) 0.90 (3) 0.86 (3) 0.85 (2) 0.84 0.84 0.80	$\begin{array}{c} H \cdots A \\ \hline 1.78 (3) \\ 1.74 (3) \\ 1.73 (3) \\ 1.71 (3) \\ 2.58 (3) \\ 2.44 (3) \\ 1.89 \\ 1.85 \\ 2.05 \end{array}$	$\begin{array}{c} D \cdots A \\ \hline 2.678 (3) \\ 2.673 (3) \\ 2.640 (3) \\ 2.610 (3) \\ 3.350 (4) \\ 3.210 (4) \\ 2.625 (3) \\ 2.587 (3) \\ 2.957 (4) \\ \end{array}$	D-H···A 175 (3) 175 (3) 177 (2) 176 (2) 150 (3) 151 (3) 145 145 170
$\begin{array}{l} O1W - H11W \cdots O2B\\ O1W - H12W \cdots O32C^{iv}\\ C3B - H3B \cdots O31C\\ C4D - H4D \cdots O32C^{v} \end{array}$	0.90 0.93 0.95 0.95	2.03 2.08 2.58 2.49	$\begin{array}{c} 2.932(0) \\ 3.005(5) \\ 3.382(3) \\ 3.425(3) \end{array}$	179 179 142 170

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x, -y + 2, -z + 1; (iii) -x, -y + 1, -z; (iv) x + 1, y, z; (v) -x + 1, -y + 2, -z.

Figure 1

Molecular conformation and atom-naming scheme for the two PABA molecules (A and B), the two 3,5-DNBA molecules (C and D) and the disordered water molecule (O1W) in the asymmetric unit of adduct (I), with displacement ellipsoids drawn at the 40% probability level. Interspecies hydrogen bonds are shown as dashed lines.

the presence of not four homodimers in the unit cell, but two homodimers (centrosymmetric PASA $A-A^i$ and 3,5-DNBA $C-C^{ii}$ pairs), as well as two heterodimer B-D pairs (for symmetry codes, see Table 1). All dimers are formed through the common cyclic $R_2^2(8)$ ring motif. Present in the PASA molecules are the expected intramolecular salicylic acid phenolic $O-H \cdots O_{carboxyl}$ hydrogen bonds, also present in the parent acid (Montis & Hursthouse, 2012).

In the ternary co-crystal of 3,5-DNBA (*B*) with 2-hydroxy-3-(1*H*-indol-3-yl)propenoic acid (*A*) and d^6 -dimethylsulfoxide (*C*), (II) the three molecules inter-associate through carboxylic acid O-H···O and N-H···O hydrogen bonds, forming a cyclic $R_3^2(17)$ heterotrimeric asymmetric unit (Fig. 2).

Figure 2

Molecular conformation and atom-naming scheme for adduct (II), with displacement ellipsoids drawn at the 40% probability level. Inter-species hydrogen bonds are shown as dashed lines.

Figure 3

A partial expansion in the three-dimensional hydrogen-bonded structure of the adduct (I) in the unit cell, viewed down *a*. Non-associative H atoms have been omitted. For symmetry codes, see Table 1.

This unit is essentially planar with a dihedral angle of 4.97 (7)° between the indole ring of *A* and the benzene ring of *B*. With the HIPA molecule there is a maximum deviation from the least-squares plane of the 15-atom molecule of 0.120 (2) Å (C6*A*). The planar conformation of the acid side chain in this molecule is maintained by the presence of delocalization extending from C2*A* of the ring to O14*A* of the carboxylic acid group [torsion angle C11*A*-C12*A*-C13*A*-O14*A* = -177.43 (16)°]. This is also found in the parent acid, which has the similar *enol* configuration as in (II) [corresponding torsion angle 170.0 (3)°] with an *E* orientation and in the crystal forms a centrosymmetric homodimer with an $R_2^2(8)$ hydrogen-bond motif (Okabe & Adachi, 1998).

In the adducts (I) and (II), the 3,5-DNBA molecules are essentially planar with the exception of the C3-nitro groups of the *C* molecule in (I), and the *B* molecule in (II), where the defining C2–C3–N3–O32 torsion angles are 158.2 (3) and 168.39 (17)°, respectively. The overall torsion angle range for the remaining groups in both (I) and (II) is 170.8 (3)– 179.2 (2)°. These minor deviations from planarity are consistent with conformational features of both polymorphs of the parent acid 3,5-DNBA (Prince *et al.*, 1991) and in examples both of its salts (Aakeröy *et al.*, 2012) and its adducts (Aakeröy *et al.*, 2001; Jones *et al.*, 2010; Chadwick *et al.*, 2009).

3. Supramolecular features

In the supramolecular structure of (I), the carboxylic acid dimers are extended through inter-dimer or inter-heterodimer amine N-H···O and water O-H···O hydrogen bonds (Table 1), giving a three-dimensional framework structure (Fig. 3). Within the structure there are a number of inter-ring π - π associations [ring-centroid separations: $A \cdots C^{vi}$, 3.7542 (16); $A \cdots C^{vii}$, 3.6471 (16); $B \cdots D^{viii}$, 3.6785 (14) Å] [symmetry codes: (vi) x + 1, y - 1, z; (vii) x, y - 1, z; (viii) -x + 1, -y + 1, -z]. The $B \cdots D$ heterodimers in the π - π association are not only related by inversion but are cyclically linked by the amine N4B-H···O52 D^{iii} hydrogen bond, forming an enlarged $R_2^2(32)$ ring motif. This cyclic relationship with associated π - π bonding is also found in some aromatic

Table 2Hydrogen-bond geometry (Å, $^{\circ}$) for (II).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$N1A - H1A \cdots O2C$	0.87 (2)	2.02 (2)	2.856 (2)	161 (2)
$O11B - H11B \cdot \cdot \cdot O2C$	0.88 (2)	1.72 (2)	2.591 (2)	174 (2)
$O12A - H12A \cdots O14A$	0.88 (2)	2.15 (2)	2.672 (2)	118 (2)
$O12A - H12A \cdots O52B$	0.88 (2)	2.20 (2)	2.951 (2)	144 (2)
$O13A - H13A \cdots O14A^{i}$	0.90(2)	1.75 (2)	2.644 (2)	178 (2)
$C1C - D12C \cdots O14A^{ii}$	0.98	2.56	3.472 (3)	155
$C1C - D13C \cdots O12B^{iii}$	0.98	2.52	3.372 (3)	145

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) -x, -y, -z + 1.

homodimer carboxylic acid structures (Sharma *et al.*, 1993). In (I), the disordered water molecule also provides a link between the *B* molecule [the phenolic O2*B* acceptor] and the *C* molecule [the nitro O32*C*^{iv} acceptor]. Also present in the structure are two very weak $C-H\cdots O_{nitro}$ interactions [C3*B*-H···O31*C* 3.382 (3) and C4*D*-H···O32*C*^v 3.425 (3) Å; Table 1]. The H atoms of the N4*A* amine group have no acceptors with the PASA *A* homodimer unassociated in the overall structure except for the previously mentioned π - π ring interactions.

In (II) the hydrogen-bonded heterotrimer units associate across a crystallographic inversion centre through the HIPA carboxylic acid group $[O13A - H \cdots O14A]^i$ in a cyclic $R_2^2(8)$ hydrogen-bonding association, giving a zero-dimensional heterohexamer structure which is essentially planar and lies parallel to (100) (Fig. 4). Only two very weak intermolecular d^6 -DMSO methyl C-H···O interactions are present between

Figure 4

The centrosymmetric hydrogen-bonded heterohexameric structure of the adduct (II) in the unit cell, viewed down a. For symmetry code (i), see Table 2.

research communications

 Table 3

 Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$C_7H_4N_2O_6\cdot C_7H_7NO_3\cdot 0.2H_2O$	$C_7H_4N_2O_6\cdot C_{11}H_0NO_3\cdot C_2D_6OS$
$M_{\rm r}$	368.86	499.49
Crystal system, space group	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$
Temperature (K)	200	200
a, b, c (Å)	7.0717 (5), 7.5974 (4), 28.7175 (19)	7.6488 (6), 12.3552 (10), 13.3768 (10)
α, β, γ (°)	87.926 (5), 86.498 (6), 87.584 (5)	116.833 (8), 96.274 (6), 97.626 (7)
$V(\dot{A}^3)$	1537.77 (17)	1097.40 (18)
Z	4	2
Radiation type	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	0.14	0.21
Crystal size (mm)	$0.35 \times 0.35 \times 0.30$	$0.45 \times 0.40 \times 0.32$
Data collection		
Diffractometer	Oxford Diffraction Gemini-S CCD detector	Oxford Diffraction Gemini-S CCD detector
Absorption correction	Multi-scan (CrysAlis PRO; Agilent, 2013)	Multi-scan (CrysAlis PRO; Agilent, 2013)
T_{\min}, \hat{T}_{\max}	0.966, 0.990	0.94, 0.98
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	10302, 6044, 4158	7457, 4310, 3490
R _{int}	0.027	0.023
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.617	0.617
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.056, 0.149, 1.01	0.040, 0.097, 1.02
No. of reflections	6044	4310
No. of parameters	502	319
No. of restraints	8	4
H-atom treatment	H atoms treated by a mixture of indepen- dent and constrained refinement	H atoms treated by a mixture of indepen- dent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm A}^{-3})$	0.86, -0.28	0.26, -0.25

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 and SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

these units interactions $[C1C-D\cdots O14A^{ii} 3.472 (3)]$ and $C1C-D\cdots O12B^{iii} 3.372 (3)$ Å; Table 2]. In the structure, $\pi-\pi$ interactions are also present between the benzene rings of the *A* and B^{viii} molecules] [minimum ring-centroid separation 3.5819 (10) Å; symmetry code: (viii) -x, -y + 2, -z + 1].

4. Synthesis and crystallization

The title co-crystalline adducts (I) and (II) were prepared by dissolving equimolar quantities of 3,5-dinitrobenzoic acid and the respective acids 4-aminosalicylic acid [for (I)] or (1H-indol-3-yl)propenoic acid [for (II)] in ethanol and heating under reflux for 5 min after which room-temperature evaporation of the solutions gave for (I), yellow prisms and for (II), a red powder. This latter compound was dissolved in d^6 -deuterated DMSO and solvent diffusion of water into this solution gave red prisms of (II). Specimens were cleaved from both prismatic crystals for the X-ray analyses.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms on all potentially interactive O–H and N–H groups in all molecular species were located by difference-Fourier methods and positional and displacement parameters were refined for all but those of the phenolic O2A and O2B groups and on the disordered water molecule O1W, with riding restraints [O–H bond length = 0.90 (2) Å and $U_{iso}(H) = 1.5U_{eq}(O)$ or N–H = 0.88 (2) Å, with $U_{iso}(H) = 1.2U_{eq}(N)$]. The phenolic and water H atoms were set invariant with $U_{iso}(H) = 1.2U_{eq}(O)$. Other H atoms were included in the refinement at calculated positions [C–H (aromatic) = 0.95 or (methylene) 0.99 Å], with $U_{iso}(H) = 1.2U_{eq}(C)$, using a riding-model approximation. The site-occupancy factor for the disordered water molecule of solvation was determined as 0.403 (4) [for the (2:2) 3,5-DNBA:PASA pair in the asymmetric unit] and was subsequently fixed as 0.40. In the structure of (I), the relatively large maximum residual electron density (0.835 e Å⁻³) was located 0.80 Å from H6B.

Acknowledgements

The authors thank the Faculty of Science and Engineering, Queensland University of Technology for financial support.

References

- Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2001). Angew. Chem. Int. Ed. 40, 3240–3242.
- Aakeröy, C. B., Hurley, E. P. & Desper, J. (2012). Cryst. Growth Des. 12, 5806–5814.
- Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
- Chadwick, K., Sadiq, G., Davey, R. J., Seaton, C. C., Pritchard, R. G. & Parkin, A. (2009). *Cryst. Growth Des.* **9**, 1278–1279.

- Chantrapromma, S., Usman, A., Fun, H.-K., Poh, B.-L. & Karalai, C. (2002). Acta Cryst. C58, 0589–0590.
- Etter, M. C. & Frankenbach, G. M. (1989). Chem. Mater. 1, 10-11.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Jones, A. O. F., Blagden, N., McIntyre, G. T., Parkin, A., Seaton, C. C., Thomas, L. H. & Wilson, C. C. (2010). *Cryst. Growth Des.* 13, 497– 509.
- Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.
- Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1991). Aust. J. Chem. 44, 1017–1022.
- Montis, R. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5242-5254.
- Okabe, N. & Adachi, Y. (1998). Acta Cryst. C54, 1330-1331.
- Prince, P., Fronczek, F. R. & Gandour, R. D. (1991). Acta Cryst. C47, 895–898.
- Sharma, C. V. K., Panneerselvam, K., Pilati, T. & Desiraju, G. R. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 2203–2216.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2014). E70, 183-187 [doi:10.1107/S1600536814019898]

Crystal structures and hydrogen bonding in the co-crystalline adducts of 3,5-dinitrobenzoic acid with 4-aminosalicylic acid and 2-hydroxy-3-(1*H*-indol-3yl)propenoic acid

Graham Smith and Daniel E. Lynch

Computing details

For both compounds, data collection: *CrysAlis PRO* (Agilent, 2013); cell refinement: *CrysAlis PRO* (Agilent, 2013); data reduction: *CrysAlis PRO* (Agilent, 2013); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) within *WinGX* (Farrugia, 2012); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON* (Spek, 2009).

(I) 4-Amino-2-hydroxybenzoic acid-3,5-dinitrobenzoic acid-water (2/2/0.4)

C₇H₄N₂O₆·C₇H₇NO₃·0.2H₂O $M_r = 368.86$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.0717 (5) Å b = 7.5974 (4) Å c = 28.7175 (19) Å a = 87.926 (5)° $\beta = 86.498$ (6)° $\gamma = 87.584$ (5)° V = 1537.77 (17) Å³

Data collection

Oxford Diffraction Gemini-S CCD detector diffractometer Radiation source: Enhance (Mo) X-ray source Graphite monochromator Detector resolution: 16.077 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2013) $T_{\min} = 0.966, T_{\max} = 0.990$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.149$ S = 1.01 Z = 4 F(000) = 760 $D_x = 1.593 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2357 reflections $\theta = 3.3-27.2^{\circ}$ $\mu = 0.14 \text{ mm}^{-1}$ T = 200 KBlock, yellow $0.35 \times 0.35 \times 0.30 \text{ mm}$

10302 measured reflections 6044 independent reflections 4158 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -8 \rightarrow 8$ $k = -9 \rightarrow 8$ $l = -35 \rightarrow 31$

6044 reflections502 parameters8 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0599P)^2 + 0.6456P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} < 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.86 \text{ e} \text{ Å}^{-3}$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$
and constrained refinement	

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
011C	-0.1050 (3)	1.2197 (3)	0.48465 (7)	0.0453 (7)	
O12C	-0.0102 (3)	0.9810(2)	0.44480 (6)	0.0412 (7)	
O31C	-0.1244 (4)	0.9769 (3)	0.27862 (8)	0.0629 (9)	
O32C	-0.3286 (3)	1.1671 (3)	0.25221 (7)	0.0562 (8)	
O51C	-0.3819 (3)	1.7339 (3)	0.32553 (8)	0.0560 (9)	
O52C	-0.2958 (4)	1.7528 (3)	0.39588 (8)	0.0573 (9)	
N3C	-0.2215 (4)	1.1123 (3)	0.28179 (8)	0.0409 (9)	
N5C	-0.3155 (4)	1.6703 (3)	0.36123 (9)	0.0396 (8)	
C1C	-0.1424 (4)	1.2259 (3)	0.40352 (9)	0.0284 (8)	
C2C	-0.1454 (4)	1.1313 (3)	0.36322 (9)	0.0299 (8)	
C3C	-0.2105 (4)	1.2152 (3)	0.32363 (9)	0.0302 (8)	
C4C	-0.2689 (4)	1.3908 (3)	0.32177 (9)	0.0310 (8)	
C5C	-0.2592 (4)	1.4815 (3)	0.36191 (9)	0.0299 (8)	
C6C	-0.1988 (4)	1.4038 (3)	0.40322 (9)	0.0307 (8)	
C11C	-0.0797 (4)	1.1307 (3)	0.44630 (9)	0.0305 (8)	
011D	0.4620 (3)	0.6430 (2)	-0.04675 (6)	0.0354 (6)	
O12D	0.6448 (3)	0.8050 (3)	-0.00552 (7)	0.0467 (8)	
O31D	1.2556 (3)	0.9762 (2)	-0.06601 (7)	0.0462 (8)	
O32D	1.3586 (3)	0.9146 (3)	-0.13627 (8)	0.0477 (8)	
O51D	0.9545 (3)	0.6273 (3)	-0.23683 (7)	0.0493 (8)	
O52D	0.6769 (3)	0.5502 (3)	-0.21049 (7)	0.0479 (8)	
N3D	1.2378 (3)	0.9137 (3)	-0.10404 (9)	0.0352 (8)	
N5D	0.8272 (3)	0.6196 (3)	-0.20596 (8)	0.0337 (8)	
C1D	0.7529 (4)	0.7425 (3)	-0.08154 (9)	0.0279 (8)	
C2D	0.9234 (4)	0.8206 (3)	-0.07471 (9)	0.0291 (8)	
C3D	1.0568 (4)	0.8320 (3)	-0.11161 (9)	0.0282 (8)	
C4D	1.0307 (4)	0.7687 (3)	-0.15504 (9)	0.0292 (8)	
C5D	0.8599 (4)	0.6923 (3)	-0.16043 (8)	0.0273 (8)	
C6D	0.7212 (4)	0.6777 (3)	-0.12500 (9)	0.0284 (8)	
C11D	0.6060 (4)	0.7264 (3)	-0.04270 (9)	0.0306 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

O2A	0.3595 (3)	0.0813 (2)	0.35993 (7)	0.0414 (7)	
O11A	0.4058 (3)	0.2349 (3)	0.49746 (7)	0.0460 (8)	
O12A	0.4496 (3)	0.0192 (2)	0.44648 (7)	0.0413 (7)	
N4A	0.1581 (4)	0.6629 (4)	0.31680 (10)	0.0531 (10)	
C1A	0.3356 (4)	0.3003 (3)	0.41957 (9)	0.0293 (8)	
C2A	0.3186 (4)	0.2488 (3)	0.37348 (9)	0.0299 (8)	
C3A	0.2632 (4)	0.3695 (4)	0.33956 (9)	0.0339 (9)	
C4A	0.2202 (4)	0.5441 (4)	0.35021 (10)	0.0360 (9)	
C5A	0.2345 (4)	0.5972 (4)	0.39630 (10)	0.0390 (10)	
C6A	0.2913 (4)	0.4775 (3)	0.42978 (10)	0.0347 (9)	
C11A	0.4010 (4)	0.1748 (3)	0.45526 (9)	0.0321 (9)	
O2B	0.2909 (3)	0.8426 (3)	0.14868 (7)	0.0481 (8)	
O11B	0.1793 (3)	0.6474 (3)	0.01942 (7)	0.0421 (7)	
O12B	0.3803 (3)	0.7848 (2)	0.06171 (7)	0.0412 (7)	
N4B	-0.3161 (4)	0.6924 (4)	0.21044 (10)	0.0465 (9)	
C1B	0.0835 (4)	0.7114 (3)	0.09718 (9)	0.0280 (8)	
C2B	0.1231 (4)	0.7741 (3)	0.14100 (9)	0.0282 (8)	
C3B	-0.0089 (4)	0.7679 (3)	0.17821 (9)	0.0314 (8)	
C4B	-0.1867 (4)	0.6999 (3)	0.17321 (10)	0.0333 (9)	
C5B	-0.2278 (4)	0.6362 (3)	0.12966 (10)	0.0348 (9)	
C6B	-0.0968 (4)	0.6421 (3)	0.09281 (10)	0.0324 (9)	
C11B	0.2232 (4)	0.7176 (3)	0.05843 (9)	0.0307 (8)	
O1W	0.3006 (7)	0.9987 (7)	0.24093 (19)	0.0511 (19)	0.400
H2C	-0.10340	1.01090	0.36290	0.0360*	
H4C	-0.31350	1.44600	0.29410	0.0370*	
H6C	-0.19590	1.47020	0.43050	0.0370*	
H11C	-0.067 (5)	1.148 (4)	0.5085 (9)	0.0680*	
H2D	0.94710	0.86520	-0.04520	0.0350*	
H4D	1.12510	0.77710	-0.17990	0.0350*	
H6D	0.60550	0.62430	-0.13010	0.0340*	
H12D	0.552 (4)	0.793 (4)	0.0173 (10)	0.0700*	
H2A	0.39860	0.02000	0.38260	0.0620*	
H3A	0.25440	0.33300	0.30850	0.0410*	
H5A	0.20480	0.71610	0.40410	0.0470*	
H6A	0.30110	0.51490	0.46070	0.0420*	
H11A	0.460 (5)	0.148 (4)	0.5152 (11)	0.0690*	
H41A	0.167 (5)	0.636 (4)	0.2874 (7)	0.0640*	
H42A	0.173 (5)	0.773 (3)	0.3223 (12)	0.0640*	
H2B	0.36360	0.83470	0.12460	0.0720*	
H3B	0.02110	0.81010	0.20750	0.0380*	
H5B	-0.34780	0.58860	0.12590	0.0420*	
H6B	-0.12730	0.59900	0.06370	0.0390*	
H11B	0.279 (4)	0.653 (4)	-0.0035 (10)	0.0630*	
H41B	-0.304 (5)	0.751 (4)	0.2349 (8)	0.0560*	
H42B	-0.424 (3)	0.659 (4)	0.2034 (12)	0.0560*	
H11W	0.29970	0.95200	0.21260	0.0760*	0.400
H12W	0.41470	1.05100	0.24460	0.0760*	0.400

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
011C	0.0629 (15)	0.0449 (12)	0.0267 (11)	0.0126 (10)	-0.0028 (10)	0.0005 (8)
O12C	0.0515 (14)	0.0378 (11)	0.0336 (11)	0.0079 (9)	-0.0057 (10)	0.0021 (8)
O31C	0.097 (2)	0.0468 (13)	0.0441 (14)	0.0108 (13)	0.0001 (13)	-0.0157 (10)
O32C	0.0653 (16)	0.0726 (15)	0.0330 (12)	-0.0158 (12)	-0.0147 (12)	-0.0005 (11)
O51C	0.0687 (17)	0.0423 (12)	0.0548 (15)	0.0133 (11)	-0.0044 (12)	0.0108 (10)
O52C	0.0886 (19)	0.0330 (11)	0.0500 (14)	-0.0017 (11)	0.0021 (13)	-0.0088 (10)
N3C	0.0536 (17)	0.0410 (14)	0.0282 (13)	-0.0132 (12)	0.0038 (12)	-0.0015 (10)
N5C	0.0421 (15)	0.0323 (13)	0.0427 (15)	0.0006 (11)	0.0065 (12)	0.0045 (11)
C1C	0.0236 (14)	0.0330 (14)	0.0281 (14)	-0.0024 (11)	0.0015 (11)	0.0021 (10)
C2C	0.0303 (15)	0.0279 (13)	0.0309 (15)	-0.0028 (11)	0.0021 (12)	0.0014 (11)
C3C	0.0312 (15)	0.0318 (14)	0.0273 (14)	-0.0069 (11)	0.0044 (11)	-0.0024 (11)
C4C	0.0248 (14)	0.0394 (15)	0.0283 (14)	-0.0050 (11)	-0.0001 (11)	0.0062 (11)
C5C	0.0259 (14)	0.0290 (13)	0.0340 (15)	-0.0019 (11)	0.0034 (12)	0.0005 (11)
C6C	0.0288 (15)	0.0358 (14)	0.0273 (14)	-0.0065 (11)	0.0036 (11)	-0.0013 (11)
C11C	0.0269 (14)	0.0350 (15)	0.0295 (15)	-0.0011 (11)	-0.0014 (11)	0.0001 (11)
011D	0.0368 (12)	0.0388 (10)	0.0309 (11)	-0.0069 (9)	0.0016 (9)	-0.0034 (8)
O12D	0.0429 (13)	0.0667 (14)	0.0316 (12)	-0.0123 (11)	0.0053 (9)	-0.0173 (10)
O31D	0.0454 (13)	0.0455 (12)	0.0505 (14)	-0.0058 (10)	-0.0148 (10)	-0.0141 (10)
O32D	0.0302 (12)	0.0610 (13)	0.0517 (14)	-0.0065 (10)	-0.0005 (10)	0.0018 (10)
O51D	0.0509 (14)	0.0709 (14)	0.0262 (11)	-0.0136 (11)	0.0059 (10)	-0.0057 (9)
O52D	0.0460 (14)	0.0623 (13)	0.0379 (12)	-0.0188 (11)	-0.0070 (10)	-0.0087 (10)
N3D	0.0331 (14)	0.0318 (12)	0.0410 (15)	0.0006 (10)	-0.0077 (12)	0.0012 (10)
N5D	0.0409 (15)	0.0354 (12)	0.0254 (13)	-0.0039 (10)	-0.0059 (11)	0.0015 (9)
C1D	0.0338 (15)	0.0234 (12)	0.0264 (14)	0.0014 (11)	-0.0041 (11)	-0.0008 (10)
C2D	0.0383 (16)	0.0243 (13)	0.0251 (14)	0.0048 (11)	-0.0074 (12)	-0.0040 (10)
C3D	0.0284 (14)	0.0204 (12)	0.0360 (15)	0.0015 (10)	-0.0068 (12)	-0.0001 (10)
C4D	0.0337 (15)	0.0261 (13)	0.0271 (14)	0.0022 (11)	0.0001 (12)	0.0023 (10)
C5D	0.0341 (15)	0.0252 (12)	0.0228 (13)	0.0005 (11)	-0.0051 (11)	0.0008 (10)
C6D	0.0303 (15)	0.0255 (13)	0.0296 (14)	-0.0005 (11)	-0.0041 (12)	0.0000 (10)
C11D	0.0344 (16)	0.0300 (14)	0.0273 (14)	0.0032 (12)	-0.0043 (12)	-0.0024 (11)
O2A	0.0521 (14)	0.0347 (11)	0.0376 (12)	0.0061 (9)	-0.0087 (10)	-0.0013 (8)
011A	0.0634 (16)	0.0445 (12)	0.0300 (12)	0.0093 (10)	-0.0124 (10)	0.0038 (9)
012A	0.0514 (13)	0.0353 (11)	0.0367 (11)	0.0072 (9)	-0.0081 (10)	0.0050 (8)
N4A	0.065 (2)	0.0487 (16)	0.0446 (16)	0.0085 (15)	-0.0121 (15)	0.0137 (14)
C1A	0.0250 (14)	0.0340 (14)	0.0285 (14)	-0.0005 (11)	-0.0007 (11)	0.0037 (10)
C2A	0.0236 (14)	0.0331 (14)	0.0322 (15)	0.0007 (11)	0.0016 (11)	0.0008 (11)
C3A	0.0293 (15)	0.0427 (16)	0.0293 (15)	0.0000 (12)	-0.0017 (12)	0.0025 (11)
C4A	0.0292 (16)	0.0401 (16)	0.0377 (16)	0.0006 (12)	-0.0008 (13)	0.0090 (12)
C5A	0.0395 (17)	0.0323 (15)	0.0446 (18)	0.0018 (12)	-0.0019 (14)	0.0009 (12)
C6A	0.0354 (16)	0.0346 (15)	0.0339 (16)	0.0004 (12)	-0.0021 (13)	-0.0011 (11)
C11A	0.0278 (15)	0.0372 (15)	0.0309 (15)	-0.0016 (11)	-0.0019 (12)	0.0053 (11)
O2B	0.0414 (13)	0.0614 (13)	0.0422 (13)	-0.0122 (10)	0.0013 (10)	-0.0081 (10)
011B	0.0445 (13)	0.0539 (12)	0.0281 (11)	-0.0045 (10)	0.0005 (9)	-0.0058 (9)
O12B	0.0357 (12)	0.0495 (12)	0.0383 (12)	-0.0072 (9)	0.0045 (9)	-0.0053 (9)
N4B	0.0396 (16)	0.0567 (17)	0.0433 (16)	-0.0129 (13)	0.0087 (13)	-0.0106 (12)

C1B	0.0322 (15)	0.0235 (12)	0.0279 (14)	0.0025 (10)	-0.0021 (11)	-0.0010 (10)
C2B	0.0257 (14)	0.0225 (12)	0.0366 (15)	-0.0017 (10)	-0.0033 (12)	-0.0018 (10)
C3B	0.0355 (16)	0.0282 (13)	0.0305 (15)	-0.0003 (11)	-0.0019 (12)	-0.0024 (11)
C4B	0.0324 (16)	0.0276 (13)	0.0390 (16)	0.0003 (11)	0.0028 (13)	-0.0006 (11)
C5B	0.0285 (15)	0.0323 (14)	0.0438 (17)	-0.0029 (11)	-0.0022 (13)	-0.0016 (12)
C6B	0.0335 (16)	0.0282 (13)	0.0362 (16)	-0.0010 (11)	-0.0081 (13)	-0.0021 (11)
C11B	0.0333 (16)	0.0265 (13)	0.0320 (15)	0.0023 (11)	-0.0036 (12)	0.0014 (11)
O1W	0.034 (3)	0.057 (3)	0.066 (4)	-0.010 (2)	-0.017 (3)	-0.022 (3)

Geometric parameters (Å, °)

011C—C11C	1.312 (3)	C1C—C11C	1.485 (4)
O12C—C11C	1.221 (3)	C2C—C3C	1.378 (4)
O31C—N3C	1.216 (3)	C3C—C4C	1.380 (3)
O32C—N3C	1.223 (3)	C4C—C5C	1.371 (4)
O51C—N5C	1.228 (3)	C5C—C6C	1.389 (4)
O52C—N5C	1.213 (3)	C2C—H2C	0.9500
O11C—H11C	0.91 (3)	C4C—H4C	0.9500
O11D—C11D	1.235 (3)	С6С—Н6С	0.9500
O12D—C11D	1.291 (3)	C1D—C6D	1.392 (4)
O31D—N3D	1.222 (3)	C1D—C11D	1.482 (4)
O32D—N3D	1.221 (3)	C1D—C2D	1.394 (4)
O51D—N5D	1.226 (3)	C2D—C3D	1.378 (4)
O52D—N5D	1.222 (3)	C3D—C4D	1.378 (4)
O12D—H12D	0.90 (3)	C4D—C5D	1.381 (4)
O2A—C2A	1.359 (3)	C5D—C6D	1.374 (4)
O11A—C11A	1.313 (3)	C2D—H2D	0.9500
O12A—C11A	1.247 (3)	C4D—H4D	0.9500
O2A—H2A	0.8400	C6D—H6D	0.9500
O11A—H11A	0.91 (3)	C1A—C2A	1.407 (4)
O2B—C2B	1.349 (3)	C1A—C6A	1.407 (3)
O11B—C11B	1.317 (3)	C1A—C11A	1.457 (4)
O12B—C11B	1.252 (3)	C2A—C3A	1.377 (4)
O2B—H2B	0.8400	C3A—C4A	1.389 (4)
O11B—H11B	0.94 (3)	C4A—C5A	1.408 (4)
O1W—H12W	0.9300	C5A—C6A	1.366 (4)
O1W—H11W	0.9000	СЗА—НЗА	0.9500
N3C—C3C	1.465 (3)	C5A—H5A	0.9500
N5C—C5C	1.472 (3)	С6А—Н6А	0.9500
N3D—C3D	1.477 (3)	C1B—C11B	1.443 (4)
N5D—C5D	1.472 (3)	C1B—C6B	1.414 (4)
N4A—C4A	1.372 (4)	C1B—C2B	1.410 (4)
N4A—H41A	0.87 (2)	C2B—C3B	1.376 (4)
N4A—H42A	0.87 (2)	C3B—C4B	1.397 (4)
N4B—C4B	1.365 (4)	C4B—C5B	1.408 (4)
N4B—H41B	0.86 (3)	C5B—C6B	1.364 (4)
N4B—H42B	0.85 (2)	СЗВ—НЗВ	0.9500
C1C—C2C	1.386 (4)	C5B—H5B	0.9500

C1C—C6C	1.393 (3)	C6B—H6B	0.9500
C11C—O11C—H11C	107.4 (18)	C4D—C5D—C6D	123.0 (2)
C11D—O12D—H12D	111.4 (19)	N5DC5DC6D	118.6 (2)
C2A—O2A—H2A	109.00	C1D—C6D—C5D	119.0 (2)
C11A—O11A—H11A	107 (2)	O11D-C11D-C1D	121.3 (2)
C2B—O2B—H2B	110.00	O12D-C11D-C1D	113.9 (2)
C11B—O11B—H11B	111.6 (18)	O11D-C11D-O12D	124.8 (2)
H11W—O1W—H12W	111.00	C1D—C2D—H2D	121.00
O31C—N3C—O32C	123.8 (2)	C3D—C2D—H2D	121.00
O31C—N3C—C3C	118.1 (2)	C5D—C4D—H4D	122.00
032C - N3C - C3C	118.1 (2)	C3D—C4D—H4D	122.00
051C - N5C - C5C	117.5 (2)	C5D—C6D—H6D	121.00
052C - N5C - C5C	118.4 (2)	C1D— $C6D$ — $H6D$	121.00
051C - N5C - 052C	1241(2)	C2A - C1A - C11A	121.00
$O_{31}D - N_{3}D - C_{3}D$	12 (2) 117.7 (2)	C2A - C1A - C6A	127.0(2) 117.8(2)
$O_{31}D - N_{3}D - O_{32}D$	1247(2)	C6A - C1A - C11A	1212(2)
O32D - N3D - C3D	127.7(2)	C1A - C2A - C3A	121.2(2) 120.7(2)
051D - N5D - C5D	117.7(2) 118 2 (2)	O2A - C2A - C1A	120.7(2) 122.5(2)
051D - N5D - 052D	1235(2)	O2A - C2A - C3A	122.3(2) 1169(2)
052D - N5D - C5D	123.3(2) 118 2 (2)	C2A = C3A = C4A	110.9(2) 120.8(2)
C4A = N4A = H41A	120(2)	N4A - C4A - C5A	120.0(2) 120.0(3)
C4A - N4A - H42A	120(2) 115(2)	C3A - C4A - C5A	120.0(3) 119.2(3)
H41A = N4A = H42A	115(2) 116(3)	N4A—C4A—C3A	119.2(3) 120.8(3)
C4B—N4B—H42B	113(2)	C4A - C5A - C6A	120.0(3) 1199(3)
H41B N4B H42B	113(2) 121(3)	C1A - C6A - C5A	119.9(3) 121.6(3)
C4B - N4B - H41B	121(3) 122(2)	O11A - C11A - C1A	121.0(3) 1161(2)
$C^{2}C - C^{1}C - C^{6}C$	122(2) 1202(2)	O11A - C11A - O12A	121.7(2)
$C_{1}^{-1}C_{1$	120.2(2) 1221(2)	O12A— $C11A$ — $C1A$	121.7(2) 122.3(2)
$C^{2}C - C^{1}C - C^{1}C$	122.1(2) 117.8(2)	$C^{2}A - C^{3}A - H^{3}A$	122.5 (2)
$C_1C_1C_2C_2C_1C_3C_1C_3C_1C_1C_3C$	117.0(2) 118.7(2)	C_{4A} C_{3A} H_{3A}	120.00
$C_{2}C_{-}C_{3}C_{-}C_{4$	110.7(2) 123.1(2)	C6A - C5A - H5A	120.00
$N_{3}C - C_{3}C - C_{2}C$	123.1(2) 118.4(2)	C4A = C5A = H5A	120.00
$N_{3}C - C_{3}C - C_{4}C$	118.5(2)	C1A - C6A - H6A	119.00
$C_{3}C_{}C_{4}C_{}C_{5}C_{-$	116.5(2)	C5A - C6A - H6A	119.00
$N_{5}C - C_{5}C - C_{4}C$	110.0(2) 118 5 (2)	C2B = C1B = C11B	119.00 120.8(2)
C4C - C5C - C6C	110.3(2) 123.1(2)	$C_{2D} = C_{1D} = C_{11D}$	120.0(2) 121.6(2)
$N_{1} = C_{1} = C_{1$	123.1(2) 118 $4(2)$	C^{2B} C^{1B} C^{6B}	121.0(2) 117.6(2)
$C_{1}C_{1}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2$	110.4(2) 118.2(2)	$\begin{array}{c} C2B \\ \hline C2B \\ \hline C2B \\ \hline C2B \\ \hline C3B \hline \hline$	117.0(2) 116.7(2)
012C-C11C-C1C	110.2(2) 121.2(2)	C1B - C2B - C3B	110.7(2) 121.2(3)
	121.2(2) 124.0(2)	$O_{2B} = C_{2B} = C_{1B}$	121.2(3) 1221(2)
	124.0(2) 114.0(2)	$C_{2B} = C_{2B} = C_{4B}$	122.1(2) 120.4(2)
$C_{1}^{2}C$	114.9 (2)	C2B - C3B - C4B	120.4(2) 120.1(3)
$C_{1}C_{1}C_{2}C_{1}C_{1}C_{2}C_{1}C_{2}C_{1}C_{2}C_{1}C_{2}C_{2}C_{1}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2$	121.00	C3B C4P C5P	120.1(3) 1180(2)
$C_1 C_2 C_2 C_1 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2$	121.00	CJD - C+D - CJD $NAB CAD C5D$	110.9(3) 1210(2)
C_{3} C_{4} C_{4	122.00	$\frac{114D}{C4D} = \frac{C4D}{C4D} = \frac{C4D}{C4D}$	121.0(3) 120.6(2)
$C_1C_1C_1C_1C_1C_1C_1C_1C_1C_1C_1C_1C_1C$	122.00	$C_{4}D - C_{3}D - C_{0}D$	120.0(3)
	121.00		121.2(3)
UUU-UUU-HOU	121.00		121.7 (2)

C6D-C1D-C11D	119.8 (2)	O11B—C11B—C1B	117.1 (2)
C2D—C1D—C6D	119.8 (2)	O11B—C11B—O12B	121.2 (2)
C2D—C1D—C11D	120.4 (2)	C4B—C3B—H3B	120.00
C1D—C2D—C3D	118.6 (2)	C2B—C3B—H3B	120.00
N3D—C3D—C4D	118.4 (2)	C4B—C5B—H5B	120.00
C2D—C3D—C4D	123.2 (3)	C6B—C5B—H5B	120.00
N3D—C3D—C2D	118.4 (2)	C1B—C6B—H6B	119.00
C3D—C4D—C5D	116.4 (2)	C5B—C6B—H6B	119.00
N5D—C5D—C4D	118.3 (2)		
O31C—N3C—C3C—C2C	-21.4 (4)	C1D—C2D—C3D—N3D	-179.5 (2)
O32C—N3C—C3C—C2C	158.2 (3)	C2D-C3D-C4D-C5D	0.5 (4)
O31C—N3C—C3C—C4C	159.7 (3)	N3D—C3D—C4D—C5D	179.6 (2)
O32C—N3C—C3C—C4C	-20.7 (4)	C3D-C4D-C5D-N5D	-178.8 (2)
O51C—N5C—C5C—C4C	5.3 (4)	C3D-C4D-C5D-C6D	-0.3 (4)
O52C—N5C—C5C—C4C	-175.5 (3)	N5D-C5D-C6D-C1D	178.5 (2)
O51C—N5C—C5C—C6C	-174.7 (3)	C4DC5DC6DC1D	0.0 (4)
O52C—N5C—C5C—C6C	4.5 (4)	C6A—C1A—C2A—O2A	179.4 (3)
O31D—N3D—C3D—C4D	176.8 (2)	C6A—C1A—C2A—C3A	1.0 (4)
O32D—N3D—C3D—C4D	-2.9 (3)	C11A—C1A—C2A—O2A	0.7 (4)
O32D—N3D—C3D—C2D	176.2 (2)	C11A—C1A—C2A—C3A	-177.7 (3)
O31D—N3D—C3D—C2D	-4.1 (3)	C2A—C1A—C6A—C5A	-0.4 (4)
O52D—N5D—C5D—C4D	179.2 (2)	C11A—C1A—C6A—C5A	178.3 (3)
O51D—N5D—C5D—C6D	-177.3 (2)	C2A—C1A—C11A—O11A	-177.8(3)
O51D-N5D-C5D-C4D	1.3 (3)	C2A—C1A—C11A—O12A	2.1 (4)
O52D—N5D—C5D—C6D	0.6 (3)	C6A—C1A—C11A—O11A	3.5 (4)
C2C—C1C—C6C—C5C	0.7 (4)	C6A—C1A—C11A—O12A	-176.5 (3)
C11C—C1C—C2C—C3C	177.4 (3)	O2A—C2A—C3A—C4A	-179.5 (3)
C6C—C1C—C11C—O11C	8.5 (4)	C1A—C2A—C3A—C4A	-1.0 (4)
C2C—C1C—C11C—O12C	9.2 (4)	C2A—C3A—C4A—N4A	-177.5 (3)
C2C—C1C—C11C—O11C	-170.8 (3)	C2A—C3A—C4A—C5A	0.2 (4)
C6C—C1C—C2C—C3C	-2.0 (4)	N4A—C4A—C5A—C6A	178.2 (3)
C6C—C1C—C11C—O12C	-171.4 (3)	C3A—C4A—C5A—C6A	0.4 (4)
C11C—C1C—C6C—C5C	-178.7 (3)	C4A—C5A—C6A—C1A	-0.3 (4)
C1C—C2C—C3C—N3C	-177.2 (3)	C6B—C1B—C2B—O2B	-180.0(2)
C1C—C2C—C3C—C4C	1.6 (4)	C6B—C1B—C2B—C3B	0.1 (4)
C2C—C3C—C4C—C5C	0.1 (4)	C11B—C1B—C2B—O2B	0.3 (4)
N3C—C3C—C4C—C5C	179.0 (3)	C11B—C1B—C2B—C3B	-179.7 (2)
C3C—C4C—C5C—C6C	-1.5 (4)	C2B-C1B-C6B-C5B	0.0 (4)
C3C—C4C—C5C—N5C	178.5 (3)	C11B—C1B—C6B—C5B	179.8 (2)
C4C—C5C—C6C—C1C	1.1 (4)	C2B-C1B-C11B-O11B	176.3 (2)
N5C-C5C-C6C-C1C	-178.9 (3)	C2B-C1B-C11B-O12B	-3.0 (4)
C2D-C1D-C6D-C5D	0.0 (4)	C6B-C1B-C11B-O11B	-3.5 (4)
C6D—C1D—C2D—C3D	0.2 (4)	C6B—C1B—C11B—O12B	177.3 (2)
C11D—C1D—C2D—C3D	179.6 (2)	O2B—C2B—C3B—C4B	179.6 (2)
C6D-C1D-C11D-011D	6.3 (4)	C1B—C2B—C3B—C4B	-0.4 (4)
C11D—C1D—C6D—C5D	-179.4 (2)	C2B—C3B—C4B—N4B	179.3 (2)
C6D-C1D-C11D-012D	-174.2 (2)	C2B—C3B—C4B—C5B	0.7 (4)

C2D-C1D-C11D-012D	6.4 (3)	N4B—C4B—C5B—C6B	-179.1 (3)
C2D—C1D—C11D—O11D	-173.1 (2)	C3B—C4B—C5B—C6B	-0.6 (4)
C1D—C2D—C3D—C4D	-0.5 (4)	C4B—C5B—C6B—C1B	0.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
O11 <i>A</i> —H11 <i>A</i> ···O12 <i>A</i> ⁱ	0.91 (3)	1.78 (3)	2.678 (3)	175 (3)
O11 <i>B</i> —H11 <i>B</i> …O11 <i>D</i>	0.94 (3)	1.74 (3)	2.673 (3)	175 (3)
O11 <i>C</i> —H11 <i>C</i> ···O12 <i>C</i> ⁱⁱ	0.91 (3)	1.73 (3)	2.640 (3)	177 (2)
O12D—H12D…O12B	0.90 (3)	1.71 (3)	2.610 (3)	176 (2)
N4 <i>B</i> —H41 <i>B</i> ···O31 <i>C</i>	0.86 (3)	2.58 (3)	3.350 (4)	150 (3)
N4 B —H42 B ···O52 D ⁱⁱⁱ	0.85 (2)	2.44 (3)	3.210 (4)	151 (3)
O2 <i>A</i> —H2 <i>A</i> ···O12 <i>A</i>	0.84	1.89	2.625 (3)	145
O2 <i>B</i> —H2 <i>B</i> ···O12 <i>B</i>	0.84	1.85	2.587 (3)	145
O1 <i>W</i> —H11 <i>W</i> ···O2 <i>B</i>	0.90	2.05	2.952 (6)	179
O1 <i>W</i> —H12 <i>W</i> ···O32 <i>C</i> ^{iv}	0.93	2.08	3.005 (5)	179
C3 <i>B</i> —H3 <i>B</i> ···O31 <i>C</i>	0.95	2.58	3.382 (3)	142
$C4D$ — $H4D$ ···· $O32C^{v}$	0.95	2.49	3.425 (3)	170

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+2, -z+1; (iii) -x, -y+1, -z; (iv) x+1, y, z; (v) -x+1, -y+2, -z.

(II) 3,5-Dinitrobenzoic acid-2-hydroxy-3-(1*H*-indol-3-yl)propenoic acid-d⁶-dimethyl sulfoxide (1/1/1)

Crystal data	
C ₇ H ₄ N ₂ O ₆ ·C ₁₁ H ₉ NO ₃ ·C ₂ D ₆ OS $M_r = 499.49$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.6488 (6) Å b = 12.3552 (10) Å c = 13.3768 (10) Å a = 116.833 (8)° $\beta = 96.274$ (6)° $\gamma = 97.626$ (7)° V = 1097.40 (18) Å ³	Z = 2 F(000) = 512 $D_x = 1.511 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2343 reflections $\theta = 3.3-28.4^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 200 K Block, red $0.45 \times 0.40 \times 0.32 \text{ mm}$
Data collection	
Oxford Diffraction Gemini-S CCD detector diffractometer Radiation source: Enhance (Mo) X-ray source Graphite monochromator Detector resolution: 16.077 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2013) $T_{min} = 0.94, T_{max} = 0.98$	7457 measured reflections 4310 independent reflections 3490 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 3.3^{\circ}$ $h = -9 \rightarrow 9$ $k = -15 \rightarrow 15$ $l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.097$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
4310 reflections	and constrained refinement
319 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0394P)^2 + 0.3315P]$
4 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.26 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
O11B	0.11950 (19)	0.35376 (12)	0.50949 (11)	0.0386 (5)	
O12B	0.0099 (2)	0.24989 (12)	0.59702 (12)	0.0458 (5)	
O31B	-0.19578 (19)	0.48461 (14)	0.95269 (12)	0.0438 (5)	
O32B	-0.0994 (2)	0.68345 (14)	1.05107 (12)	0.0483 (5)	
O51B	0.1446 (2)	0.90405 (13)	0.86272 (12)	0.0504 (5)	
O52B	0.2503 (2)	0.80830 (13)	0.71029 (12)	0.0443 (5)	
N3B	-0.1163 (2)	0.58414 (16)	0.96484 (14)	0.0353 (6)	
N5B	0.1697 (2)	0.80906 (14)	0.78469 (13)	0.0331 (5)	
C1B	0.0493 (2)	0.46984 (16)	0.69011 (14)	0.0272 (5)	
C2B	-0.0251 (2)	0.47096 (17)	0.78086 (15)	0.0291 (6)	
C3B	-0.0359 (2)	0.58338 (17)	0.86952 (14)	0.0282 (5)	
C4B	0.0267 (2)	0.69546 (17)	0.87299 (15)	0.0289 (5)	
C5B	0.1009 (2)	0.69054 (16)	0.78195 (14)	0.0268 (5)	
C6B	0.1133 (2)	0.58021 (16)	0.68980 (15)	0.0273 (5)	
C11B	0.0569 (2)	0.34589 (17)	0.59463 (16)	0.0312 (6)	
O12A	0.36207 (19)	0.66095 (12)	0.49243 (11)	0.0372 (4)	
013A	0.5239 (2)	0.85805 (12)	0.37886 (12)	0.0423 (5)	
014A	0.42998 (17)	0.89974 (12)	0.54337 (11)	0.0365 (4)	
N1A	0.3546 (2)	0.28647 (14)	0.26491 (13)	0.0311 (5)	
C2A	0.3735 (2)	0.41030 (16)	0.33443 (15)	0.0293 (6)	
C3A	0.4425 (2)	0.47577 (16)	0.28182 (14)	0.0259 (5)	
C4A	0.5334 (2)	0.39011 (17)	0.08035 (15)	0.0298 (6)	
C5A	0.5337 (3)	0.28088 (18)	-0.01547 (16)	0.0369 (7)	
C6A	0.4707 (3)	0.16552 (18)	-0.02214 (17)	0.0397 (7)	
C7A	0.4090 (3)	0.15632 (17)	0.06754 (16)	0.0351 (6)	

C8A	0.4094 (2)	0.26675 (16)	0.16438 (15)	0.0280 (6)
C9A	0.4681 (2)	0.38401 (15)	0.17227 (14)	0.0247 (5)
C11A	0.4720 (2)	0.60721 (16)	0.32128 (15)	0.0273 (5)
C12A	0.4337 (2)	0.69302 (16)	0.41764 (15)	0.0281 (5)
C13A	0.4624 (2)	0.82503 (17)	0.45126 (15)	0.0309 (6)
S2C	0.13671 (7)	0.02349 (4)	0.35794 (4)	0.0359 (2)
O2C	0.16071 (19)	0.14384 (12)	0.35128 (11)	0.0422 (5)
C1C	-0.0974 (3)	-0.0384 (2)	0.3210 (2)	0.0547 (9)
C3C	0.2017 (4)	-0.0805 (2)	0.2321 (2)	0.0615 (9)
H2B	-0.06770	0.39570	0.78180	0.0350*
H4B	0.01890	0.77200	0.93490	0.0350*
H6B	0.16420	0.58030	0.62820	0.0330*
H11B	0.130 (3)	0.2799 (17)	0.4585 (17)	0.0580*
H1A	0.308 (3)	0.2298 (16)	0.2818 (16)	0.0370*
H2A	0.34380	0.44630	0.40820	0.0350*
H4A	0.57650	0.46790	0.08410	0.0360*
H5A	0.57740	0.28390	-0.07810	0.0440*
H6A	0.47050	0.09200	-0.08990	0.0480*
H7A	0.36810	0.07810	0.06340	0.0420*
H11A	0.52400	0.63630	0.27430	0.0330*
H12A	0.353 (3)	0.7300 (17)	0.5506 (16)	0.0560*
H13A	0.540 (3)	0.9407 (15)	0.4071 (19)	0.0630*
D11C	-0.14460	-0.04780	0.24570	0.0820*
D12C	-0.15770	0.01790	0.37790	0.0820*
D13C	-0.11950	-0.11940	0.31880	0.0820*
D31C	0.13170	-0.08140	0.16570	0.0920*
D32C	0.17950	-0.16400	0.22480	0.0920*
D33C	0.32990	-0.05370	0.23610	0.0920*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O11B	0.0554 (9)	0.0241 (7)	0.0344 (8)	0.0102 (6)	0.0154 (6)	0.0102 (6)
O12B	0.0661 (10)	0.0244 (8)	0.0504 (9)	0.0104 (7)	0.0179 (7)	0.0190 (7)
O31B	0.0418 (8)	0.0501 (9)	0.0519 (9)	0.0064 (7)	0.0145 (6)	0.0342 (7)
O32B	0.0582 (10)	0.0481 (10)	0.0336 (8)	0.0091 (7)	0.0151 (7)	0.0143 (7)
O51B	0.0814 (11)	0.0227 (8)	0.0397 (8)	0.0078 (7)	0.0175 (7)	0.0080 (6)
O52B	0.0587 (9)	0.0350 (8)	0.0480 (9)	0.0107 (7)	0.0234 (7)	0.0240 (7)
N3B	0.0309 (9)	0.0450 (11)	0.0361 (9)	0.0098 (7)	0.0075 (7)	0.0235 (8)
N5B	0.0404 (9)	0.0248 (9)	0.0323 (9)	0.0047 (7)	0.0051 (7)	0.0128 (7)
C1B	0.0256 (9)	0.0259 (10)	0.0301 (9)	0.0068 (7)	0.0024 (7)	0.0135 (8)
C2B	0.0256 (9)	0.0266 (10)	0.0362 (10)	0.0019 (7)	0.0006 (7)	0.0179 (8)
C3B	0.0240 (9)	0.0338 (10)	0.0274 (9)	0.0039 (7)	0.0024 (7)	0.0161 (8)
C4B	0.0288 (9)	0.0285 (10)	0.0254 (9)	0.0068 (7)	0.0013 (7)	0.0099 (7)
C5B	0.0279 (9)	0.0227 (9)	0.0292 (9)	0.0039 (7)	0.0012 (7)	0.0131 (7)
C6B	0.0266 (9)	0.0278 (10)	0.0280 (9)	0.0066 (7)	0.0036 (7)	0.0137 (7)
C11B	0.0314 (10)	0.0263 (10)	0.0352 (10)	0.0071 (7)	0.0032 (8)	0.0144 (8)
O12A	0.0537 (9)	0.0254 (7)	0.0322 (7)	0.0090 (6)	0.0146 (6)	0.0118 (6)

013A	0.0594 (9)	0.0207 (7)	0.0456 (8)	0.0053 (6)	0.0244 (7)	0.0124 (6)
014A	0.0424 (8)	0.0231 (7)	0.0390 (8)	0.0053 (6)	0.0160 (6)	0.0091 (6)
N1A	0.0373 (9)	0.0255 (9)	0.0350 (9)	0.0069 (7)	0.0112 (7)	0.0170 (7)
C2A	0.0317 (10)	0.0265 (10)	0.0295 (10)	0.0083 (7)	0.0075 (7)	0.0121 (8)
C3A	0.0245 (9)	0.0241 (9)	0.0271 (9)	0.0057 (7)	0.0036 (7)	0.0106 (7)
C4A	0.0287 (9)	0.0263 (10)	0.0353 (10)	0.0052 (7)	0.0091 (7)	0.0149 (8)
C5A	0.0392 (11)	0.0383 (12)	0.0359 (11)	0.0114 (9)	0.0176 (8)	0.0166 (9)
C6A	0.0452 (12)	0.0289 (11)	0.0378 (11)	0.0109 (9)	0.0148 (9)	0.0074 (8)
C7A	0.0388 (11)	0.0218 (10)	0.0410 (11)	0.0051 (8)	0.0094 (8)	0.0116 (8)
C8A	0.0263 (9)	0.0275 (10)	0.0315 (10)	0.0074 (7)	0.0062 (7)	0.0145 (8)
C9A	0.0206 (8)	0.0221 (9)	0.0302 (9)	0.0053 (7)	0.0036 (7)	0.0115 (7)
C11A	0.0249 (9)	0.0242 (9)	0.0316 (9)	0.0032 (7)	0.0051 (7)	0.0128 (7)
C12A	0.0272 (9)	0.0241 (9)	0.0312 (9)	0.0031 (7)	0.0041 (7)	0.0125 (8)
C13A	0.0265 (9)	0.0260 (10)	0.0353 (10)	0.0021 (7)	0.0064 (7)	0.0111 (8)
S2C	0.0396 (3)	0.0279 (3)	0.0398 (3)	0.0052 (2)	0.0107 (2)	0.0155 (2)
O2C	0.0567 (9)	0.0236 (7)	0.0450 (8)	0.0049 (6)	0.0255 (7)	0.0127 (6)
C1C	0.0390 (12)	0.0443 (14)	0.0970 (19)	0.0062 (10)	0.0194 (12)	0.0464 (14)
C3C	0.0669 (16)	0.0361 (14)	0.0623 (15)	0.0159 (11)	0.0213 (12)	0.0036 (11)

Geometric parameters (Å, °)

S2C—C3C	1.770 (3)	C2B—H2B	0.9500
S2C—C1C	1.771 (2)	C4B—H4B	0.9500
S2C—O2C	1.5177 (17)	C6B—H6B	0.9500
O11B—C11B	1.320 (2)	C2A—C3A	1.382 (3)
O12B—C11B	1.209 (3)	C3A—C11A	1.439 (3)
O31B—N3B	1.228 (3)	C3A—C9A	1.447 (2)
O32B—N3B	1.225 (2)	C4A—C9A	1.405 (3)
O51B—N5B	1.225 (2)	C4A—C5A	1.380 (3)
O52B—N5B	1.224 (2)	C5A—C6A	1.402 (3)
O11B—H11B	0.88 (2)	C6A—C7A	1.381 (3)
O12A—C12A	1.371 (2)	C7A—C8A	1.394 (3)
O13A—C13A	1.316 (3)	C8A—C9A	1.411 (3)
O14A—C13A	1.238 (2)	C11A—C12A	1.343 (3)
O12A—H12A	0.88 (2)	C12A—C13A	1.460 (3)
O13A—H13A	0.90(2)	C2A—H2A	0.9500
N3B—C3B	1.472 (2)	C4A—H4A	0.9500
N5B—C5B	1.472 (3)	C5A—H5A	0.9500
N1A—C8A	1.378 (2)	C6A—H6A	0.9500
N1A—C2A	1.362 (3)	C7A—H7A	0.9500
N1A—H1A	0.87 (2)	C11A—H11A	0.9500
C1B—C6B	1.388 (3)	C1C—D11C	0.9800
C1B—C2B	1.391 (2)	C1C—D12C	0.9800
C1B—C11B	1.501 (3)	C1C—D13C	0.9800
C2B—C3B	1.381 (3)	C3C—D31C	0.9800
C3B—C4B	1.382 (3)	C3C—D32C	0.9800
C4B—C5B	1.379 (2)	C3C—D33C	0.9800
C5B—C6B	1.389 (3)		

O2C—S2C—C1C	106.34 (11)	C4A—C5A—C6A	121.28 (19)
O2C—S2C—C3C	103.33 (11)	C5A—C6A—C7A	121.5 (2)
C1C—S2C—C3C	99.20 (13)	C6A—C7A—C8A	117.1 (2)
C11B—O11B—H11B	109.6 (15)	N1A—C8A—C9A	107.34 (16)
C12A—O12A—H12A	106.7 (15)	N1A—C8A—C7A	130.1 (2)
C13A—O13A—H13A	110.2 (14)	C7A—C8A—C9A	122.53 (17)
O32B—N3B—C3B	118.17 (19)	C4A—C9A—C8A	118.90 (17)
O31B—N3B—C3B	117.62 (17)	C3A—C9A—C8A	107.02 (16)
O31B—N3B—O32B	124.21 (18)	C3A—C9A—C4A	134.08 (19)
O51B—N5B—C5B	117.86 (16)	C3A—C11A—C12A	126.73 (18)
O52B—N5B—C5B	118.81 (16)	O12A—C12A—C11A	121.18 (19)
O51B—N5B—O52B	123.33 (19)	C11A—C12A—C13A	124.01 (18)
C2A—N1A—C8A	109.74 (17)	O12A—C12A—C13A	114.81 (15)
C2A—N1A—H1A	123.5 (13)	O14A—C13A—C12A	120.60 (18)
C8A—N1A—H1A	126.7 (13)	O13A—C13A—C12A	116.25 (16)
C2B—C1B—C6B	120.32 (17)	O13A—C13A—O14A	123.2 (2)
C6B—C1B—C11B	122.31 (16)	C3A—C2A—H2A	125.00
C2B—C1B—C11B	117.38 (19)	N1A—C2A—H2A	125.00
C1B—C2B—C3B	118.9 (2)	C5A—C4A—H4A	121.00
N3B—C3B—C4B	118.50 (17)	C9A—C4A—H4A	121.00
N3B—C3B—C2B	118.71 (19)	C4A—C5A—H5A	119.00
C2B—C3B—C4B	122.79 (17)	C6A—C5A—H5A	119.00
C3B—C4B—C5B	116.62 (18)	С7А—С6А—Н6А	119.00
C4B—C5B—C6B	123.1 (2)	С5А—С6А—Н6А	119.00
N5B—C5B—C6B	119.51 (16)	С6А—С7А—Н7А	121.00
N5B—C5B—C4B	117.36 (17)	С8А—С7А—Н7А	121.00
C1B—C6B—C5B	118.28 (17)	C3A—C11A—H11A	117.00
O11B—C11B—O12B	124.40 (19)	C12A—C11A—H11A	117.00
O12B—C11B—C1B	122.64 (17)	S2C—C1C—D11C	109.00
O11B—C11B—C1B	112.96 (19)	S2C—C1C—D12C	109.00
C1B—C2B—H2B	121.00	S2C—C1C—D13C	110.00
C3B—C2B—H2B	121.00	D11C—C1C—D12C	109.00
C3B—C4B—H4B	122.00	D11C—C1C—D13C	109.00
C5B—C4B—H4B	122.00	D12C—C1C—D13C	110.00
C5B—C6B—H6B	121.00	S2C—C3C—D31C	109.00
C1B—C6B—H6B	121.00	S2C—C3C—D32C	109.00
N1A—C2A—C3A	109.91 (16)	S2C—C3C—D33C	109.00
C2A—C3A—C11A	128.34 (16)	D31C—C3C—D32C	109.00
C9A—C3A—C11A	125.53 (17)	D31C—C3C—D33C	109.00
C2A—C3A—C9A	105.98 (17)	D32C—C3C—D33C	109.00
C5A—C4A—C9A	118.7 (2)		
O31B—N3B—C3B—C2B	-11.4 (2)	C4B—C5B—C6B—C1B	-0.6 (2)
O31B—N3B—C3B—C4B	169.03 (16)	N1A-C2A-C3A-C9A	-0.36 (19)
O32B—N3B—C3B—C2B	168.39 (17)	N1A-C2A-C3A-C11A	175.38 (16)
O32B—N3B—C3B—C4B	-11.2 (2)	C2A—C3A—C9A—C4A	-179.69 (18)
O51B—N5B—C5B—C4B	-5.6 (2)	C2A—C3A—C9A—C8A	0.95 (18)

O51B—N5B—C5B—C6B	174.61 (16)	C11A—C3A—C9A—C4A	4.4 (3)
O52B—N5B—C5B—C4B	173.68 (16)	C11A—C3A—C9A—C8A	-174.95 (15)
O52B—N5B—C5B—C6B	-6.2 (2)	C2A—C3A—C11A—C12A	-1.6 (3)
C2A—N1A—C8A—C9A	0.98 (19)	C9A—C3A—C11A—C12A	173.37 (17)
C8A—N1A—C2A—C3A	-0.4 (2)	C9A—C4A—C5A—C6A	-0.1 (3)
C2A—N1A—C8A—C7A	-177.76 (19)	C5A—C4A—C9A—C3A	-177.79 (19)
C6B—C1B—C2B—C3B	0.8 (2)	C5A—C4A—C9A—C8A	1.5 (2)
C2B—C1B—C11B—O11B	176.16 (15)	C4A—C5A—C6A—C7A	-1.3 (3)
C2B-C1B-C11B-O12B	-3.8 (2)	C5A—C6A—C7A—C8A	1.0 (3)
C6B-C1B-C11B-O11B	-3.9 (2)	C6A—C7A—C8A—N1A	179.11 (19)
C6B-C1B-C11B-O12B	176.13 (17)	C6A—C7A—C8A—C9A	0.5 (3)
C11B—C1B—C6B—C5B	-179.91 (15)	N1A-C8A-C9A-C3A	-1.18 (18)
C11B—C1B—C2B—C3B	-179.31 (15)	N1A-C8A-C9A-C4A	179.34 (15)
C2B—C1B—C6B—C5B	0.0 (2)	C7A—C8A—C9A—C3A	177.68 (17)
C1B—C2B—C3B—N3B	179.41 (15)	C7A—C8A—C9A—C4A	-1.8 (3)
C1B—C2B—C3B—C4B	-1.0 (3)	C3A—C11A—C12A—O12A	1.4 (3)
C2B—C3B—C4B—C5B	0.5 (2)	C3A—C11A—C12A—C13A	-178.19 (16)
N3B—C3B—C4B—C5B	-179.96 (15)	O12A—C12A—C13A—O13A	-177.22 (15)
C3B—C4B—C5B—N5B	-179.48 (15)	O12A—C12A—C13A—O14A	3.0 (2)
C3B—C4B—C5B—C6B	0.4 (2)	C11A—C12A—C13A—O13A	2.4 (2)
N5B-C5B-C6B-C1B	179.23 (15)	C11A—C12A—C13A—O14A	-177.43 (16)

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D····A	D—H··· A
N1 <i>A</i> —H1 <i>A</i> ···O2 <i>C</i>	0.87 (2)	2.02 (2)	2.856 (2)	161 (2)
O11 <i>B</i> —H11 <i>B</i> ···S2 <i>C</i>	0.88 (2)	2.84 (2)	3.6757 (17)	160 (2)
O11 <i>B</i> —H11 <i>B</i> ···O2 <i>C</i>	0.88 (2)	1.72 (2)	2.591 (2)	174 (2)
O12A—H12A…O14A	0.88 (2)	2.15 (2)	2.672 (2)	118 (2)
O12 <i>A</i> —H12 <i>A</i> ···O52 <i>B</i>	0.88(2)	2.20 (2)	2.951 (2)	144 (2)
O13A—H13A…O14A ⁱ	0.90 (2)	1.75 (2)	2.644 (2)	178 (2)
C2 <i>A</i> —H2 <i>A</i> ···O12 <i>A</i>	0.95	2.34	2.876 (2)	115
C11 <i>A</i> —H11 <i>A</i> ···O13 <i>A</i>	0.95	2.45	2.794 (3)	101
C1 <i>C</i> —D12 <i>C</i> ···O14 <i>A</i> ⁱⁱ	0.98	2.56	3.472 (3)	155
C1 <i>C</i> —D13 <i>C</i> ···O12 <i>B</i> ⁱⁱⁱ	0.98	2.52	3.372 (3)	145

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+1, -z+1; (iii) -x, -y, -z+1.