

OPEN a ACCESS

Crystal structure of bromidobis(naphthalen-1-yl)antimony(III)

Omar bin Shawkataly,^a* Hafiz Malik Hussien Abdelnasir^a and Mohd Mustagim Rosli^b

^aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. *Correspondence e-mail: omarsa@usm.my

Received 30 August 2014; accepted 5 September 2014

Edited by H. Ishida, Okayama University, Japan

In the title compound, $[SbBr(C_{10}H_7)_2]$, the Sb^{III} atom has a distorted trigonal-pyramidal coordination geometry and the planes of the two naphthalene ring systems make a dihedral angle of 80.26 (18)°. An intramolecular C-H···Br hydrogen bond forms an S(5) ring motif. In the crystal, weak C-H···Br interactions link the molecules into helical chains along the baxis direction.

Keywords: crystal structure; organoantimony(III) compounds; stibine; hydrogen bonding.

CCDC reference: 1023098

1. Related literature

For general background to organoantimony(III) compounds haloorganoantimony(III) and related structures of compounds, see: Breunig et al. (2008); Millington & Sowerby (1994).

‡ Thomson Reuters ResearcherID: B-6034-2009.

2.1. Crystal data

$[SbBr(C_{10}H_7)_2]$	V = 1615.70 (7) Å ³
$M_r = 455.97$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 12.7371 (3) Å	$\mu = 4.17 \text{ mm}^{-1}$
b = 10.9189 (3) Å	$T = 100 { m K}$
c = 11.6300 (3) Å	$0.56 \times 0.33 \times 0.14 \text{ mm}$
$\beta = 92.661 \ (1)^{\circ}$	

2.2. Data collection

Bruker SMART APEXII CCD
area-detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\rm min} = 0.204, T_{\rm max} = 0.597$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.198$ S = 1.06

4705 reflections

20528 measured reflections 4705 independent reflections 3936 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.032$

199 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 3.68 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -3.12 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdots A$ $D - H \cdot \cdot \cdot A$ 3.408 (6) C1_H14...Br1 0.95 2 71 130 C2-H2A···Br1ⁱ 0.95 2.96 3.698 (6) 135

Symmetry code: (i) $-x, y - \frac{1}{2}, -z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Acknowledgements

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for Research Grant 1001/PJJAUH/811225. HMHA thanks USM for the award of a USM Fellowship.

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5373).

References

Breunig, H. J., Lork, E., Moldovan, O. & Rat, C. I. (2008). J. Organomet. Chem. 693, 2527-2534.

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Millington, P. L. & Sowerby, D. B. (1994). J. Organomet. Chem. 480, 227-234. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2014). E70, m351 [doi:10.1107/S1600536814020066]

Crystal structure of bromidobis(naphthalen-1-yl)antimony(III)

Omar bin Shawkataly, Hafiz Malik Hussien Abdelnasir and Mohd Mustaqim Rosli

S1. Experimental

All synthetic reactions were performed under dry, oxygen-free dinitrogen atmosphere using standard Schlenk techniques; THF was dried over sodium and distilled from sodium benzophenone ketyl under nitrogen. Antimony trichloride, 1bromo-naphthaline, and magnesium filing purchased from Sigma Aldrich. The title compound was prepared by adding a solution of antimony trichloride (0.9124 g, 0.0040 mol) in 30 ml THF was added dropwise with stirring to a Grignard mixture of magnesium filings (0.31 g, 0.0129 mol) and 1-bromonaphthaline (1.72 g, 0.0083 mol). The reaction mixture was stirred for 12 h, the solvent was removed in vacuum and the remaining solid was recrystallized from ethanol.

S2. Refinement

All H atoms were positioned geometrically and refined using a riding model with with C—H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids. The dashed line indicates the C—H…Br hydrogen bond.

Figure 2

A crystal packing view of the title compound. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bonds have been omitted for clarity.

Bromidobis(naphthalen-1-yl)antimony(III)

Crystal data	
$[SbBr(C_{10}H_7)_2]$	F(000) = 880
$M_r = 455.97$	$D_{\rm x} = 1.875 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 9971 reflections
a = 12.7371 (3) Å	$\theta = 2.5 - 32.2^{\circ}$
b = 10.9189 (3) Å	$\mu = 4.17 \text{ mm}^{-1}$
c = 11.6300 (3) Å	T = 100 K
$\beta = 92.661 \ (1)^{\circ}$	Block, yellow
V = 1615.70 (7) Å ³	$0.56 \times 0.33 \times 0.14 \text{ mm}$
Z = 4	
Data collection	
Bruker SMART APEXII CCD area-detector	20528 measured reflections
diffractometer	4705 independent reflections
Radiation source: fine-focus sealed tube	3936 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.032$
φ and ω scans	$\theta_{\rm max} = 30.0^\circ, \theta_{\rm min} = 2.5^\circ$
Absorption correction: multi-scan	$h = -17 \rightarrow 17$
(SADABS; Bruker, 2009)	$k = -15 \rightarrow 12$
$T_{\min} = 0.204, \ T_{\max} = 0.597$	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.060$	Hydrogen site location: inferred from
$wR(F^2) = 0.198$	neighbouring sites
S = 1.06	H-atom parameters constrained
4705 reflections	$w = 1/[\sigma^2(F_o^2) + (0.112P)^2 + 12.2014P]$
199 parameters	where $P = (F_o^2 + 2F_o^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 3.68 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta\rho_{min} = -3.12 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Sb1	0.17759 (3)	0.74179 (3)	0.07848 (3)	0.02490 (15)
Br1	0.13863 (7)	0.90878 (7)	-0.06577 (8)	0.0494 (3)
C1	0.0943 (5)	0.6110 (5)	-0.1412 (5)	0.0257 (11)
H1A	0.0838	0.6928	-0.1672	0.031*
C2	0.0591 (5)	0.5128 (6)	-0.2125 (5)	0.0292 (12)
H2A	0.0267	0.5290	-0.2862	0.035*
C3	0.0717 (5)	0.3958 (6)	-0.1758 (5)	0.0261 (11)
H3A	0.0482	0.3304	-0.2244	0.031*
C4	0.1192 (4)	0.3695 (5)	-0.0659 (5)	0.0230 (10)
C5	0.1307 (5)	0.2481 (5)	-0.0249 (6)	0.0288 (13)
H5A	0.1061	0.1822	-0.0721	0.035*
C6	0.1765 (5)	0.2234 (6)	0.0814 (6)	0.0313 (13)
H6A	0.1831	0.1413	0.1078	0.038*
C7	0.2140 (6)	0.3218 (6)	0.1516 (6)	0.0326 (13)
H7A	0.2463	0.3050	0.2252	0.039*
C8	0.2043 (5)	0.4399 (6)	0.1150 (5)	0.0289 (12)
H8A	0.2299	0.5044	0.1634	0.035*
C9	0.1567 (4)	0.4681 (5)	0.0055 (5)	0.0212 (10)
C10	0.1425 (4)	0.5910 (5)	-0.0364 (5)	0.0206 (10)
C11	0.3440 (4)	0.7501 (5)	0.0575 (5)	0.0220 (10)
C12	0.3925 (5)	0.6658 (5)	-0.0089(5)	0.0244 (10)
H12A	0.3522	0.6024	-0.0453	0.029*
C13	0.5023 (5)	0.6718 (6)	-0.0241 (5)	0.0309 (12)

H13A	0.5354	0.6120	-0.0695	0.037*	
C14	0.5603 (5)	0.7642 (6)	0.0268 (6)	0.0314 (13)	
H14A	0.6339	0.7672	0.0171	0.038*	
C15	0.5130 (5)	0.8555 (6)	0.0936 (5)	0.0278 (12)	
C16	0.5719 (5)	0.9541 (6)	0.1423 (6)	0.0351 (14)	
H16A	0.6452	0.9590	0.1310	0.042*	
C17	0.5250 (6)	1.0422 (7)	0.2053 (6)	0.0424 (18)	
H17A	0.5653	1.1091	0.2354	0.051*	
C18	0.4171 (6)	1.0344 (6)	0.2257 (6)	0.0370 (15)	
H18A	0.3853	1.0948	0.2715	0.044*	
C19	0.3575 (5)	0.9398 (5)	0.1799 (5)	0.0277 (11)	
H19A	0.2847	0.9359	0.1940	0.033*	
C20	0.4029 (4)	0.8482 (5)	0.1120 (5)	0.0233 (10)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sb1	0.0235 (2)	0.0210 (2)	0.0304 (2)	-0.00274 (13)	0.00205 (15)	-0.00743 (13)
Br1	0.0450 (4)	0.0284 (4)	0.0729 (6)	0.0000 (3)	-0.0185 (4)	0.0040 (3)
C1	0.025 (3)	0.023 (3)	0.028 (3)	-0.006 (2)	-0.001 (2)	0.001 (2)
C2	0.028 (3)	0.033 (3)	0.026 (3)	-0.005 (2)	-0.004 (2)	-0.004 (2)
C3	0.027 (3)	0.027 (3)	0.025 (2)	-0.008(2)	-0.001 (2)	-0.007 (2)
C4	0.023 (2)	0.021 (2)	0.026 (2)	-0.0027 (19)	0.0031 (19)	-0.0039 (19)
C5	0.032 (3)	0.015 (2)	0.039 (3)	-0.005 (2)	0.009 (3)	-0.004 (2)
C6	0.031 (3)	0.021 (3)	0.042 (4)	0.000 (2)	0.006 (3)	0.005 (2)
C7	0.041 (3)	0.028 (3)	0.028 (3)	0.001 (3)	-0.003 (2)	0.006 (2)
C8	0.034 (3)	0.025 (3)	0.027 (3)	-0.004 (2)	-0.003 (2)	-0.003 (2)
C9	0.020(2)	0.019 (2)	0.025 (2)	-0.0038 (18)	0.0020 (18)	-0.0027 (19)
C10	0.019 (2)	0.015 (2)	0.028 (3)	-0.0010 (17)	0.0013 (18)	-0.0054 (18)
C11	0.018 (2)	0.022 (3)	0.026 (2)	-0.0024 (18)	-0.0040 (19)	0.0023 (18)
C12	0.025 (3)	0.021 (2)	0.027 (3)	0.000 (2)	0.000 (2)	-0.0011 (19)
C13	0.027 (3)	0.034 (3)	0.032 (3)	0.005 (2)	0.002 (2)	0.003 (2)
C14	0.019 (3)	0.042 (4)	0.033 (3)	-0.001 (2)	0.000 (2)	0.007 (2)
C15	0.027 (3)	0.028 (3)	0.027 (3)	-0.006 (2)	-0.009 (2)	0.010 (2)
C16	0.033 (3)	0.035 (3)	0.036 (3)	-0.013 (3)	-0.012 (2)	0.010 (3)
C17	0.056 (4)	0.031 (3)	0.037 (3)	-0.018 (3)	-0.026 (3)	0.011 (3)
C18	0.053 (4)	0.024 (3)	0.033 (3)	-0.004 (3)	-0.017 (3)	-0.003 (2)
C19	0.034 (3)	0.022 (3)	0.026 (3)	-0.001 (2)	-0.010 (2)	0.000 (2)
C20	0.026 (3)	0.021 (2)	0.022 (2)	-0.004 (2)	-0.0084 (19)	0.0029 (19)

Geometric parameters (Å, °)

Sb1—C11	2.146 (6)	C9—C10	1.436 (7)	
Sb1—C10	2.155 (5)	C11—C12	1.367 (8)	
Sb1—Br1	2.5116 (9)	C11—C20	1.438 (7)	
C1-C10	1.357 (8)	C12—C13	1.420 (9)	
C1—C2	1.416 (8)	C12—H12A	0.9500	
C1—H1A	0.9500	C13—C14	1.369 (10)	

С2—С3	1.354 (9)	C13—H13A	0.9500
C2—H2A	0.9500	C14—C15	1.416 (10)
C3—C4	1.418 (8)	C14—H14A	0.9500
С3—НЗА	0.9500	C15—C16	1.416 (8)
C4—C5	1.414 (8)	C15—C20	1.431 (8)
C4—C9	1.429 (7)	C16—C17	1.363 (12)
C5—C6	1.368 (10)	C16—H16A	0.9500
C5—H5A	0.9500	C17—C18	1.409 (12)
C6—C7	1.419 (10)	С17—Н17А	0.9500
С6—Н6А	0.9500	C18—C19	1.374 (8)
C7—C8	1.362 (9)	C18—H18A	0.9500
С7—Н7А	0.9500	C19—C20	1.414 (9)
C8—C9	1.418 (8)	C19—H19A	0.9500
С8—Н8А	0.9500		
C11—Sb1—C10	98.0 (2)	C9—C10—Sb1	119.0 (4)
C11—Sb1—Br1	93.38 (15)	C12—C11—C20	120.7 (5)
C10—Sb1—Br1	96.42 (15)	C12—C11—Sb1	120.7 (4)
C10—C1—C2	121.4 (5)	C20—C11—Sb1	118.6 (4)
C10—C1—H1A	119.3	C11—C12—C13	120.9 (5)
C2—C1—H1A	119.3	C11—C12—H12A	119.5
C3—C2—C1	120.0 (5)	C13—C12—H12A	119.5
C3—C2—H2A	120.0	C14—C13—C12	119.6 (6)
C1—C2—H2A	120.0	C14—C13—H13A	120.2
C2—C3—C4	121.0 (5)	C12—C13—H13A	120.2
С2—С3—НЗА	119.5	C13—C14—C15	121.4 (6)
С4—С3—НЗА	119.5	C13—C14—H14A	119.3
C5—C4—C3	121.8 (5)	C15—C14—H14A	119.3
C5—C4—C9	118.9 (5)	C14—C15—C16	121.6 (6)
C3—C4—C9	119.2 (5)	C14—C15—C20	119.2 (5)
C6—C5—C4	121.5 (6)	C16—C15—C20	119.2 (6)
С6—С5—Н5А	119.2	C17—C16—C15	121.0 (6)
С4—С5—Н5А	119.2	C17—C16—H16A	119.5
C5—C6—C7	119.3 (6)	C15—C16—H16A	119.5
С5—С6—Н6А	120.4	C16—C17—C18	120.2 (6)
С7—С6—Н6А	120.4	С16—С17—Н17А	119.9
C8—C7—C6	120.9 (6)	C18—C17—H17A	119.9
С8—С7—Н7А	119.6	C19—C18—C17	120.4 (7)
С6—С7—Н7А	119.6	C19—C18—H18A	119.8
C7—C8—C9	121.0 (6)	C17—C18—H18A	119.8
С7—С8—Н8А	119.5	C18—C19—C20	121.0 (6)
С9—С8—Н8А	119.5	C18—C19—H19A	119.5
C8—C9—C4	118.4 (5)	C20—C19—H19A	119.5
C8—C9—C10	123.3 (5)	C19—C20—C15	118.2 (5)
C4—C9—C10	118.3 (5)	C19—C20—C11	123.7 (5)
C1—C10—C9	120.0 (5)	C15—C20—C11	118.1 (5)
C1—C10—Sb1	120.4 (4)		

C10-C1-C2-C3	1.2 (9)	C10—Sb1—C11—C12	-3.9 (5)
C1—C2—C3—C4	0.4 (9)	Br1—Sb1—C11—C12	-100.9 (5)
C2—C3—C4—C5	178.4 (6)	C10—Sb1—C11—C20	174.3 (4)
C2—C3—C4—C9	-1.6 (9)	Br1—Sb1—C11—C20	77.4 (4)
C3—C4—C5—C6	-179.9 (6)	C20-C11-C12-C13	1.0 (9)
C9—C4—C5—C6	0.2 (9)	Sb1—C11—C12—C13	179.2 (4)
C4—C5—C6—C7	-0.5 (10)	C11—C12—C13—C14	-1.0 (9)
C5—C6—C7—C8	0.4 (10)	C12—C13—C14—C15	-0.8 (10)
C6—C7—C8—C9	-0.1 (10)	C13—C14—C15—C16	-177.3 (6)
C7—C8—C9—C4	-0.2 (9)	C13—C14—C15—C20	2.5 (9)
C7—C8—C9—C10	178.7 (6)	C14-C15-C16-C17	179.2 (6)
C5—C4—C9—C8	0.2 (8)	C20-C15-C16-C17	-0.6 (9)
C3—C4—C9—C8	-179.8 (5)	C15—C16—C17—C18	1.9 (10)
C5-C4-C9-C10	-178.7 (5)	C16—C17—C18—C19	-1.8 (10)
C3—C4—C9—C10	1.3 (8)	C17—C18—C19—C20	0.4 (9)
C2-C1-C10-C9	-1.5 (9)	C18—C19—C20—C15	0.9 (8)
C2-C1-C10-Sb1	-172.3 (4)	C18—C19—C20—C11	-177.2 (6)
C8—C9—C10—C1	-178.6 (6)	C14—C15—C20—C19	179.5 (5)
C4—C9—C10—C1	0.2 (8)	C16—C15—C20—C19	-0.8 (8)
C8—C9—C10—Sb1	-7.6 (7)	C14—C15—C20—C11	-2.4 (8)
C4—C9—C10—Sb1	171.2 (4)	C16—C15—C20—C11	177.4 (5)
C11—Sb1—C10—C1	-105.6 (5)	C12-C11-C20-C19	178.7 (5)
Br1-Sb1-C10-C1	-11.2 (5)	Sb1-C11-C20-C19	0.5 (7)
C11—Sb1—C10—C9	83.5 (4)	C12—C11—C20—C15	0.7 (8)
Br1—Sb1—C10—C9	177.8 (4)	Sb1-C11-C20-C15	-177.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1A···Br1	0.95	2.71	3.408 (6)	130
C2—H2A···Br1 ⁱ	0.95	2.96	3.698 (6)	135

Symmetry code: (i) -x, y-1/2, -z-1/2.