research communications

Received 8 September 2014 Accepted 24 September 2014

Edited by A. J. Lough, University of Toronto, Canada

Keywords: Piperidone; weak hydrogen bonds; crystal structure

CCDC reference: 1026047 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 1-(2-chloroacetyl)-2,6-bis(4-fluorophenyl)-3,3-dimethylpiperidin-4-one

S. Jothivel,^a Jibon Kotoky^b and S. Kabilan^a*

^aDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, Chidambaram, Tamil Nadu, India, and ^bDivision of Life Sciences, Central Instrumentation Facility, Institute of Advanced Study in Science & Technology (IASST), Guwahati 781 035, Assam, India. *Correspondence e-mail: kabilanchem60@rediffmail.com

In the title molecule, $C_{21}H_{20}ClF_2NO_2$, the piperidine ring adopts a slightly distorted boat conformation. The two benzene rings form a dihedral angle of 87.43 (1)°. A weak intramolecular $C-H\cdots\pi$ interaction is observed. In the crystal, weak $C-H\cdots$ ohydrogen bonds and weak $C-H\cdots\pi$ interactions connect the molecules, forming a three-dimensional network.

1. Chemical context

Piperidones are an important group of heterocyclic compounds in the field of medicinal chemistry due to their biological activities, which include cytotoxic properties (Dimmock *et al.*, 2001). They are also reported to possess analgesic, anti-inflammatory, central nervous system (CNS), local anaesthetic, anticancer and antimicrobial activities (Perumal *et al.*, 2001). The present investigation was undertaken to establish the molecular structure, the conformation of the heterocyclic ring and the orientation of the 4-fluorophenyl groups with respect to each other.

OPEN d ACCESS

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1. The sum of the bond angles around atom N1 (359.6°) confirms sp^2 hybridization. The N1–C14 [1.356 (2) Å] and C14–O1 [1.221 (2) Å] bond distances indicate the presence electron delocalization in this part of the molecule. The sixmembered piperidine ring adopts a slightly distorted boat conformation. The benzene rings form a dihedral angle of 87.43 (1)°. The equatorial and axial orientation of the methyl substituents bonded to atom C2 are described by the N1–C1–C2–C6 and N1–C1–C2–C7 torsion angles of –117.45 (16)° and –57.2 (2)°, respectively. A weak intra-

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

molecular C-H··· π interaction is observed, which involves the C8-C13 benzene ring (see Table 1).

3. Supramolecular features

In the crystal, weak C-H···O hydrogen bonds and weak C-H··· π interactions link molecules, forming a three-dimensional network (Fig. 2). Atom O1 acts an acceptor for two weak C-H···O hydrogen bonds forming an $R_2^1(7)$ ring.

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, updates to May 2014; Allen, 2002) revealed four closely

Figure 2

Part of the crystal structure showing weak hydrogen bonds as dashed lines. H atoms not involved in the hydrogen bonds or weak $C-H\cdots\pi$ stacking interactions are not shown.

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$).	

Cg1 and Cg2 are the centroids of the C16–C21 and C8–C13 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C5-H5\cdots O1^{i}$	0.98	2.50	3.453 (2)	165
$C15-H15A\cdotsO1^{i}$	0.97	2.46	3.429 (3)	174
$C20-H20\cdots O2^{ii}$	0.93	2.45	3.298 (3)	151
$C10-H10\cdots Cg1^{iii}$	0.93	2.66	3.499 (2)	151
$C17 - H17 \cdots Cg2$	0.93	2.85	3.771 (2)	170
	. 9	1 2		1 1 (11)

Symmetry codes: (i) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) -x + 2, -y, -z + 1.

related structures in which the dihedral angles between the benzene rings (which are given in square brackets) can be compared to the title compound. These structures are *r*-2,*c*-6-bis(4-fluorophenyl)-*t*-3,*t*-5-dimethylpiperidin-4-one [50.4 (1)°] (Gayathri *et al.*, 2008*a*), *r*-2,*c*-6-bis(4-chlorophenyl)-*c*-3,*t*-3-dimethylpiperidin-4-one [77.23 (7)°] (Llango *et al.*, 2008), *r*-2,*c*-6-bis(4-chlorophenyl)-*t*-3-isopropyl-1-nitrosopiperidin-4-one [21.56°] (Gayathri *et al.*, 2008*b*) and *r*-2,*c*-6-bis(4-chlorophenyl)-*t*-3-isopropylpiperidin-4-one [52.4 (1)°] (Thiruval-luvar *et al.*, 2007).

5. Synthesis and crystallization

The synthesis followed the procedure of Aridoss *et al.* (2007). To a stirred solution of 3,3-dimethyl-2,6-bis(*p*-fluorophenyl) piperidin-4-one (1.4 g, 5 mmol), and triethylamine (2 ml,

 Table 2

 Experimental details.

1	
Crystal data	
Chemical formula	$C_{21}H_{20}ClF_2NO_2$
M _r	391.83
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	293
a, b, c (Å)	13.5270 (3), 10.0150 (2), 15.2560 (3)
β(°)	113.803 (1)
$V(\dot{A}^3)$	1890.97 (7)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.24
Crystal size (mm)	$0.35 \times 0.30 \times 0.30$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2004)
T_{\min}, T_{\max}	0.914, 0.944
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	17109, 3327, 2643
R _{int}	0.030
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.097, 1.02
No. of reflections	3327
No. of parameters	245
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.34, -0.42

Computer programs: *APEX2* and *SAINT* (Bruker, 2004), *SIR92* (Altomare *et al.*, 1993), *SHELXL97* (Sheldrick, 2008), *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2009).

14.4 mmol) in benzene (20 ml), dichloroacetylchloride (1 ml, 10 mmol) in benzene (20 ml) was added dropwise for about half an hour. Stirring was continued with mild heating using a magnetic stirrer for 7 h. The progress of the reaction was monitored by TLC. After the completion of reaction, it was poured into water and extracted with ether. The collected ether extracts were then washed well with 3% sodium bicarbonate solution and dried over anhydrous Na₂SO₄. The pasty mass obtained was purified by crystallization from a benzene–petroleum ether solution (333–353 K) in the ratio of 95:5. X-ray quality crystals were grown by slow evaporation of an ethanol solution of the title compound at ambient temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in calculated positions (C–H = 0.93–0.97 Å) and included in the refinement in a riding-model approximation with $U_{\rm iso}({\rm H}) =$ $1.2U_{\rm eq}({\rm C})$ or $1.5U_{\rm eq}({\rm C}_{\rm methyl})$.

Acknowledgements

SJ is thankful to the CSIR, New Delhi, for the award of a Senior Research Fellowship through research grant No. 01/2454/11/EMR-II. The authors would like to acknowledge the

SAIF, IIT Madras, for the data collection and the Department of Biotechnology (DBT&NEC), New Delhi, for financial support

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Aridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2007). Spectrochim. Acta A, 68, 1153–1163.
- Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586– 593.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gayathri, P., Thiruvalluvar, A., Manimekalai, A., Sivakumar, S. & Butcher, R. J. (2008b). Acta Cryst. E64, o1973.
- Gayathri, D., Velmurugan, D., Aridoss, G., Kabilan, S. & Ravikumar, K. (2008a). Acta Cryst. E64, 0429.
- Ilango, S. S., Ponnuswamy, S., Gayathri, P., Thiruvalluvar, A. & Butcher, R. J. (2008). Acta Cryst. E64, 02312.
- Perumal, R. V., Agiraj, M. & Shanmugapandiyan, P. (2001). *Indian Drugs*, 38, 156–159.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Thiruvalluvar, A., Balamurugan, S., Butcher, R. J., Manimekalai, A. & Sivakumar, S. (2007). *Acta Cryst.* E63, 04482.

supporting information

Acta Cryst. (2014). E70, 262-264 [doi:10.1107/S1600536814021278]

Crystal structure of 1-(2-chloroacetyl)-2,6-bis(4-fluorophenyl)-3,3-dimethylpiperidin-4-one

S. Jothivel, Jibon Kotoky and S. Kabilan

Computing details

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* (Bruker, 2004); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

1-(2-Chloroacetyl)-2,6-bis(4-fluorophenyl)-3,3-dimethylpiperidin-4-one

Crystal data	
$C_{21}H_{20}ClF_{2}NO_{2}$ $M_{r} = 391.83$ Monoclinic, $P2_{1}/n$ Hall symbol: -P 2yn a = 13.5270 (3) Å b = 10.0150 (2) Å c = 15.2560 (3) Å $\beta = 113.803$ (1)° V = 1890.97 (7) Å ³ Z = 4	F(000) = 816 $D_x = 1.376 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6438 reflections $\theta = 2.6-27.4^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$ T = 293 K Block, colourless $0.35 \times 0.30 \times 0.30 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004) $T_{\min} = 0.914, T_{\max} = 0.944$	17109 measured reflections 3327 independent reflections 2643 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.7^{\circ}$ $h = -15 \rightarrow 16$ $k = -11 \rightarrow 11$ $l = -18 \rightarrow 18$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.097$ S = 1.02 3327 reflections 245 parameters 0 restraints	Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0329P)^2 + 1.0437P]$ where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\rm max} = 0.001$	Extinction correction: SHELXL,
$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
$\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ Å}^{-3}$	Extinction coefficient: 0.0104 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and i	sotropic or	equivalent isotropic	c displacement	parameters ($(Å^2)$)
-------------------------------------	-------------	----------------------	----------------	--------------	---------	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.78563 (14)	-0.24331 (17)	0.58593 (12)	0.0380 (4)	
H1	0.7638	-0.3211	0.6129	0.046*	
C2	0.68341 (15)	-0.1993 (2)	0.49931 (14)	0.0480 (5)	
C3	0.70229 (17)	-0.0678 (2)	0.46053 (15)	0.0528 (5)	
C4	0.78997 (17)	0.0206 (2)	0.52812 (14)	0.0495 (5)	
H4A	0.7675	0.1126	0.5120	0.059*	
H4B	0.8542	0.0072	0.5157	0.059*	
C5	0.82206 (14)	0.00286 (17)	0.63608 (13)	0.0395 (4)	
H5	0.7706	0.0536	0.6534	0.047*	
C6	0.64617 (19)	-0.3065 (2)	0.42125 (16)	0.0658 (7)	
H6A	0.6349	-0.3890	0.4479	0.099*	
H6B	0.7004	-0.3188	0.3964	0.099*	
H6C	0.5798	-0.2789	0.3705	0.099*	
C7	0.59232 (17)	-0.1729 (3)	0.53339 (19)	0.0726 (7)	
H7A	0.5767	-0.2537	0.5593	0.109*	
H7B	0.5287	-0.1437	0.4802	0.109*	
H7C	0.6149	-0.1050	0.5819	0.109*	
C8	0.88456 (15)	-0.28756 (17)	0.57008 (12)	0.0379 (4)	
C9	0.90707 (17)	-0.2532 (2)	0.49221 (14)	0.0493 (5)	
H9	0.8574	-0.2026	0.4430	0.059*	
C10	1.00201 (19)	-0.2928 (2)	0.48641 (15)	0.0560 (6)	
H10	1.0167	-0.2686	0.4341	0.067*	
C11	1.07354 (17)	-0.3676 (2)	0.55817 (16)	0.0535 (5)	
C12	1.05468 (17)	-0.4051 (2)	0.63625 (15)	0.0530 (5)	
H12	1.1047	-0.4566	0.6846	0.064*	
C13	0.96006 (15)	-0.36480 (19)	0.64150 (13)	0.0440 (5)	
H13	0.9462	-0.3899	0.6942	0.053*	
C14	0.82422 (14)	-0.17695 (19)	0.74942 (13)	0.0399 (4)	
C15	0.84427 (18)	-0.0661 (2)	0.82215 (14)	0.0524 (5)	
H15A	0.7946	0.0068	0.7929	0.063*	
H15B	0.9172	-0.0325	0.8408	0.063*	
C16	0.93284 (15)	0.06468 (18)	0.68828 (13)	0.0402 (4)	

C17	1.02557 (16)	0.0042 (2)	0.69010 (15)	0.0493 (5)	
H17	1.0217	-0.0819	0.6661	0.059*	
C18	1.12403 (17)	0.0696 (2)	0.72703 (16)	0.0586 (6)	
H18	1.1862	0.0289	0.7278	0.070*	
C19	1.12733 (17)	0.1957 (2)	0.76238 (15)	0.0566 (6)	
C20	1.03892 (18)	0.2570 (2)	0.76548 (15)	0.0554 (6)	
H20	1.0443	0.3414	0.7925	0.066*	
C21	0.94109 (17)	0.1907 (2)	0.72754 (14)	0.0483 (5)	
H21	0.8798	0.2315	0.7284	0.058*	
N1	0.81566 (12)	-0.13914 (14)	0.66131 (10)	0.0366 (4)	
01	0.81730 (12)	-0.29307 (13)	0.77065 (9)	0.0514 (4)	
O2	0.65146 (16)	-0.03393 (17)	0.37891 (11)	0.0883 (6)	
F1	1.22180 (11)	0.26360 (14)	0.79297 (12)	0.0865 (5)	
F2	1.16548 (11)	-0.40863 (16)	0.55128 (10)	0.0810 (5)	
Cl1	0.82752 (6)	-0.12066 (7)	0.92455 (4)	0.0788 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0399 (10)	0.0328 (9)	0.0374 (10)	-0.0039 (8)	0.0116 (8)	0.0023 (7)
C2	0.0406 (11)	0.0451 (11)	0.0462 (11)	-0.0035 (9)	0.0049 (9)	0.0039 (9)
C3	0.0533 (12)	0.0460 (12)	0.0462 (12)	0.0049 (10)	0.0068 (10)	0.0079 (9)
C4	0.0551 (12)	0.0385 (11)	0.0475 (11)	-0.0011 (9)	0.0131 (10)	0.0088 (8)
C5	0.0398 (10)	0.0331 (9)	0.0450 (10)	0.0005 (8)	0.0165 (8)	0.0021 (8)
C6	0.0652 (15)	0.0552 (14)	0.0524 (13)	-0.0129 (11)	-0.0017 (11)	0.0000 (10)
C7	0.0391 (12)	0.0891 (18)	0.0793 (17)	0.0016 (12)	0.0132 (11)	0.0083 (14)
C8	0.0435 (10)	0.0326 (9)	0.0356 (9)	-0.0046 (8)	0.0139 (8)	-0.0030(7)
C9	0.0580 (13)	0.0489 (12)	0.0391 (11)	0.0019 (10)	0.0177 (10)	0.0035 (9)
C10	0.0683 (14)	0.0617 (14)	0.0473 (12)	-0.0067 (11)	0.0329 (11)	-0.0053 (10)
C11	0.0484 (12)	0.0604 (13)	0.0554 (13)	-0.0021 (10)	0.0248 (10)	-0.0176 (11)
C12	0.0488 (12)	0.0577 (13)	0.0473 (12)	0.0078 (10)	0.0138 (10)	-0.0019 (10)
C13	0.0481 (11)	0.0456 (11)	0.0373 (10)	0.0021 (9)	0.0162 (9)	0.0016 (8)
C14	0.0371 (10)	0.0427 (11)	0.0434 (10)	-0.0002 (8)	0.0199 (8)	0.0021 (8)
C15	0.0667 (14)	0.0494 (12)	0.0476 (12)	0.0031 (10)	0.0299 (11)	0.0005 (9)
C16	0.0444 (11)	0.0374 (10)	0.0389 (10)	-0.0043 (8)	0.0168 (8)	0.0033 (8)
C17	0.0474 (12)	0.0377 (10)	0.0588 (13)	-0.0013 (9)	0.0173 (10)	0.0013 (9)
C18	0.0412 (12)	0.0545 (13)	0.0726 (15)	0.0002 (10)	0.0152 (11)	0.0066 (11)
C19	0.0460 (12)	0.0532 (13)	0.0582 (13)	-0.0159 (10)	0.0084 (10)	0.0044 (10)
C20	0.0652 (14)	0.0450 (12)	0.0548 (13)	-0.0138 (11)	0.0230 (11)	-0.0084 (9)
C21	0.0542 (12)	0.0440 (11)	0.0520 (12)	-0.0063 (9)	0.0268 (10)	-0.0052 (9)
N1	0.0377 (8)	0.0338 (8)	0.0383 (8)	-0.0020 (6)	0.0154 (7)	0.0011 (6)
01	0.0692 (10)	0.0427 (8)	0.0495 (8)	-0.0042 (7)	0.0313 (7)	0.0050 (6)
O2	0.1047 (14)	0.0628 (11)	0.0543 (10)	-0.0054 (10)	-0.0126 (9)	0.0190 (8)
F1	0.0524 (8)	0.0701 (9)	0.1148 (12)	-0.0234 (7)	0.0107 (8)	-0.0013 (8)
F2	0.0621 (9)	0.1066 (12)	0.0843 (10)	0.0072 (8)	0.0400 (8)	-0.0227 (8)
Cl1	0.1233 (6)	0.0731 (4)	0.0600 (4)	-0.0112 (4)	0.0577 (4)	-0.0075 (3)

Geometric parameters (Å, °)

C1—N1	1.483 (2)	C10—C11	1.357 (3)
C1—C8	1.519 (3)	C10—H10	0.9300
C1—C2	1.542 (2)	C11—F2	1.353 (2)
C1—H1	0.9800	C11—C12	1.368 (3)
С2—С3	1.507 (3)	C12—C13	1.375 (3)
С2—С6	1.530 (3)	C12—H12	0.9300
C2—C7	1.541 (3)	С13—Н13	0.9300
C3—O2	1.203 (2)	C14-01	1.221 (2)
C3—C4	1.505 (3)	C14—N1	1.356 (2)
C4—C5	1 535 (3)	C14-C15	1 515 (3)
C4—H4A	0.9700	C15—C11	1 754 (2)
C4—H4B	0.9700	C15—H15A	0.9700
C5-N1	1 485 (2)	C15—H15B	0.9700
C5-C16	1 517 (2)	C16-C21	1 382 (3)
С5—Н5	0.9800	C16-C17	1 383 (3)
С6—Н6А	0.9600	C17 - C18	1 384 (3)
C6—H6B	0.9600	C17—H17	0.9300
С6—Н6С	0.9600	C18— $C19$	1 367 (3)
С7—Н7А	0.9600	C18—H18	0.9300
C7—H7B	0.9600	C19—F1	1 353 (2)
С7—Н7С	0.9600	C19 $C20$	1 362 (3)
C8—C9	1.384(3)	C_{20} C_{21}	1 382 (3)
C8-C13	1.389 (3)	C20—H20	0.9300
C9—C10	1.381 (3)	C21—H21	0.9300
С9—Н9	0.9300	021 1121	
	012000		
N1-C1-C8	110.21 (14)	С8—С9—Н9	119.5
N1—C1—C2	109.50 (14)	C11—C10—C9	119.07 (19)
C8—C1—C2	119.33 (16)	C11—C10—H10	120.5
N1—C1—H1	105.6	C9—C10—H10	120.5
C8—C1—H1	105.6	F2-C11-C10	118.9 (2)
C2-C1-H1	105.6	F2—C11—C12	119.0 (2)
C3—C2—C6	111.25 (17)	C10—C11—C12	122.1 (2)
C3—C2—C7	105.53 (18)	C11—C12—C13	118.4 (2)
C6—C2—C7	109.02 (18)	C11—C12—H12	120.8
C3—C2—C1	110.54 (15)	C13—C12—H12	120.8
C6—C2—C1	111.49 (16)	C12—C13—C8	121.65 (18)
C7—C2—C1	108.80 (17)	C12—C13—H13	119.2
O2—C3—C4	120.44 (19)	C8—C13—H13	119.2
O2—C3—C2	122.40 (19)	O1C14N1	122.96 (17)
C4—C3—C2	117.15 (16)	O1—C14—C15	120.95 (17)
C3—C4—C5	118.07 (17)	N1—C14—C15	116.09 (16)
С3—С4—Н4А	107.8	C14—C15—Cl1	112.00 (14)
С5—С4—Н4А	107.8	C14—C15—H15A	109.2
C3—C4—H4B	107.8	Cl1—C15—H15A	109.2
C5—C4—H4B	107.8	C14—C15—H15B	109.2

H4A—C4—H4B	107.1	Cl1—C15—H15B	109.2
N1-C5-C16	113.80 (14)	H15A—C15—H15B	107.9
N1-C5-C4	111.60 (15)	C21—C16—C17	118.52 (18)
C16—C5—C4	107.94 (15)	C21—C16—C5	119.36 (17)
N1—C5—H5	107.8	C17—C16—C5	121.83 (17)
С16—С5—Н5	107.8	C16—C17—C18	121.11 (19)
С4—С5—Н5	107.8	C16—C17—H17	119.4
С2—С6—Н6А	109.5	C18—C17—H17	119.4
С2—С6—Н6В	109.5	C19—C18—C17	118.1 (2)
H6A—C6—H6B	109.5	C19—C18—H18	121.0
С2—С6—Н6С	109.5	C17—C18—H18	121.0
H6A—C6—H6C	109.5	F1-C19-C20	118.8 (2)
H6B—C6—H6C	109.5	F1-C19-C18	118.4 (2)
С2—С7—Н7А	109.5	C20—C19—C18	122.8 (2)
С2—С7—Н7В	109.5	C19—C20—C21	118.3 (2)
H7A—C7—H7B	109.5	С19—С20—Н20	120.8
С2—С7—Н7С	109.5	С21—С20—Н20	120.8
H7A—C7—H7C	109.5	C20—C21—C16	121.1 (2)
H7B—C7—H7C	109.5	C20—C21—H21	119.4
C9—C8—C13	117.70 (18)	C16—C21—H21	119.4
C9—C8—C1	125.28 (17)	C14—N1—C1	117.35 (14)
C13—C8—C1	116.97 (16)	C14—N1—C5	122.27 (15)
C10—C9—C8	121.09 (19)	C1—N1—C5	119.95 (14)
С10—С9—Н9	119.5		
N1—C1—C2—C3	58.3 (2)	C1—C8—C13—C12	-177.07 (17)
C8—C1—C2—C3	-70.0 (2)	O1—C14—C15—Cl1	-12.3 (2)
N1—C1—C2—C6	-177.45 (16)	N1—C14—C15—Cl1	168.29 (14)
C8—C1—C2—C6	54.3 (2)	N1-C5-C16-C21	-135.35 (17)
N1—C1—C2—C7	-57.2 (2)	C4—C5—C16—C21	100.2 (2)
C8—C1—C2—C7	174.54 (17)	N1-C5-C16-C17	50.9 (2)
C6—C2—C3—O2	31.2 (3)	C4—C5—C16—C17	-73.6 (2)
C7—C2—C3—O2	-86.9 (3)	C21—C16—C17—C18	-2.4 (3)
C1—C2—C3—O2	155.6 (2)	C5-C16-C17-C18	171.43 (18)
C6—C2—C3—C4	-147.7 (2)	C16—C17—C18—C19	0.4 (3)
C7—C2—C3—C4	94.2 (2)	C17—C18—C19—F1	-175.83 (19)
C1—C2—C3—C4	-23.3 (3)	C17—C18—C19—C20	2.2 (3)
O2—C3—C4—C5	157.1 (2)	F1-C19-C20-C21	175.26 (19)
C2—C3—C4—C5	-23.9 (3)	C18—C19—C20—C21	-2.8 (3)
C3—C4—C5—N1	35.1 (2)	C19—C20—C21—C16	0.7 (3)
C3—C4—C5—C16	160.89 (18)	C17—C16—C21—C20	1.8 (3)
N1—C1—C8—C9	-105.5 (2)	C5-C16-C21-C20	-172.16 (18)
C2—C1—C8—C9	22.4 (3)	O1—C14—N1—C1	6.3 (3)
N1-C1-C8-C13	72.05 (19)	C15—C14—N1—C1	-174.27 (16)
C2—C1—C8—C13	-160.01 (16)	O1—C14—N1—C5	178.74 (17)
C13—C8—C9—C10	-0.9 (3)	C15—C14—N1—C5	-1.8 (2)
C1C8C10	176.67 (18)	C8—C1—N1—C14	-103.14 (17)
C8—C9—C10—C11	0.6 (3)	C2-C1-N1-C14	123.70 (17)
	· /		

supporting information

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C16-C21 and C8-C13 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C5—H5…O1 ⁱ	0.98	2.50	3.453 (2)	165
C15—H15A…O1 ⁱ	0.97	2.46	3.429 (3)	174
C20—H20…O2 ⁱⁱ	0.93	2.45	3.298 (3)	151
C10—H10…Cg1 ⁱⁱⁱ	0.93	2.66	3.499 (2)	151
C17—H17···Cg2	0.93	2.85	3.771 (2)	170

Symmetry codes: (i) -x+3/2, y+1/2, -z+3/2; (ii) x+1/2, -y+1/2, z+1/2; (iii) -x+2, -y, -z+1.